
Scalable Exploration of Functional Dependency by
Interpolation and Incremental SAT Solving

Chih-Chun Lee, Jie-Hong R. Jiang, Chung-Yang (Ric) Huang
EE Dept./Graduate Inst. of Electronics Engineering

National Taiwan University
Taipei 10617, Taiwan

Alan Mishchenko
Dept. of EECS

University of California, Berkeley
CA94720, USA

ABSTRACT
Functional dependency is concerned with rewriting a Boolean
function f as a function h over a set of base functions {g1, …, gn},
i.e. f = h(g1, …, gn). It plays an important role in many aspects of
electronic design automation (EDA), ranging from logic synthesis
to formal verification. Prior approaches to the exploration of
functional dependency are based on binary decision diagrams
(BDDs), which may not be easily scalable to large designs. This
paper proposes a novel reformulation that extensively exploits the
capability of modern satisfiability (SAT) solvers. Thereby,
functional dependency is detected effectively through incremental
SAT solving, and the dependency function h, if it exists, is
obtained through Craig interpolation. The main strengths of the
proposed approach include: (1) fast detection of functional
dependency with modest memory consumption and thus scalable
to large designs, (2) a full capacity to handle a large set of base
functions and thus discovering dependency whenever exists, and
(3) potential application to large-scale logic optimization and
verification reduction. Experimental results show the proposed
method is far superior to prior work and scales well in dealing
with the largest ISCAS89 and ITC99 benchmark circuits with up
to 200K gates.

1. INTRODUCTION
Functional dependency [1] appears commonly among a set of
Boolean functions {f1, ..., fn} in VLSI circuit design as a function
fi (called the target function) can often be reexpressed as some
function h (called the dependency function) over a subset of the
functions (called the base functions). The exploration of
functional dependency plays an important role in many aspects of
EDA, ranging from logic synthesis to formal verification. For
instance, it leads to the identification of redundant registers in
RTL synthesis [2][3], resubstitution and simplification of Boolean
functions in both technology-independent and technology-
dependent logic synthesis [4], BDD minimization [5] and state
space reduction [1][6][7] in formal verification, search space
reduction in SAT solving [8], etc. Advances on the exploration of
functional dependency may benefit a wide range of applications.

Given a set of Boolean functions {f1, …, fn}, we would like
to know if any fi can be written as h(f1, …, fi–1, fi+1, …, fn).
Conventional approaches [1] to the exploration of functional
dependency rely mostly on BDDs [9]. Unfortunately computation
using BDDs suffers from the memory explosion problem and thus
is not scalable to manipulate large designs. In contrast, SAT
solving consumes little memory (linear in the input size) at the
cost of time resources and thus is more robust at least in
representing large designs. Recent advances, see e.g. [10][11], in
SAT solving have made it a very efficient Boolean reasoning
engine and a viable alternative to BDD. More and more logic

synthesis and verification algorithms shift their computation
paradigm from BDD to SAT, e.g. [12][13]. However, formulating
the computation of functional dependency as pure SAT solving is
not straightforward due to the difficulty in deriving the
dependency function h, whose derivation in BDD-based
computation is in contrast immediate.

This paper demonstrates, for the first time, that the
exploration of functional dependency (including efficient
derivation of dependency function) can be achieved with pure
SAT solving. In particular, a dependency function, if it exists, can
be obtained through the construction of interpolants from a
refutation proof of a SAT solver. Essentially, the Craig
interpolation theorem [14] lays the foundation. Moreover, to
detect functional dependency for different target functions and to
obtain different dependency functions for a target function,
incremental SAT solving is adopted to reuse learned clauses and
to indicate conflict assumptions. Even though incremental SAT
solving is not new and has been widely used, we explore its new
use in our framework. In essence, it not only speeds up the
computation, but also provides an automatic way of selecting sets
of base functions for a target function.

The main results of the paper include (1) a new SAT-based
derivation of dependency function using Craig interpolation,
which enables a pure SAT solution to the exploration of
functional dependency, and (2) an incremental SAT-based
enumeration of target and base functions, which provides an
automatic way of identifying useful base functions and effectively
reduces the search space for solving similar SAT instances.
Experiments show encouraging improvements over BDD-based
approaches. As the pure SAT-based computation of functional
dependency avoids the BDD memory explosion problem, it is
scalable to large designs and turns out to be powerful in detecting
functional dependency even among a large set of base functions.

The paper is organized as follows. After preliminaries are
introduced in Section 2, our SAT formulation of functional
dependency is detailed in Section 3. The proposed approach is
evaluated with experimental results in Section 4. Section 5
concludes this paper and outlines some future research directions.

