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ABSTRACT 
Functional dependency is concerned with rewriting a Boolean 
function f as a function h over a set of base functions {g1, …, gn}, 
i.e. f = h(g1, …, gn). It plays an important role in many aspects of 
electronic design automation (EDA), ranging from logic synthesis 
to formal verification. Prior approaches to the exploration of 
functional dependency are based on binary decision diagrams 
(BDDs), which may not be easily scalable to large designs. This 
paper proposes a novel reformulation that extensively exploits the 
capability of modern satisfiability (SAT) solvers. Thereby, 
functional dependency is detected effectively through incremental 
SAT solving, and the dependency function h, if it exists, is 
obtained through Craig interpolation. The main strengths of the 
proposed approach include: (1) fast detection of functional 
dependency with modest memory consumption and thus scalable 
to large designs, (2) a full capacity to handle a large set of base 
functions and thus discovering dependency whenever exists, and 
(3) potential application to large-scale logic optimization and 
verification reduction. Experimental results show the proposed 
method is far superior to prior work and scales well in dealing 
with the largest ISCAS89 and ITC99 benchmark circuits with up 
to 200K gates. 

1. INTRODUCTION 
Functional dependency [1] appears commonly among a set of 
Boolean functions {f1, ..., fn} in VLSI circuit design as a function 
fi (called the target function) can often be reexpressed as some 
function h (called the dependency function) over a subset of the 
functions (called the base functions). The exploration of 
functional dependency plays an important role in many aspects of 
EDA, ranging from logic synthesis to formal verification. For 
instance, it leads to the identification of redundant registers in 
RTL synthesis [2][3], resubstitution and simplification of Boolean 
functions in both technology-independent and technology-
dependent logic synthesis [4], BDD minimization [5] and state 
space reduction [1][6][7] in formal verification, search space 
reduction in SAT solving [8], etc. Advances on the exploration of 
functional dependency may benefit a wide range of applications. 

Given a set of Boolean functions {f1, …, fn}, we would like 
to know if any fi can be written as h(f1, …, fi–1, fi+1, …, fn). 
Conventional approaches [1] to the exploration of functional 
dependency rely mostly on BDDs [9]. Unfortunately computation 
using BDDs suffers from the memory explosion problem and thus 
is not scalable to manipulate large designs. In contrast, SAT 
solving consumes little memory (linear in the input size) at the 
cost of time resources and thus is more robust at least in 
representing large designs. Recent advances, see e.g. [10][11], in 
SAT solving have made it a very efficient Boolean reasoning 
engine and a viable alternative to BDD. More and more logic 

synthesis and verification algorithms shift their computation 
paradigm from BDD to SAT, e.g. [12][13]. However, formulating 
the computation of functional dependency as pure SAT solving is 
not straightforward due to the difficulty in deriving the 
dependency function h, whose derivation in BDD-based 
computation is in contrast immediate. 

This paper demonstrates, for the first time, that the 
exploration of functional dependency (including efficient 
derivation of dependency function) can be achieved with pure 
SAT solving. In particular, a dependency function, if it exists, can 
be obtained through the construction of interpolants from a 
refutation proof of a SAT solver. Essentially, the Craig 
interpolation theorem [14] lays the foundation. Moreover, to 
detect functional dependency for different target functions and to 
obtain different dependency functions for a target function, 
incremental SAT solving is adopted to reuse learned clauses and 
to indicate conflict assumptions. Even though incremental SAT 
solving is not new and has been widely used, we explore its new 
use in our framework. In essence, it not only speeds up the 
computation, but also provides an automatic way of selecting sets 
of base functions for a target function.  

The main results of the paper include (1) a new SAT-based 
derivation of dependency function using Craig interpolation, 
which enables a pure SAT solution to the exploration of 
functional dependency, and (2) an incremental SAT-based 
enumeration of target and base functions, which provides an 
automatic way of identifying useful base functions and effectively 
reduces the search space for solving similar SAT instances. 
Experiments show encouraging improvements over BDD-based 
approaches. As the pure SAT-based computation of functional 
dependency avoids the BDD memory explosion problem, it is 
scalable to large designs and turns out to be powerful in detecting 
functional dependency even among a large set of base functions. 

