
Functional Timing Analysis Made Fast and General

Yi-Ting Chung1 and Jie-Hong R. Jiang1,2

1Graduate Institute of Electronics Engineering; 2Department of Electrical Engineering
National Taiwan University, Taipei 10617, Taiwan

{r99943080@ntu.edu.tw, jhjiang@cc.ee.ntu.edu.tw}

ABSTRACT
Functional, in contrast to structural, timing analysis is ac-
curate, but computationally expensive in refuting false criti-
cal paths. Although satisfiability-based analysis using timed
characteristic functions has been proposed, its efficiency and
generality remain room for improvement. This paper shows
functional timing analysis on industrial designs can be made
up to several orders of magnitude faster and more generally
applicable than prior methods.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

General Terms
algorithms, design, verification

Keywords
false path, satisfiability solving, timed characteristic func-
tion, timing analysis

1. INTRODUCTION
In modern synthesis flow of very large scale integration

(VLSI) design, timing analysis is essential in identifying tim-
ing critical regions for re-synthesis, determining operable clock
frequencies, and avoiding wasteful over-optimization and thus
accelerating design closure in meeting stringent timing con-
straints. As timing analysis often has to be repeatedly per-
formed, how to make the computation efficient and accurate
becomes a crucial task.

There are two main approaches to timing analysis. Static
timing analysis (STA), based on pure structural (or topolog-
ical) analysis, though fast with linear-time complexity, can
be too pessimistic in estimating circuit delay due to the igno-
rance of false or nonsensitizable paths [2]. Functional timing
analysis (FTA), on the other hand, provides accurate delay
calculation, but is computationally intractable, i.e., NP-hard,
in identifying false critical paths [7].

Many FTA algorithms, e.g., [7, 11, 2, 4, 10, 1, 14, 13,
6, 3], have been proposed. When delay-dependency is con-
cerned, an FTA algorithm can be delay-independent [3] or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012,June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM ACM 978-1-4503-1199-1/12/06 ...$10.00.

delay-dependent [2]. The former (latter) identifies true and
false paths without (with) respect to some timing library.
Whereas the former is incomplete in that not every delay
path can be concluded true or false regardless of arbitrary
delay assignments, this paper focuses on the latter analysis.

When the underlying computation engine is concerned,
an FTA algorithm can be powered by an automatic test pat-
tern generator, e.g., [4, 1], or by a satisfiability (SAT) solver,
e.g., [10, 14, 6]. Since ATPG-based computation involves so-
phisticated circuit transformation and multi-fault testing, it
is difficult to implement and scale. In contrast, SAT-based
computation allows simple implementation due to its clean
separation between timed characteristic function (TCF) con-
struction [7] and SAT solving. Although recent advances in
SAT solving techniques [9, 8, 5] make SAT-based FTA a vi-
able approach, FTA for large industrial designs remains chal-
lenging due to the massive numbers of variables and clauses
when translating a complex TCF into a conjunctive normal
form (CNF) formula for SAT solving. Moreover, modern
SAT-based FTA algorithms [14, 6] cannot handle arbitrary
gate types. Although formulation for general gate types has
been proposed in [10], its complex formulas make SAT solv-
ing inefficient.

This work aims to develop a scalable and general FTA
framework. The main results include 1) a generalized TCF
framework supporting arbitrary complex gate types for both
combined and separate rise/fall-time analysis, 2) an implication-
based TCF construction and its linear-time translation to
CNF without extra variables being introduced, 3) a TCF
reduction technique with an improved equivalence relation
based on table look-up, 4) a model generation mechanism,
which produces a true critical path along with its sensiti-
zation condition if the target delay is sensitizable, and 5)
an algorithm to identify timing critical regions of a circuit
for potential timing optimization. Experimental results show
substantial speedup over prior SAT-based delay computation
methods and show effective critical region identification.

The rest of this paper is organized as follows. We give a
brief description of our sensitization criteria and satisfiability
model in Section 2. Our general TCF formulation is intro-
duced and compared with prior formulations in Section 3.
Section 4 presents efficient algorithms for timing delay com-
putation and critical region identification. Section 5 shows
experimental evaluation. Finally, conclusion and future work
are given in Section 6.

2. PRELIMINARIES
A literal is a Boolean variable or its negation. A clause

(cube) is a disjunction (conjunction) of literals. A proposi-
tional formula is in conjunctive normal form (CNF) if it is
written as a conjunction of clauses. The satisfiability (SAT)
problem asks whether there exists a satisfying assignment to

the set of variables that makes a CNF formula true. The
reader is referred to [9, 8, 5] for modern SAT solving tech-
niques, and to [15, 12] for circuit-to-CNF conversion.