2. PRELIMINARIES
As a notational convention, in the sequel symbols “∧”, “∨”, and
“¬” denote Boolean AND, OR, and COMPLEMENT operations,
respectively. The cardinality (or size) of a set S is denoted as |S|.
The problem formulation of functional dependency and some
background on SAT solving are given as follows.

2.1 Functional Dependency
Functional dependency is defined as follows.

Definition 1. Given a Boolean function f: Bm → B and a vector of
Boolean functions G = (g1(X), …, gn(X)) with gi: Bm→ B for i =
1, …, n, over the same set of variable vector X = (x1, …, xm), we
say that f functionally depends on G if there exists a Boolean
function h: Bn → B, called the dependency function, such that
f(X) = h(g1(X), …, gn(X)). We call functions f, G, and h the target
function, base functions, and dependency function, respectively.

Note that functions f and G are over the same domain in the
definition; h needs not depend on all of the functions in G.

The necessary and sufficient condition of the existence of the
dependency function h is given as follows.

Proposition 1. [1] Given a target function f and base functions G,
let h0 = {a ∈ Bn: a = G(b) and f(b) = 0, b ∈ Bm} and h1 = {a ∈ Bn:
a = G(b) and f(b) = 1, b ∈ Bm}. Then h is a feasible dependency
function if and only if {h0∩ h1} is empty. In this case, h0, h1, and
Bn\{h0∪h1} are the off-set, on-set, and don’t-care set of h,
respectively.

By Proposition 1, one can not only determine the existence of a
dependency function, but also deduce a feasible one.

To explore functional dependency for a given circuit netlist,
there are many choices of f and G. One may ask how to
effectively choose G for a specific f.

Definition 2. For a Boolean function f with input variables X =
(x1, …, xm), variable xi is a support variable of f if f(x1, …, xi–1, 0,
xi+1,…, xm) ≠ f(x1, …, xi–1, 1, xi+1,…, xm) .

For a functional vector G = (g1, g2, …, gn), its support variables
are the union of the support variables of gi for i = 1, …, n.

2.1.1 BDD-based Exploration of Functional
Dependency
Conventional BDD-based exploration of functional dependency is
reviewed in order to contrast with the novel SAT-based approach.

Proposition 1 suggests a way of determining the existence of
a dependency function and its derivation. Essentially standard
image computation applies. Let yi be the output variable of gi.
Then the on-set, off-set, and dc-set of h can be derived by

h0(Y) = ∃X [R(X, Y) ∧ (f(X) ≡ 0)],

h1(Y) = ∃X [R(X, Y) ∧ (f(X) ≡ 1)], and

hdc(Y) = ¬(h0 ∨ h1),

respectively, where relation R(X, Y) = (y1 ≡ g1(X)) ∧ (y2 ≡ g2(X)) ∧
⋅⋅⋅ ∧ (yn ≡ gn(X)). The dependency function h(Y) exists if and only
if (h0(Y) ∧ h1(Y)) ≡ 0. All of the above operations can be done
using BDDs; see also [4].

Note that constructing the relation R(X, Y) along with the
image computation may suffer from memory explosion especially
when |G| is large even though the final BDDs of h0 and h1 can be
small. Therefore, it is necessary to restrict the size of the set of
base functions at the cost of losing completeness. Keeping |G|
small may often result in a failure to compute some dependency
that truly holds in a circuit. Once the search for a feasible
dependency function with respect to a set of base functions fails,
another set of base functions is selected and the computation of
functional dependency repeats. Consequently, although some fast
filtering techniques, e.g. by Proposition 2, are available [1], BDD-
based computation is inefficient in that there may be too many
selections of G tested before functional dependency is discovered.

As will be seen later, the deficiency can be overcome in SAT-
based exploration of functional dependency.

2.2 Propositional Satisfiability
Let V = {v1, …, vk} be a finite set of Boolean variables. A literal l
is either a Boolean variable vi or its negated form ¬vi. A clause c
is a disjunction of literals. Without loss of generality, we shall
assume there are no repeated or complementary literals in the
same clause. A SAT instance is a conjunction of clauses, i.e., in
the so-called conjunctive normal form (CNF). In the sequel, a
clause set C = {c1, ..., ck} shall mean to be the CNF (c1 ∧ ⋅⋅⋅ ∧ ck).
An assignment over V gives every variable vi a Boolean value
either true or false. A SAT instance is satisfiable if there exists a
satisfying assignment such that the CNF evaluates to true.
Otherwise it is unsatisfiable. Given a SAT instance, the
satisfiability (SAT) problem asks whether it is satisfiable or not.
A SAT solver is designated to solve the SAT problem.

Definition 3. Assume literal v is in clause c1 and ¬v in c2. A
resolution of clauses c1 and c2 on variable v yields a new clause c
containing all literals in c1 and c2 except for v and ¬v. The clause
c is called the resolvent of c1 and c2, and variable v the pivot
variable.