The paper is organized as follows. After preliminaries are 
introduced in Section 2, our SAT formulation of functional 
dependency is detailed in Section 3. The proposed approach is 
evaluated with experimental results in Section 4. Section 5 
concludes this paper and outlines some future research directions. 

2. PRELIMINARIES 
As a notational convention, in the sequel symbols “∧”, “∨”, and 
“¬” denote Boolean AND, OR, and COMPLEMENT operations, 
respectively. The cardinality (or size) of a set S is denoted as |S|. 
The problem formulation of functional dependency and some 
background on SAT solving are given as follows. 

2.1 Functional Dependency 
Functional dependency is defined as follows.  



Definition 1. Given a Boolean function f: Bm → B and a vector of 
Boolean functions G = (g1(X), …, gn(X)) with gi: Bm→ B for i = 
1, …, n, over the same set of variable vector X = (x1, …, xm), we 
say that f functionally depends on G if there exists a Boolean 
function h: Bn → B, called the dependency function, such that 
f(X) = h(g1(X), …, gn(X)). We call functions f, G, and h the target 
function, base functions, and dependency function, respectively. 

Note that functions f and G are over the same domain in the 
definition; h needs not depend on all of the functions in G.  

The necessary and sufficient condition of the existence of the 
dependency function h is given as follows. 

Proposition 1. [1] Given a target function f and base functions G, 
let h0 = {a ∈ Bn: a = G(b) and f(b) = 0, b ∈ Bm} and h1 = {a ∈ Bn: 
a = G(b) and f(b) = 1, b ∈ Bm}. Then h is a  feasible dependency 
function if and only if {h0∩ h1} is empty. In this case, h0, h1, and 
Bn\{h0∪h1} are the off-set, on-set, and don’t-care set of h, 
respectively. 

By Proposition 1, one can not only determine the existence of a 
dependency function, but also deduce a feasible one.  

To explore functional dependency for a given circuit netlist, 
there are many choices of f and G. One may ask how to 
effectively choose G for a specific f. 

Definition 2. For a Boolean function f with input variables X = 
(x1, …, xm), variable xi is a support variable of f if f(x1, …, xi–1, 0, 
xi+1,…, xm) ≠ f(x1, …, xi–1, 1, xi+1,…, xm) . 

For a functional vector G = (g1, g2, …, gn), its support variables 
are the union of the support variables of gi for i = 1, …, n. 

2.1.1 BDD-based Exploration of Functional 
Dependency 
Conventional BDD-based exploration of functional dependency is 
reviewed in order to contrast with the novel SAT-based approach. 

Proposition 1 suggests a way of determining the existence of 
a dependency function and its derivation. Essentially standard 
image computation applies. Let yi be the output variable of gi. 
Then the on-set, off-set, and dc-set of h can be derived by  

h0(Y) = ∃X [ R(X, Y) ∧ (f(X) ≡ 0) ], 

h1(Y) = ∃X [ R(X, Y) ∧ (f(X) ≡ 1) ], and 

hdc(Y) = ¬(h0 ∨ h1), 

respectively, where relation R(X, Y) = (y1 ≡ g1(X)) ∧ (y2 ≡ g2(X)) ∧ 
⋅⋅⋅ ∧ (yn ≡ gn(X)). The dependency function h(Y) exists if and only 
if (h0(Y) ∧ h1(Y)) ≡ 0. All of the above operations can be done 
using BDDs; see also [4]. 