2.1 Circuit Model
A (combinational) circuit C(N, E) consists of nodes (or

gates) N , (directed) edges E ⊆ N × N . Two disjoint sub-
sets of N are distinguished as primary inputs (PIs) and pri-
mary outputs (POs). Each node is associated with two at-
tributes: function and delay. We assume the function can
be arbitrary, from simple gate types, such as buffer, inverter,
NAND, NOR, etc., to complex function units, such as XOR,
multiplexer, AOI, etc. In the sequel, we sometimes do not
distinguish a node from its function and its output variable
when it is clear from the context. We assume the gate delay
can vary from pin to pin and vary between rise and fall time.
Without loss of generality, interconnect delays are assumed
to be integrated into the gate delays under this timing model.

For a node f in a circuit, we let FI (f) and FO(f) denote
the fanin and fanout nodes of f , respectively. For g ∈ FI (f),
we say g is of controlling value, denoted vc ∈ B = {0, 1}
(respectively, non-controlling value, denoted vn ∈ B) of f if
the output value of f can (respectively, cannot) be completely
determined by g with vc (respectively, vn) regardless of the
truth assignments to other inputs. For example, any input
of an AND gate is of controlling value 0.

For a complex gate, such as XOR, its inputs may likely
have no controlling values at all. Nevertheless the notion of
controlling values can be generalized to controlling cubes. For
a complex gate f , a truth assignment to a minimal (strict)
subset S ⊂ FI (f) that determines the output value of f in-
dependent of other fanins forms a controlling cube. A literal
in a controlling cube c is called a controlling literal of c. For
example, the controlling cubes of the gate f with function
ab ∨ c are {ab, c,¬a¬c,¬b¬c}, where cubes ab and c make
f = 1 and cubes ¬a¬c and ¬b¬c make f = 0. In addition,
¬a is a controlling literal of cube ¬a¬c.

2.2 Sensitization Criteria
Among the various modes of circuit operation when func-

tional timing analysis is concerned, floating-mode operation
[7], which we adopt, is the most popular due to its simplicity
and robustness. Under this mode of operation, the signals of
a circuit are of unknown initial values and stablize to their
final values induced by a set of truth assignments on the PIs.

Under the floating-mode operation, various path sensitiza-
tion criteria can be defined. The exact criterion [2] and viable
criterion [7] are two commonly studied criteria. When the
truth and falsity of a single path is concerned, the analysis of
the former is exact whereas that of the latter is conservative
[2]. Nevertheless, when the timing analysis is performed for
all paths of a circuit without tracing a particular path, the
viable criterion becomes exact as was shown in [11]. This
paper is mainly concerned with computing the longest true
delay among all paths.

2.3 Satisfiability of Timing Requirement
To perform satisfiability testing on whether there exists a

PI assignment that exercises a target circuit delay through
some unknown true path, the condition can be translated
into the so-called timed characteristic function (TCF) [7].
Specifically, the set of PI assignments that makes the output
value of f stablize no earlier than time t ≥ 0 is characterized
by a (no-early) TCF, denoted χf,t. In other words, a PI as-
signment satisfying χf,t makes the output value of f remains
unknown (under the floating-mode assumption) until time t.
When the stablization value of f is specific to value 0 (respec-

tively 1), the corresponding 0/1-specified TCF is denoted as
χf=0,t (respectively χf=1,t). Likewise one can define an early
TCF, denoted χf,t−, characterizing the set of PI assignments
that make the output value of f stablize earlier than time
t ≥ 0. Note that χf,t1 → χf,t2 for t1 ≥ t2, and χf,t = ¬χf,t−.

The circuit delay computation can therefore be formulated
as searching the maximum D such that the formula

∨
p∈PO

χp,D (1)

=
∨

p∈PO

(χp=1,D ∨ χp=0,D) (2)

is satisfiable. (If Formula (1) is satisfiable, the circuit delay
must be equal to or larger than D because there exists some
PO whose value remains unknown before time D. Other-
wise, the circuit delay is strictly smaller than D.) As to be
discussed in Section 3, these TCFs of Formula (1) can be
constructed recursively from POs to PIs of the circuit, and
Formula (1) can be converted to CNF for SAT solving.

3. TCF CONSTRUCTION
In this section we consider TCF formulations without and

with 0/1-specificity. Our formulations are then compared
with prior methods [14], [6], and [10]. Finally, TCF equiva-
lence reduction techniques are proposed.

3.1 TCF without 0/1-Specificity

3.1.1 Prior Formulation
Prior work [14] reformulated the exact [2] and viable [7]

sensitization criteria (with path tracing) for circuit delay
computation (without path tracing) with the following TCFs

χf,t =
∨

gi∈FI (f)

χgi,t−di ∧ {
∧

gj∈FI (f)

(gj = vnj) ∨

(gi = vci) ∧
∧

gj∈FI (f)

(χgj ,t−dj ∨ (gj = vnj))}, (3)

χf,t =
∨

gi∈FI (f)

χgi,t−di ∧
∧

gi∈FI (f)

(χgi,t−di ∨ (gi = vni)) (4)

respectively, where di is the pin-to-pin delay from gi to f and
vci and vni are the controlling and non-controlling values of
gi.