Proposition 3. A resolvent c of c1 and c2 is a logical consequence
of c1 ∧ c2, that is, c1 ∧ c2 implies c.

Theorem 1. [15] For an unsatisfiable SAT instance, there exists a
sequence of resolution steps leading to an empty clause.

Theorem 1 can be easily proved by Proposition 3 since an
unsatisfiable SAT instance must imply a contradiction. Often only
a subset of the clauses of the SAT instance participates in the
resolution steps leading to an empty clause.

Definition 4. A refutation proof Π of an unsatisfiable SAT
instance C is a directed acyclic graph (DAG) Γ = (N, A), where
every node in N represents a clause which is either a root clause
in C or a resolvent clause having exactly two predecessor nodes,
and every arc in A connects a node to its ancestor node. The
unique leaf of Π corresponds the empty clause.

Modern SAT solvers, such as Chaff [10] and MiniSat [11], are
capable of producing a refutation proof from an unsatisfiable SAT
instance.

2.2.1 Refutation Proof and Craig’s Interpolation
Theorem 2. (Craig Interpolation Theorem) [14] Given two
inconsistent clause sets A and B (i.e. the clause set A∪B is
unsatisfiable), then there exists a Boolean formula A# referring
only to the common input variables of A and B such that A ⇒ A#
and A# ⇒ ¬B.

The Boolean formula A# is referred to as the interpolant of A and
B. Detailed exposition on how to construct an interpolant from a
refutation proof in linear time can be found in [16][17][18]. Note
that the so-derived interpolant is in a circuit structure, which can
then be converted into CNF as discussed below.

2.2.2 Circuit to CNF Conversion
Given a circuit netlist, it can be converted to a CNF in such a way
that the satisfiability is preserved. The conversion is achievable in
linear time by introducing some intermediate variables [19][20].

3. SAT-BASED EXPLORATION OF
FUNCTIONAL DEPENDENCY

3.1 The Primary Construct
To formulate the exploration of functional dependency as SAT
solving, we introduce the dependency function network (DFN)
as shown in Fig. 1. For a given circuit netlist consisting of n + 1
Boolean functions {f0, …, fn}, suppose function f0 and the others
are identified to be the target function and base functions,
respectively. That is, in the notation of Section 2, f0 corresponds
to f and fi corresponds to gi for i = 1, …, n. The circuit netlist is
instantiated into two copies, identified as DFNon and DFNoff, in
the DFN. For every variable v (respectively function f) in DFNon,
there is starred counterpart v* (respectively f*) in DFNoff. Let yi
and yi

* be the output variables of fi and fi
*, respectively. The

circuits DFNon and DFNoff can be converted to CNFs Con and Coff,
respectively, in linear time. In addition, the output of the target
function f in DFNon is asserted to true, i.e., y0 ≡ 1; that of f* in
DFNoff is asserted to false, i.e., y0

* ≡ 0. Furthermore, equality
constraints (yi ≡ yi

*) are imposed for i = 1, …, n. Thereby the
entire CNF CDFN is

Con ∧ Coff ∧ y0 ∧ ¬y0
* ∧ (y1 ≡ y1

*) ∧ ⋅⋅⋅ ∧ (yn ≡ yn
*), (1.1)

where (yi ≡ yi
*) is the shorthand for (yi ∨ ¬yi

*) ∧ (¬yi ∨ yi
*).

The intuition behind this construct is that formula Con ∧ y0
(respectively Coff ∧ ¬y0

*) imposes the constraint that the
valuations over input variables (x1, …, xm) (respectively (x1

*, …,
xm

)) must be the on-set of f (respectively off-set of f). By
Proposition 1, we can thus test if h0 and h1 are disjoint. Precisely
speaking, we conclude the following.
Theorem 3. Given a target function f and a set of base functions
gi for i=1, …, n, a dependency function h exists if and only if the
CNF CDFN of the corresponding DFN is unsatisfiable.

Proof: (⇒) By Definition 1, f can be expressed as h(g1(X), …,
gn(X)). Proposition 1 asserts that the onset h1 and offset h0 of h
must be disjoint. Observe that h0 and h1 are essentially the sets of
satisfying assignments of variables yi of DFNon and yi

* of DFNoff,
respectively. Hence CNF CDFN, which is the conjunction of Con
and Coff, is unsatisfiable.

(⇐) If CDFN is unsatisfiable, there are two cases. For the first case,
Con or Coff is unsatisfiable. It happens only when f is a constant
function. Con (Coff) is unsatisfiable if and only if f is constant zero
(one). In this case, we may express f as a function over any base
functions. For the second case, Con and Coff are both satisfiable.
Then unsatisfiable CDFN implies its clauses of the equality
constraints (yi ≡ yi

*) are violated. That is, the sets of images of the
onset and offset of f under the base functions are disjoint. By
Proposition 1, we know that h must exist. ■
In the sequel we shall assume a target function is non-constant.
Remark 1. Note that, although DFN is similar to the miter
structure used in combinational equivalence checking, the
underlying principle is completely different. The DFN construct
differs from the miter structure in that: Firstly, the sets of input
variables of DFNon and DFNoff are disjoint. Secondly, the output
variables of the target functions of DFNon and DFNoff are asserted
to true and false, respectively. Thirdly, the equality constraints are
imposed only on the corresponding pairs of base functions.

We show how the dependency function can be derived using
interpolation provided that the clause set CDFN is unsatisfiable. To
apply Theorem 2, consider partitioning the clause set CDFN into
two subsets A and B. We claim the following.

Corollary 1. For unsatisfiable CDFN = A ∧ B with A = Con ∧ y0
and B = Coff ∧ ¬y0

* ∧ (y1 ≡ y1
*) ∧ ⋅⋅⋅ ∧ (yn ≡ yn

*), the resultant
interpolant A# derived from a refutation proof yields a desired
dependency function h.
Proof: Observe that the common variables of A and B are Y =
(y1, …, yn), which is desirable for the dependency function. Since
A ∧ B is unsatisfiable, by Theorem 2 there exists an interpolant A#
which refers only to Y. In addition, conditions A ⇒ A# and A# ⇒
¬B suggest that the set of valuations over variables Y satisfying
A# must be an over-approximation of h1(Y) and must be disjoint
from h0(Y). Hence, A#(Y) is a valid implementation of the
dependency function h(Y) with respect to the underlying target
and base functions. ■
Therefore, as long as a SAT solver can produce an interpolant
from a refutation proof, it can be exploited to generate the
dependency function. The overall algorithm of the exploration of
functional dependency is sketched in Fig. 2.

Note that the choice of clause sets A and B is not unique. For

instance, letting A = Con ∧ y0 ∧ (y1 ≡ y1
*) ∧ ⋅⋅⋅ ∧ (yn ≡ yn

*) and B =
Coff ∧ ¬y0

* is valid as well. In fact, different refutation proofs and
different choices of A and B can be exploited to obtain the
flexibilities implementing the dependency function.

Figure 2. Algorithm: Functional dependency by SAT.

Figure 1. Dependency Function Network.

=

= =

…

…

… …

1 0

DFNoff DFNon

0y *
0y*y2

*
ny… … 1y 2y ny

1x 2x mx *
mx*x1

*x2

Constraint Part

Circuit Part

*y1

FunctionalDependencyBySAT
 input: target function f and base functions {g1, …, gn}
 output: a dependency function h
 begin
 01 Construct clause set CDFN
 02 if (CDFN is UNSAT)
 03 Partition CDFN into clause sets A and B
 04 Derive an interpolant A# from refutation proof
 05 return A#

 06 return no solution
end

Remark 2. One reason that makes our SAT-based approach
outperforms BDD-based ones is due to the efficiency in selecting
base functions. In our method, we can simply include all
candidate base functions rather than iterating over a sequence of
carefully selected subsets of the candidate functions. Therefore,
our method can detect functional dependency in one run.
However, BDD-based methods may require multiple runs.

3.2 Incremental SAT Solving
The above discussion assumes the target function is given.
However, for a given circuit netlist, there may be many different
choices of the target function. Often we need to detect functional
dependency for different target functions one at a time. Consider
we have explored the functional dependency for target function f0
and base functions {f1, …, fn}. Suppose now we want to switch
the target function to f1 and add f0 to the base functions. Only
slight modification is needed migrating from the original SAT
instance, CDFN0, to the new one, CDFN1, because the sets of base
functions are almost the same. Since the search spaces for the two
SAT instances are very similar, incremental SAT solving [21] is
helpful in amortizing the computation overhead. We investigate
how to incorporate incremental SAT solving in our framework by
reusing helpful clauses learned from solving previous SAT
instances in subsequent computation.

Since not all previously learned clauses are valid in solving
the current SAT instance, invalid clauses need to be disabled. To
avoid sophisticated clause removal, we adopt the MiniSat [11]
interface, where unit assumptions [11] can be made on a list of
literals such that the subsequent SAT solving is restricted to the
specified solution subspace and the assumptions are discharged
upon return. We introduce auxiliary variables and make unit
assumptions on them to enable or disable “dynamic clauses.” Let
the auxiliary variable controlling clause c be αc. We replace c in
the original SAT instance with the new clause (αc ⇒ c) such that
c is enabled (disabled) when αc = 1 (0). Because in our case these
“dynamic clauses” result from the equality constraints of CDFN,
we introduce auxiliary variables αi as the switches of the
conditional satisfaction of equality constraints (yi ≡ yi