1 Equations (3) and (4) were considered in [14] as exact
and approximative circuit delay computation, respectively.

The recursive definition of χf,t naturally translates to a
combinational circuit. For a k-input simple gate f , Equa-
tions (3) and (4) result in (k2 +13k +2) and (5k +3) clauses
with (4k+1) and (k+1) extra variables being introduced, re-
spectively, by Tseitin’s circuit-to-CNF conversion [15]. The
satisfiability of such a TCF can be difficult to solve espe-
cially when the corresponding circuit is large. (Note that the
number of nodes in the circuit is bounded from above by the
number of possible arrival times of all nodes.)

3.1.2 Our Formulation
A close examination of Equations (3) and (4) reveals that

they are essentially equivalent in circuit delay computation.
In fact, as has been shown earlier in [11], Equation (4) yields
exact (rather than approximative, as interpreted in [14]) anal-
ysis when path tracing is not performed.

1Equation (3) looks different from the one in [14] as it was
previously expressed by both exact and viable TCFs.

Building upon Equation (4), we propose a general and
compact TCF formula for arbitrary complex gates as follows.

Proposition 1. For a node f with a set C of controlling
cubes, its TCF can be expressed as

χf,t =
∨

gi∈FI (f)

χgi,t−di ∧
∧
c∈C

∨

lit(gi)∈c

(χgi,t−di ∨¬lit(gi)), (5)

where di is the pin-to-pin delay from gi to f and lit(gi) de-
notes the literal of gi.

Proof. There are exactly two possible cases for the value
of f being determined before time t. First, the value of every
gi ∈ FI (f) is determined before time (t− di). Second, every
constituent input gi of some controlling cube c is determined
to its corresponding value lit(gi) ∈ c before time (t − di).
Since any of the above cases makes χf,t false, the condition
can be formally translated to

¬χf,t =
∧

gi∈FI (f)

¬χgi,t−di ∨
∨
c∈C

∧

lit(gi)∈c

(¬χgi,t−di ∧ lit(gi))),

whose negation equals Equation (5).

Note that, for simple gates (with controlling values, in other
words, with one-literal controlling cubes), Equation (5) re-
duces to Equation (4).

With the key observation that χf,t is recursively defined in
Equation (4) with the appearance only in the positive phase
without any negation, implication suffices to express the TCF
constraints. The advantage of using implication, instead of
equation, is that we can apply Plaisted-Greenbaum encod-
ing [12], instead of Tseitin encoding, in converting TCFs to
CNF formulas. Specifically, Equation (5) with the equality
sign “=” being replaced by the implication sign “→” can be
directly translated into the CNF formula

(¬χf,t∨
∨

gi∈FI (f)

χgi,t−di)
∧
c∈C

(¬χf,t∨
∨

lit(gi)∈c

(χgi,t−di∨¬lit(gi))),

(6)
which consists of |C| + 1 clauses without introducing any
extra variable. Hence, unlike prior methods, building TCF
circuits is unnecessitated.

Note that, in converting the entire recursive definition of
χf,t, Tseitin encoding is still needed for parts of the original
circuit that are relevant to the literals lit(gi) in individual
TCFs (since these literals may appear in both positive and
negative phases). Nevertheless the conversion with Tseitin
encoding is applied once on the original circuit and is shared
by all individual TCFs.

3.2 TCF with 0/1-Specificity

3.2.1 Prior Formulation
Prior work [6] intended to improve [14] by exploiting early

TCF to simplify TCF circuits. The following equations were
proposed.

χf,t = χf=1,t ∨ χf=0,t

= (f ∧ ¬χf=1,t−) ∨ (¬f ∧ ¬χf=0,t−) (7)

χf=1,t− =

{ ∧
gi∈FI (f) χgi=1,(t−dri

)−, for AND-gate f∨
gi∈FI (f) χgi=1,(t−dri

)−, for OR-gate f

χf=0,t− =

{ ∨
gi∈FI (f) χgi=0,(t−dfi

)−, for AND-gate f∧
gi∈FI (f) χgi=0,(t−dfi

)−, for OR-gate f
(8)

where dri and dfi are the corresponding rising and falling
pin-to-pin delays from gi to f , respectively. In the above
expressions, TCF χf,t is obtained from two subcases χf=1,t

and χf=0,t, where χf=v,t is satisfiable if f stablizes to value
v no earlier than time t. Note that χf=v,t 6= ¬χf=v,t−, but
rather χf=v,t = (f ⊕ ¬v) ∧ ¬χf=v,t−.

The advantages of separating χf=1,t and χf=0,t from χf,t

are two-fold: First, it allows distinction between rising and
falling delays and thus permits more accurate timing analysis.
Second, since Equation (8) in circuit representation consists
of a single gate, no internal variable needs to be introduced
in conversion to CNF. The resultant CNF formula is easier
to solve.

The disadvantages, on the other hand, are also two-fold:
First, such separation doubles the TCF formula size. Sec-
ond, since the formulation works for simple gates only, timing
analysis of circuits with complex gates is approximative. In
fact, Equation (8) can be generalized for complex gates [10]
with

χf=1,t− =
∨

c∈C1

∧

lit(gi)∈c

χgi=v,(t−dri
)− and

χf=0,t− =
∨

c∈C0

∧

lit(gi)∈c

χgi=v,(t−dfi
)−, (9)

where C1 and C0 are the sets of all prime implicants of f
and ¬f , respectively, and v = 0 if lit(gi) = ¬gi and v =
1 if lit(gi) = gi. When translated to CNF, Equation (9)
is more complicated than Equation (8) however. Note that
Plaisted-Greenbaum encoding is not applicable here due to
the negations in Equation (7).

3.2.2 Our Formulation
The aforementioned disadvantages can be overcome as fol-

lows.

Proposition 2. Given a circuit, let f be a node with the
set C1 and C0 of all prime implicants of f and ¬f , respec-
tively. Then 0/1-specified TCF can be expressed as

χf=1,t = f ∧
∧

c∈C1

∨

lit(gi)∈c

(χgi=v,t−dri ∨ ¬lit(gi)) and

χf=0,t = ¬f ∧
∧

c∈C0

∨

lit(gi)∈c

(χgi=v,t−dfi ∨ ¬lit(gi)), (10)

where v = 0 if lit(gi) = ¬gi and v = 1 if lit(gi) = gi.

Proof. If χf=1,t is satisfied, it means that f valuates to
true no earlier than time t. That is, for every cube in C1, it is
either not satisfied, or satisfied with at least one controlling
literal valuates to true no earlier than time t − d. Similarly,
one can prove the case of χf=0,t.

Since all the TCFs appear in χf,t = χf=1,t∨χf=0,t and in
Equation (10) without any negation, again Plaisted-Greenbaum
encoding applies for CNF conversion.

3.3 Comparison on TCF Formulas

Table 1: TCF Comparison
TCF PO Generality

Eq #Vr #Cl Eq #Vr #Cl CG RF

[14] (3) k + 1 5k + 3 (1) 0 1 No No
(4) 4k + 1 k2 + 13k + 2 (1) 0 1 No No

[6] (8) 0 2k + 2 (7) 2m 9m No Yes
[10] (9) k + 1 4k + 4 (7) 2m 9m Yes Yes

Our (5) 0 k + 1 (1) 0 1 Yes No
(10) 0 k + 3 (2) 0 1 Yes Yes

Table 1 compares our formulations with those of [14], [6],
and [10]. For a k-input simple gate, the number of extra vari-
ables and the number of clauses corresponding to the TCF

�

�� �� �� � ���� ��

	� χ

� � χ
� �� χ

� ��

Figure 1: Equivalence intervals of χf,t.

equations in Column 2 are shown in Columns 3 and 4, re-
spectively. For a circuit with m POs, the number of extra
variables and the number of clauses corresponding to the PO
equations in Column 5 are shown in Columns 6 and 7, re-
spectively. The generality for each formulation in supporting
complex gate types and supporting rise/fall delays are sum-
marized in Columns 8 and 9, respectively.

3.4 TCF Equivalence Reduction
Given a circuit with a node f , its TCFs χf,t for all t

can be partitioned into equivalence classes. This equivalence
relation can be exploited to simplify the recursive TCF con-
struction. In [10], TCF equivalence based on arrival-time
information is introduced. Assume that the set A of all pos-
sible arrival times of node f are sorted in an ascending order
as {a1, a2, . . . , am} for ai−1 < ai. Then χf=v,t− = χf=v,ai−

if ai−1 < t ≤ ai. That is, two temporal conditions t1 and t2
of f are equivalent if they have the same next larger or equal
arrival time in A.

For practical implementation, we propose a table look-
up approach to TCF equivalence reduction with three im-
provements over prior works [10, 6]. First, for TCFs with
0/1-specificity, the set of arrival times of a node f is further
distinguished into two sets A1 and A0 for those resulting in
f = 1 and f = 0, respectively. This distinction reduces the
number of arrival times and thus TCF equivalence classes.