*). For αi = 1
(0), equality constraint yi ≡ yi

* is turned on (off). For fi to be the
target function and the others the base functions, the entire CNF
CDFN of Eq. (1.1) now becomes

Con ∧ Coff ∧ yi ∧ ¬yi
* ∧ (α0 ⇒ (y0 ≡ y0

*)) ∧ (α1 ⇒ (y1 ≡ y1
*)) ∧ ⋅⋅⋅

∧ (αn ⇒ (yn ≡ yn
*)) ∧ α0 ∧ ⋅⋅⋅ ∧ αi–1 ∧ ¬αi ∧ αi+1 ∧ ⋅⋅⋅ ∧ αn.

Again to compute interpolants, we partition the above clause set
into two subsets A and B with

A = Con ∧ yi and

B = Coff ∧ ¬yi
* ∧ (α0 ⇒ (y0 ≡ y0

*)) ∧ (α1 ⇒ (y1 ≡ y1
*)) ∧ ⋅⋅⋅ ∧ (αn

⇒ (yn ≡ yn
*)) ∧ α0 ∧ ⋅⋅⋅ ∧ αi–1 ∧ ¬αi ∧ αi+1 ∧ ⋅⋅⋅ ∧ αn.

To check the satisfiability of the above CDFN, the unit clauses {yi,
¬yi

*, α0, ⋅⋅⋅, αi–1, ¬αi, αi+1, ⋅⋅⋅, αn} will be on the unit assumptions
of MiniSat. Effectively, the SAT solving is restricted to the
solution subspace with yi = 1, yi

* = 0, αi = 0 and αj = 1 for j ≠ i. If
the result is satisfiable, no functional dependency exists under the
target function. Otherwise, a conflict clause is returned, which
refers only to a subset of the auxiliary variables in addition to the
output variables yi and yi

* of the target function. It indicates some
of the unit assumptions are self-contradicting. Hence there exists a
dependency function that depends only on the corresponding base
functions. This property gives a quick answer if we are interested
only in the input size of the dependency function. Moreover, from
this conflict clause we may construct an interpolant under the

contradicting solution subspace and thus derive the dependency
function.

3.3 Enumeration of Different Dependency
Functions
For a fixed target function f functionally depending on a set of
base functions, it is often the case that the don’t care set
Bn\{h0∪h1} for the dependency function h is not empty. Hence
there is flexibility implementing h differently. Obtaining these
don’t cares is preferable. However, the capability of SAT solvers
is limited in this respect as they tend to find “a” satisfying
assignment or “a” refutation proof. A refutation proof uniquely
determines an interpolant and, thus, an implementation of the
dependency function. To overcome this deficiency, we propose
two methods identifying two different types of alternatives of a
dependency function implementation: those with the same support
variables and those with different ones. For the former, we reorder
the resolution sequence of a refutation proof to obtain different
interpolants and, thus, different implementations of the
dependency function. For instance, the reordering method in [22]
is one possibility (where variables local to the clause set A are
resolved as early as possible to strengthen interpolants). By
proper strengthening and weakening an interpolant, the difference
between the strengthened and weakened interpolants provides a
subset of the don’t cares of h. However, practical experience
suggests that the so obtained don’t care set may not be large. For
the latter, we block the SAT solver from searching the same
instance and force it to search a new refutation proof with a
different set of support variables. This can be done by making
proper unit assumptions under the MiniSat interface.

4. EXPERIMENTAL RESULTS
The proposed algorithm was implemented in ABC [23] modified
to equip with the proof-logging version of MiniSat [11]. All the
experiments are conducted on a 3.2GHz Linux machine with 2GB
memory. The experiments are designed so as to demonstrate

1. the efficiency and scalability of SAT-based in contrast to
BDD-based computation [1],

2. the benefit of our incremental SAT formulation, and

3. the characteristics of the derived dependency functions.

 Large circuits from the ISCAS89 and ITC99 benchmark
suites are chosen. To have fair comparison with [1], functional
dependency among the transition functions of a circuit is explored.
Among the transition functions of a given circuit, each of them is
specified in turn as the target function and all others as base
functions. We then explore the corresponding functional
dependency and compute dependency functions if they exist.