Second, under boundary conditions, a TCF is substituted
with a constant 0 or 1 for further reduction (constant 1 is not
applicable for prior works) . Specifically, Figure 1 depicts the
equivalence intervals of the TCFs of node f with extended
boundary conditions. If t is larger than the maximum arrival
time am of a node f , then χf,t is unsatisfiable since f always
stabilizes before t. In this case, χf,t, χf=1,t and χf=0,t all
equal Boolean constant 0. On the contrary, if t is no larger
than the minimum arrival time a1, then χf,t is a tautology
(but χf=1,t and χf=0,t are not necessarily tautologies). That
is, χf,t equals constant 1, and furthermore χf=v,t can be
simplified to f⊕¬v by χf=v,t = (f⊕¬v)∧χf,t. Observe that,
in Equation (10), χgi=v,t−di and ¬lit(gi) are always present
together in a clause with ¬lit(gi) = gi⊕v. When χgi,t−di = 1,
since χgi=v,t−di = gi⊕¬v, this clause must be satisfied due to
(χgi=v,t−di ∨¬lit(gi)) = ((gi⊕¬v)∨ (gi⊕v)) = 1. Therefore,
whenever χgi,t−di = 1, substituting constant 1 for χgi=1,t−di

and χgi=0,t−di is safe without altering the satisfiability of
χf,t. As a result, our TCFs without and with 0/1-specificity
can be simplified with such constant substitution.

Third, our TCF equivalence reduction is applied to all
nodes including PIs and POs. Because of the aforemen-
tioned first improvement, any TCF of a PI is either constant
1 or constant 0 because any PI has only one arrival time.
On the other hand, since the arrival times at POs are the
only candidate circuit delays, this information is exploited
to save unnecessary checking. More precisely, only PO ar-
rival times are checked for circuit delay by Formula (1); once
some candidate delay is falsified, this delay and other larger
delays are removed from the arrival-time lists of all POs.
For example, assume two POs p1 and p2 have arrival-time
lists {4, 5, 7} and {6, 7}, respectively. If (χp1,7 ∨χp2,7) is un-

satisfiable, we remove 7 from the two lists. Then we check
(χp1,6∨χp2,6) = (0∨χp2,6). Note that this removal is crucial.
If 7 were not removed from the list of p1, then χp1,6 would
equal χp1,7 instead of 0 and χp1,7 would be built again.

4. ALGORITHMS
The overall algorithms of circuit delay computation and

critical region identification are presented in this section.

4.1 Delay Computation
Figure 2 sketches a procedure for delay computation with-

out rise/fall time separation. It can be easily extended under
a similar framework to the computation with rise/fall time
separation, which is omitted for brevity. To avoid confusion
between a TCF and its output variable, in the pseudo code
xf,t represents the output variable of TCF χf,t.

While the code is self-explanatory, it should be noted that
different delay search strategies can be applied depending
on how functions GetDelayList, GetNextDelay, and Updat-
eDelayList are implemented. For instance, linear or binary
search can be deployed with or without adaptive step-size ad-
justment. Counterintuitively empirical experience suggests
that linear search in general works much better than binary
search. Investigation reveals that, although linear search re-
quires more SAT solving iterations than binary search, it al-
lows the second improvement technique of Section 3.4 more
applicable and thus making the CNF formula at each itera-
tion easier to solve.

Upon termination (line 14 of ComputeDelay), Formula (1)
must be satisfiable for D = lowerDelay. That is, there exists
a PI assignment to sensitize some true path achieving this
delay value. By applying the assignment values to PIs, we
can simulate and trace one true critical path based on the
exact sensitization criterion [2].

4.2 Critical Region Identification
Our delay computation algorithm can be applied to iden-

tify true timing critical regions for delay optimization. Given
a target required time of a circuit, topological timing criti-
cal regions (with small slacks) can be identified by conven-
tional STA analysis. Topological timing critical regions over-
approximate functional true critical regions. The approxima-
tion can be very crude, and in this case many false critical
gates and paths can be trimmed away. The true critical re-
gions can be pinpointed by removing false arrival times with
the third improvement technique of Section 3.4. Note that
the TCFs of non-critical gates equal constant 0 due to the
boundary condition (t > am) of TCF equivalence reduction.
Effectively the computation considers only the timing criti-
cal sub-circuit, which can be much smaller than the entire
circuit.

5. EXPERIMENTAL RESULTS
Our methods, named“Swift”for Equation (5) and“Swift-

0/1” for Equation (10), were implemented in the C++ lan-
guage using MiniSat version 2.20 [5] as the underlying SAT
solver. All experiments were conducted on a Linux machine
with a Xeon 3.4 GHz CPU and 32 GB RAM. Large ISCAS,
ITC, and other industrial benchmark circuits were selected
for experiments. For the sake of comparison with prior work
[6], which handles only simple gate types, all circuits are
technology mapped using only buffers, inverters, AND-gates,
OR-gates, NAND-gates, and NOR-gates. It should be noted,
however, that our computation is not restricted to these sim-
ple gate types and can be generally applicable to general
complex gates.

ComputeDelay(C) //compute maximum true-path delay of circuit C
begin
01 L := GetDelayList(C);
02 (lowerDelay, upperDelay) := MinMaxTopologicalDelay(C);
03 do
04 D := GetNextDelay(L);

05 Φ := (
∨

p∈P O xp,D);

06 for every PO p
07 Φ := Φ ∧ BuildTcf (p, D);
08 if IsSat(Φ)
09 lowerDelay := D;
10 else
11 upperDelay := D;
12 UpdateDelayList(C, L, lowerDelay, upperDelay);
13 while L non-empty;
14 return lowerDelay and its corresponding true path;
end

BuildTcf(f ,t) //derive χf,t in CNF
begin
01 t := GetNextLargerOrEqualArrivalTime(f);

02 if χf,t has been built
03 return 1;
04 if t > f.am //largest arrival time of f

05 return (¬xf,t);
06 if t ≤ f.a1 //smallest arrival time of f

07 return (xf,t);
08 if f has only one fanin gi

09 return BuildTcf (gi, t− di) with xgi,t−di replaced by xf,t;

10 Φ := (¬xf,t ∨∨
gi∈FI(f) xgi,t−di);

11 for each controlling cube c of f

12 Φ := Φ ∧ (¬xf,t ∨∨
lit(gi)∈c(x

gi,t−di ∨ ¬lit(gi)));

13 for each gi ∈ FI (f)
14 Φ := Φ ∧ BuildTcf (gi, t− di);
15 if gi’s circuit CNF has not been built
16 Φ := Φ ∧ BuildCktCnf (gi);
17 return Φ;
end

Figure 2: Algorithm: Delay Computation

5.1 Delay Computation
For circuit delay computation, prior method [6], using

Equations (7) and (8), was re-implemented under the same
setting (including the same linear delay search strategy in a
descending order) as ours for fair comparison. (We did not
compare with [14] and [10] as they are not as efficient as [6].)
The comparison was performed under four delay models: the
unit gate delay model, fanout delay model (by calculating a
gate delay as 1 + 0.2 × fanout number), TSMC 0.18µm li-
brary model with combined rise/fall time (by calculating a
gate delay as max{rise delay, fall delay}, and TSMC 0.18µm
library model with separate rise/fall time.

Table 2 shows the experimental results under the four de-
lay models. Column 2 shows the gate count; Column 3 shows
the longest topological delay and actual true-path delay; Col-
umn 4 shows the number of SAT solving iterations needed to
identify the true-path delay; Columns 5 and 8 (respectively
Columns 6 and 9) show the total number of variables exclud-
ing those in original circuits (respectively clauses) involved in
the CNF formulas of all SAT solving iterations; Columns 7
and 10 show the total SAT solving time in seconds. (The
reported runtime excludes preprocessing time as both prior
and our methods were preprocessed in a similar way. The
prior method may take slightly longer time because of con-
verting circuits to CNF formulas.) Note that Swift is only
applicable to the first three timing models (without separat-
ing rise and fall delays) because its TCF formulation has no
0/1-specificity, and thus Swift-0/1 is applied in the fourth
timing model with separate rise and fall delays.

The results suggest that Swift performs robustly and effi-
ciently (with all runtimes within 3.06 seconds) under various
delay models while the performance [6] is unpredictable (as

Table 3: Critical Region Identification

Circuit #G Topological Functional Time
#G #Path #G #Path (s)

b05 1022 322 7435427 186 8669 0.04
b17 33741 1637 5585965 79 232 0.61
b18 117941 1101 77585298 465 20839024 18.67

c3540 1741 270 1054 91 100 0.02
c5315 25585 213 832 76 60 0.02
c7552 3827 304 97 61 8 0.01
i10 2724 452 127483 338 3071 0.08

s15850 11067 408 73984 389 22016 0.16
s38417 2608 230 476 112 10 0.06

exemplified by circuit leon3mp, which is solved in 12229.60
seconds under the unit delay model and 2.66 seconds under
the fanout delay model) and is not as efficient. The effi-
ciency of Swift stems from several factors. First, the num-
bers of variables and clauses encountered in Swift are about
half of those in [6]. Second, replacing equivalence-based with
implication-based TCF construction makes SAT solving eas-
ier. Third, the TCF without 0/1-specificity is more com-
pact than that with 0/1-specificity. Fourth, perhaps most
importantly, Swift yields more constant propagations due
to equivalent TCF reduction.