Table 1 compares our approach with the prior work [1].
Columns 1 and 2 respectively list the name and the number of
nodes of each circuit. The numbers of flip-flops, denoted #FF, of
a circuit and its retimed version (min-period retiming using ABC
[23]) are listed in Columns 3 and 6, respectively. Among the flip-
flops of an original circuit (respectively a retimed circuit), those
whose transition functions possess functional dependency are
counted in Columns 4 and 5 (respectively Columns 7 and 8),
denoted as #Dep. In particular, #Dep-S and #Dep-B are obtained
by the SAT- and BDD-based methods, respectively. In fact,
#Dep-S data are exact and complete. In comparison, the BDD-
based method only succeeded in a few circuits and detected only a
subset of the dependency over a few support variables. The

runtime (in seconds) and memory (in Megabytes) usage are
shown in the following columns. Note that the reported memory
usage includes the underlying system memory whereas the prior
work was built on VIS [24] and ours on ABC. Despite the uneven
comparison, the scalability of our approach is evident and
outperforms the prior work. As plotted in Fig. 3, it is easily seen
from the power regression lines that the runtime of our approach
scales polynomially with the circuit size.

The strength of incremental SAT solving in accelerating
computation is shown in Fig. 4. The x-axis and y-axis,
respectively, represent the iteration number and the runtime of
solving a SAT instance at that particular iteration. The y-axis is
log-scaled. Five sample circuits of different sizes from Table 1 are
plotted for the first 100 iterations. As can be seen in all of the
plots, the runtimes of the first iterations are the maximum of
among their first 100 iterations. In fact, all the circuits of Table 1
exhibit the same behavior. After the first iteration, the runtimes
for SAT solving decrease rapidly and become relatively short and
stable within about 10 iterations. This demonstrates the
effectiveness for incremental SAT solving.

The experiments tend to suggest that (1) the average runtime
for a circuit is linear in the number of its nodes and (2) the solving
time for an unsatisfiable SAT instance is often much shorter than
that for a satisfiable one. The statistics are plotted in Fig. 5. The
x-axis and y-axis, respectively, represent the number of nodes of
each circuit and the average runtime of SAT iterations. Both axes
are log-scaled. Every circuit in Table 1 is plotted as a spot in Fig.
5. The first tendency can be seen from the two power regression
lines indicating highly (positive) correlated data set. The second
tendency can be seen from the fact that the line for the retimed
circuits is well below that for the original circuits. As evident in
Columns 4 and 7 of Table 1, more functional dependency exists
for the retimed circuits. Effectively, more unsatisfiable SAT
instances are there. It reflects the fact that in our experiments a
satisfiable instance usually takes longer time to solve than an
unsatisfiable one. It seems contradicting with common sense.
However, the tendency can be explained as follows. Because the
input sizes of interpolants are mostly very small (to be shown in
Fig. 6), it suggests that conflicts can be found locally. Also,
incremental SAT solving increases implicativity [25] and thus
enhances early conflict detection. Thus, decisions over only a few
variables might be enough to draw an unsatisfiable conclusion. In
contrast, in a satisfiable case to obtain a single satisfying
assignment, decisions must be made over all variables. (Note that
it may not be necessarily so for circuit-SAT and other ODC-
aware CNF solvers, where not all variables are valuated for a
satisfying assignment.)

We characterize the derived dependency functions (i.e.
interpolants) in terms of their input sizes in Fig. 6, where a single
dependency function, if it exists, is derived for each transition
function of a given circuit. The x-axis and y-axis indicate the
numbers of support variables and of dependency functions,
respectively. The y-axis is log-scaled. As can be seen, most of the
functions have less than 10 support variables. On the other hand,
complex functional dependency can also be detected easily by the
SAT-based approach. For instance, in the retimed b18 circuit, a
dependency function of input size around 300 is obtained, which
is not possible using BDD-based methods. Furthermore, to see if
the input variables of an interpolant are indeed irredundant (i.e.
support variables), Fig. 7 gives the statistics. (Note that multiple

interpolants may locate at the same spot.) For every y-axis index,
say i, the corresponding number on the right hand side of Fig. 7
indicates the number of interpolants with i spurious variables. As
can be seen, no spurious variables appear in most (98.3%) of the
interpolants. Only in few occasions the derived interpolants
contain redundancy. On the other hand, Fig. 8 shows the relation
between the interpolant size in terms of AIG (And-Inverter Graph)
nodes and the number of input variables. The size grows
polynomially with respect to the number of input variables, as
seen from the two power regression lines. Figures 6, 7 and 8
demonstrate the fact that the derived interpolants are mostly small.

From practical experience in enumerating different
dependency functions for a target function, we note that the
number of available dependency functions (with different support
sets) varies greatly from function to function. A great amount of
trivial dependency exists due to the transitivity of dependency.
This transitivity results in vast redundant enumeration. How to
effectively avoid unnecessary enumeration remains to be done.
Nevertheless, if the candidate base functions are specified (e.g.
for circuit rewiring), finding a dependency function is easy. On
the other hand, we emphasize that the BDD-based method is more
effective than the SAT-based one in computing the don’t care set
for a dependency function. This deficiency of the SAT-based
computation is due to the fact that an interpolant (i.e. a
dependency function) is with respect to a refutation and contains
no don’t-care information.