On the other hand, the results also suggest that Swift-
0/1 outperforms [6] (by a factor of 3.09 measured by geo-
metric mean). It is interesting to note that circuit netcard

took Swift-0/1 long time to solve comparable to that of
[6]. (Although the timing improvement is not remarkable in
this case, Swift-0/1 offers the generality to handle complex
gates, which is not available in [6].) Compared to Swift,
Swift-0/1 does not enjoy as much variable and clause re-
ductions, and constant propagations. The formulations of
Swift-0/1 and [6] have their own strengths. For Swift-0/1,
there are fewer variables and clauses, and constant propaga-
tion in equivalent TCF reduction is possible. For [6], because
χf=v,t in Equation (8) depends only on its fanin TCFs but
not on other variables, it makes CNF formulas simple. How-
ever the formulation is only applicable to simple gates.

Table 2 also reveals that topological delay may be far pes-
simistic compared to true circuit delay, e.g., circuits b05 and
b19 under the unit and fanout delay models. It suggests
the importance of accurate functional timing analysis and
its application on identifying true critical region for timing
optimization.

5.2 Critical Region Identification
Table 3 evaluates the applicability of Swift on identify-

ing timing critical regions under the unit delay model. For
a circuit, its true delay is set to be the required time at its
POs, and the gates and paths with non-positive slack val-
ues are declared critical. Column 2 shows the total number
of gates of a circuit; Columns 3 and 4 (Columns 5 and 6)
show the numbers of critical gates and paths, respectively,
with respect to topological arrival times (functional true ar-
rival times); Column 7 shows the runtime in identifying true
critical regions.

The results suggest that Swift effectively removed spuri-
ous critical gates and paths. As a matter of fact, true critical
regions can be much smaller than topological critical regions.
By taking circuit b17 as an example, Swift detected, in 0.61
seconds (the time spent in SAT solving), that only 79 out of
its 1637 topological critical gates are true critical gates, and
at least 5585733 out of its 5585965 topological critical paths
are false critical paths. Pinpointing true critical regions effi-
ciently can be beneficial to timing optimization.

6. CONCLUSIONS AND FUTURE WORK

Table 2: Circuit Delay Computation
Unit Delay

Circuit #Gate Delay #SAT [6] Swift
#Var #Clause Time (s) #Var #Clause Time (s)

b05 1022 54→42 8 15672 51104 0.03 7786 25030 0.01
b18 117941 164→159 5 18746 58335 1.72 9221 28300 0.29
b19 237959 168→158 7 84174 262549 11.50 41597 128850 0.76

c6288 2480 124→123 3 4248 12747 0.19 2118 6324 0.08
leon2 1119384 42→42 1 514 1703 0.21 250 829 < 0.01
leon3 1272597 44→44 1 354 1171 0.06 173 560 < 0.01

leon3mp 824294 40→38 3 427522 1387725 12229.60 155786 519905 0.79
netcard 983683 29→29 1 144 503 0.09 70 226 < 0.01

ray 235526 178→178 1 10338 35173 2.01 5051 17205 0.08
s35932 19876 29→26 4 100608 301828 6.95 49152 138244 0.06

uoft raytracer 218671 178→178 1 11476 39015 1.08 5618 19109 0.02

Fanout Delay

Circuit #Gate Delay #SAT [6] Swift
#Var #Clause Time (s) #Var #Clause Time (s)

b05 1022 80.6→64.0 44 291364 945194 0.54 145404 469541 0.10
b18 117941 242.8→238.0 12 20140 62692 1.23 9861 30677 0.15
b19 237959 244.4→234.4 25 528358 1652131 77.60 262406 820125 3.06

c6288 2480 176.4→174.8 3 3222 9669 0.12 1606 4798 0.03
leon2 1119384 2070.0→2070.0 1 41544 149437 241.61 14628 55764 0.03
leon3 1272597 6854.4→6854.4 1 198674 599655 1172.05 66569 201522 0.11

leon3mp 824294 3093.2→3093.2 1 2224 7419 2.66 744 2604 < 0.01
netcard 983683 16390.2→16390.2 1 393228 1179685 0.76 131078 393231 0.27

ray 235526 383.6→383.6 1 796 2561 0.13 334 1087 0.01
s35932 19876 42.8→39.0 4 86784 260356 8.92 42240 122692 0.12

uoft raytracer 218671 383.6→383.6 1 796 2561 0.06 334 1087 0.01

TSMC 0.18µm Cell Library with Combined Rise/Fall Time

Circuit #Gate Delay #SAT [6] Swift
#Var #Clause Time (s) #Var #Clause Time (s)

b05 1022 5.67→4.45 62 484714 1571927 0.89 241959 782062 0.13
b18 117941 13.49→13.43 3 2326 7415 0.16 1083 3457 0.02
b19 237959 14.09→13.80 15 114446 352033 1.53 56743 174462 0.25

c6288 2480 13.95→13.79 5 6916 20753 2.12 3450 10315 0.05
leon2 1119384 13.16→13.16 1 9356 28285 38.36 3142 9532 0.10
leon3 1272597 14.28→14.16 8 62946 190674 169.67 24924 75932 0.12