5. RELATED WORK
The previous efforts closest to ours are [1] and [4]. Both of them
rely on BDD-based computation. In [1] combinational functional
dependency was generalized to sequential dependency. In this
paper we focus on combinational dependency. In [4], similar to
our enumeration for different dependency functions, a BDD-based
technique was used. It allows a more implicit enumeration.
However, the size of the set of base functions was limited to no
more than 16. Other work [18] applied interpolation in the context
of SAT-based model checking for approximated image
computation.

6. CONCLUSIONS AND FUTURE WORK
We have shown that the exploration of functional dependency can
be solved by a pure SAT-based formulation. Experimental results
demonstrated the great success of the proposed method. The
approach is scalable to large designs and discovers much more
functional dependency far beyond the capability of prior methods.
The success is attributed to several key ingredients including
Craig interpolation and incremental SAT solving. We hope that
our results may benefit several areas of logic synthesis and formal
verification, for example, in finding rewiring and resubstitution
candidates for circuit optimization, in identifying redundant
registers in RTL synthesis, in reducing state space in formal
sequential equivalence checking, etc.

Future work includes integrating our technique in logic
synthesis and generalizing it for other applications. (Some
preliminary results in synthesizing industrial designs have been
demonstrated in [26].) Generalizing our method for sequential
dependency [1] is an important subject to pursue. In addition, it
would be interesting to explore new applications of Craig
interpolation.

Table 1. SAT- vs. BDD-based Exploration of Functional Dependency.

 Original Retimed SAT (original) BDD (original) SAT (retimed) BDD (retimed)
Circuit #Nodes #FF. #Dep-S #Dep-B #FF. #Dep-S #Dep-B Time Mem Time Mem Time Mem Time Mem
s5378 2794 179 52 25 398 283 173 1.2s 18m 1.6s 20m 0.6s 18m 7s 51m

s9234.1 5597 211 46 x 459 301 201 4.1s 19m x x 1.7s 19m 194.6s 149m
s13207.1 8022 638 190 136 1930 802 x 15.6s 22m 31.4s 78m 15.3s 22m x x
s15850.1 9785 534 18 9 907 402 x 23.3s 22m 82.6s 94m 7.9s 22m x x
s35932 16065 1728 0 -- 2026 1170 -- 176.7s 27m 1117s 164m 78.1 27m -- --
s38417 22397 1636 95 -- 5016 243 -- 270.3s 30m -- -- 123.1 32m -- --
s38584 19407 1452 24 -- 4350 2569 -- 166.5s 21m -- -- 99.4s 30m 1117s 164m

b12 946 121 4 2 170 66 33 0.15s 17m 12.8s 38m 0.13s 17m 2.5s 42m
b14 9847 245 2 -- 992 724 -- 3.3s 22m -- -- 5.2s 22m -- --
b15 8367 449 0 -- 1134 793 -- 5.8s 22m -- -- 5.8s 22m -- --
b17 30777 1415 0 -- 3967 2350 -- 119.1s 28m -- -- 161.7s 42m -- --
b18 111241 3320 5 -- 9254 5723 -- 1414.9s 100m -- -- 2842.6s 100m -- --
b19 224624 6642 0 -- 7164 337 -- 8184.8s 217m -- -- 11040.6s 234m -- --
b20 19682 490 4 -- 1604 1167 -- 25.7s 28m -- -- 36 30m -- --
b21 20027 490 4 -- 1950 1434 -- 24.6s 29m -- -- 36.3 31m -- --
b22 29162 735 6 -- 3013 2217 -- 73.4s 36m -- -- 90.6 37m -- --

 (“--”: memory usage exceeds 1Gb. “x”: runtime exceeds 12,000 seconds.)

R2 = 0.909

R2 = 0.9664

0.01

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000 1000000
Number of nodes (log)

T
im

e
(lo

g)

Original
Retimed

0.001

0.01

0.1

1

10

100

1 50 99
Iteration

Ti
m

e
(lo

g)

b19 (200k nodes) b18 (100k nodes)
b17 (30k nodes) b15 (10k nodes)

R2 = 0.9279

R2 = 0.9314

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1000000

Number of nodes (log)

A
ve

ra
ge

 ti
m

e
(lo

g)

Original
Retimed

1

10

100

1000

10000

0 10 20 30
Number of support variables

N
u

m
b

e
r

o
f

fu
n

c
ti

o
n

s
(l

o
g

)

s5378

s9234.1

s13207.1

s15850.1

s35932

s38417

s38584

Figure 3. Runtime vs. circuit size.

Figure 4. Runtime of the first 100 SAT iterations.

Figure 5. Average runtime of SAT iterations vs. circuit size.

Figure 6. Frequency distribution of different support sizes.

16858
174
68
14
4
2
9
1
6
5
2
2

0
1
2
3
4
5
6
7
8
9

10
11
12

0 50 100 150 200
Number of input variables

N
um

be
r

of
 sp

ur
io

us
 v

ar
ia

bl
es

R2 = 0.861 R2 = 0.8506

1

10

100

1000

10000

1 10 100 1000
Number of variables (log)

In
te

rp
ol

an
t s

iz
e

(lo
g)

Original
Retimed

ACKNOWLEDGMENTS
The authors would like to thank Robert Brayton for helpful
discussions and Ruei-Rung Li for preparing some of the
experimental data. This work was supported in part by NSC
grants 95-2221-E-002-432 and 95-2218-E-002-064-MY3. AM
was supported by the Intel-custom SRC grant 1444.001
"Innovative Sequential Synthesis and Verification."

REFERENCES
[1] J.-H. R. Jiang and R. K. Brayton. Functional dependency for

verification reduction. In Proc. CAV, pp. 268-280, 2004.

[2] E. Sentovich, H. Toma, and G. Berry. Latch optimization in circuits
generated from high-level descriptions. In Proc. ICCAD, pp. 428-435,
1996.

[3] B. Lin and A. R. Newton. Exact redundant state registers removal
based on binary decision diagrams. In Proc. Int'l Conf. Very Large
Scale Integration, pp. 277-286, 1991.

[4] V. Kravets and P. Kudva. Implicit enumeration of structural changes
in circuit optimization. In Proc. DAC, pp. 438-441, 2004.

[5] A. J. Hu and D. L. Dill. Reducing BDD size by exploiting functional
dependencies. In Proc. DAC, pp. 266-271, 1993.

[6] C. Berthet, O. Coudert, and J.-C. Madre. New ideas on symbolic
manipulations of finite state machines. In Proc. ICCD, pp. 224-227,
1990.

[7] C. A. J. van Eijk and J. A. G. Jess. Exploiting functional
dependencies in finite state machine verification. In Proc. European
Design & Test Conf., pp. 9-14, 1996.

[8] E. Gregoire, R. Ostrowski, B. Mazure, and L. Sais. Automatic
extraction of functional dependencies. In Proc. SAT, 2004.

[9] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. Computers, pp. 677--691, August 1986.

[10] M. Moskewicz, C. Madigan, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proc. DAC, pp. 530-535,
2001.

[11] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT,
pp. 502-518, 2003.

[12] A. Mishchenko and R. Brayton. SAT-based complete don't-care
computation for network optimization. In Proc. DATE, pp. 418-423,
2005.

[13] A. Mishchenko, J. Zhang, S. Sinha, J. Burch, R.K. Brayton, and M.
Chrzanowska-Jeske. Using simulation and satisfiability to compute
flexibilities in Boolean networks. IEEE Trans. on CAD, vol. 25, no.
5, pp. 742-755, 2006.

[14] W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen
theorem. J. Symbolic Logic, 22(3):250-268, 1957.

[15] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, 1965.

[16] J. Krajicek. Interpolation theorems, lower bounds for proof systems,
and independence results for bounded arithmetic. J. Symbolic Logic,
62(2):457-486, June 1997.

[17] P. Pudlak. Lower bounds for resolution and cutting plane proofs and
monotone computations. J. Symbolic Logic, 62(3):981-998,
September 1997.

[18] K. L. McMillan. Interpolation and SAT-based model checking. In
Proc. CAV, pp. 1-13, 2003.

[19] G. Tseitin. On the complexity of derivation in propositional calculus.
Studies in Constructive Mathematics and Mathematical Logic, pp.
466-483, 1970.

[20] D. Plaisted and S. Greenbaum. A structure preserving clause form
translation. J. Symbolic Computation, vol. 2, pp. 293-304, 1986.

[21] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental
satisfiability engine. In Proc. DAC, 2001.

[22] R. Jhala and K.L. McMillan, “Interpolant-based transition relation
approximation”. Proc. CAV, pp. 39-51, 2005.

[23] Berkeley Logic Synthesis and Verification Group. ABC: A System
for Sequential Synthesis and Verification. Release 51205.
http://www.eecs.berkeley.edu/~alanmi/abc/

[24] R. K. Brayton, et al. VIS: a system for verification and synthesis. In
Proc. CAV, pp. 428--432, 1996.

[25] Y. Novikov and R. Brinkmann. Foundations of Hierarchical SAT-
Solving. In Proc. Int’l Workshop on Boolean Problems, 2004.

[26] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang. SAT-based
logic optimization and resynthesis. In Proc. IWLS, pp. 358-364, 2007.

Figure 8. Interpolant size vs. number of input variables.

Figure 7. Number of total input variables vs. number of spurious
input variables of derived interpolants.