leon3mp 824294 14.58→14.27 17 169690 511361 876.46 57133 172517 0.19
netcard 983683 8.61→8.42 3 13180 39583 88.08 4404 13227 0.10

ray 235526 31.84→31.75 5 10310 34683 0.82 4999 16866 0.02
s35932 19876 2.83→2.64 5 85888 257669 6.06 41760 121125 0.05

uoft raytracer 218671 31.98→31.98 1 804 2711 0.11 386 1306 0.02

TSMC 0.18µm Cell Library with Separate Rise/Fall Time

Circuit #Gate Delay #SAT [6] Swift
#Var #Clause Time (s) #Var #Clause Time (s)

b05 1022 4.67→3.52 59 433885 1407065 0.83 433148 1132193 0.72
b18 117941 11.08→10.98 7 9278 28949 0.58 9134 23404 0.48
b19 237959 11.67→11.42 14 135078 415139 1.24 134374 340148 0.92

c6288 2480 10.13→10.02 5 4068 12206 0.59 4060 10126 0.79
leon2 1119384 11.07→11.07 1 4678 14143 35.55 3142 7987 0.97
leon3 1272597 12.81→12.68 9 26375 79963 130.69 18137 46295 3.07

leon3mp 824294 12.39→12.03 4 95668 324471 603.09 64020 197810 50.22
netcard 983683 7.67→6.87 27 2915186 9076031 92964.40 2334866 6173237 90456.2

ray 235526 26.77→26.43 18 55045 183570 0.58 54186 140414 0.37
s35932 19876 2.45→2.35 5 40768 122308 2.91 39616 98148 1.67

uoft raytracer 218671 26.40→25.82 31 213908 743738 7.02 213179 567656 2.11

This paper has shown that functional timing analysis can
be made fast and general compared with sate-of-the-art meth-
ods. Based on implication relation and other technical im-
provements, compact CNF encoding for TCFs without and
with 0/1-specificity has been devised. Thereby the power of
modern SAT solvers can be fully utilized. Experiments on
large designs have demonstrated promising results on delay
computation and critical region identification.

Acknowledgments
The authors acknowledge Yuji Kukimoto for referring us to
[10]. This work was supported in part by the National Science
Council under grants NSC 99-2221-E-002-214-MY3, 99-2923-
E-002-005-MY3, and 100-2923-E-002-008.

7. REFERENCES
[1] P. Ashar and S. Malik. Functional timing analysis using ATPG.

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
14(8): 1025-1030, Aug. 1995.

[2] H.-C. Chen and D. Du. Path sensitization in critical path
problem. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., 12(2): 196-207, Feb. 1993.

[3] O. Coudert. An efficient algorithm to verify generalized false
paths. In Proc. Design Automation Conf., 2010.

[4] S. Devadas, K. Keutzer, and S. Malik. Computation of floating
mode delay in combinational circuits: Theory and algorithms.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
12(12): 1913-1923, Dec. 1993.

[5] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc.
SAT, pp. 502-518, 2003.

[6] Y.-M. Kuo, Y.-L. Chang, and S.-C. Chang. Efficient Boolean
characteristic function for timied automatic test pattern
generation. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 28(3): 417-425, March 2009.

[7] P. C. McGeer and R. K. Brayton. Integrating Functional and
Temporal Domains in Logic Design. Kluwer Academic
Publishers, 1991.

[8] M. Moskewicz, C. Madigan, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proc. DAC, pp. 530-535,
2001.

[9] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Trans. on Computers, vol.
48, no. 5, pp. 506-521, May 1999.

[10] P. McGeer, A. Saldanha, R. Brayton, and A.
Sangiovanni-Vincentelli. Delay models and exact timing analysis.
In Logic Synthesis and Optimization, Kluwer Academic
Publishers, pp. 167-189, 1993.

[11] P. C. McGeer, A. Saldanha, P. R. Stephan, R. K. Brayton, and
A. L. Sangiovanni-Vicentelli. Timing analysis and delay-fault test
generation using path-recursive functions. In Proc. Int. Conf. on
Computer-Aided Design, pages 180-183, 1991.

[12] D. Plaisted and S. Greenbaum. A structure-preserving clause
form translation. J. Symbolic Computation, 2:293-304, 1986.

[13] S. Roy, P. P. Chakrabarti, and P. Dasgupta. Event propagation
for accurate circuit delay calculation using SAT. ACM Trans.
Design Autom. Electron. Syst., 12(3), Aug. 2007.

[14] L. Silva, J. Marques-Silva, L. Silveira, and K. Sakallah.
Satisfiability models and algorithms for circuit delay
computation. ACM Trans. on Design Automation of Electronic
Systems, 7(1): 137-158, Jan. 2002.

[15] G. Tseitin. On the complexity of derivation in propositional
calculus. Studies in Constructive Mathematics and
Mathematical Logic, pp. 466-483, 1970.