Note that constructing the relation R(X, Y) along with the 
image computation may suffer from memory explosion especially 
when |G| is large even though the final BDDs of h0 and h1 can be 
small. Therefore, it is necessary to restrict the size of the set of 
base functions at the cost of losing completeness. Keeping |G| 
small may often result in a failure to compute some dependency 
that truly holds in a circuit. Once the search for a feasible 
dependency function with respect to a set of base functions fails, 
another set of base functions is selected and the computation of 
functional dependency repeats. Consequently, although some fast 
filtering techniques, e.g. by Proposition 2, are available [1], BDD-
based computation is inefficient in that there may be too many 
selections of G tested before functional dependency is discovered. 

As will be seen later, the deficiency can be overcome in SAT-
based exploration of functional dependency. 

2.2 Propositional Satisfiability 
Let V = {v1, …, vk} be a finite set of Boolean variables. A literal l 
is either a Boolean variable vi or its negated form ¬vi. A clause c 
is a disjunction of literals. Without loss of generality, we shall 
assume there are no repeated or complementary literals in the 
same clause. A SAT instance is a conjunction of clauses, i.e., in 
the so-called conjunctive normal form (CNF). In the sequel, a 
clause set C = {c1, ..., ck} shall mean to be the CNF (c1 ∧ ⋅⋅⋅ ∧ ck). 
An assignment over V gives every variable vi a Boolean value 
either true or false. A SAT instance is satisfiable if there exists a 
satisfying assignment such that the CNF evaluates to true. 
Otherwise it is unsatisfiable. Given a SAT instance, the 
satisfiability (SAT) problem asks whether it is satisfiable or not. 
A SAT solver is designated to solve the SAT problem. 

Definition 3. Assume literal v is in clause c1 and ¬v in c2. A 
resolution of clauses c1 and c2 on variable v yields a new clause c 
containing all literals in c1 and c2 except for v and ¬v. The clause 
c is called the resolvent of c1 and c2, and variable v the pivot 
variable. 

Proposition 3. A resolvent c of c1 and c2 is a logical consequence 
of c1 ∧ c2, that is, c1 ∧ c2 implies c. 

Theorem 1. [15] For an unsatisfiable SAT instance, there exists a 
sequence of resolution steps leading to an empty clause. 

Theorem 1 can be easily proved by Proposition 3 since an 
unsatisfiable SAT instance must imply a contradiction. Often only 
a subset of the clauses of the SAT instance participates in the 
resolution steps leading to an empty clause. 

Definition 4. A refutation proof Π of an unsatisfiable SAT 
instance C is a directed acyclic graph (DAG) Γ = (N, A), where 
every node in N represents a clause which is either a root clause 
in C or a resolvent clause having exactly two predecessor nodes, 
and every arc in A connects a node to its ancestor node. The 
unique leaf of Π corresponds the empty clause. 

Modern SAT solvers, such as Chaff [10] and MiniSat [11], are 
capable of producing a refutation proof from an unsatisfiable SAT 
instance.  

2.2.1 Refutation Proof and Craig’s Interpolation 
Theorem 2. (Craig Interpolation Theorem) [14] Given two 
inconsistent clause sets A and B (i.e. the clause set A∪B is 
unsatisfiable), then there exists a Boolean formula A# referring 
only to the common input variables of A and B such that A ⇒ A# 
and A# ⇒ ¬B. 

The Boolean formula A# is referred to as the interpolant of A and 
B. Detailed exposition on how to construct an interpolant from a 
refutation proof in linear time can be found in [16][17][18]. Note 
that the so-derived interpolant is in a circuit structure, which can 
then be converted into CNF as discussed below. 

2.2.2 Circuit to CNF Conversion 
Given a circuit netlist, it can be converted to a CNF in such a way 
that the satisfiability is preserved. The conversion is achievable in 
linear time by introducing some intermediate variables [19][20]. 



3. SAT-BASED EXPLORATION OF 
FUNCTIONAL DEPENDENCY 
 

 

3.1 The Primary Construct 
To formulate the exploration of functional dependency as SAT 
solving, we introduce the dependency function network (DFN) 
as shown in Fig. 1. For a given circuit netlist consisting of n + 1 
Boolean functions {f0, …, fn}, suppose function f0 and the others 
are identified to be the target function and base functions, 
respectively. That is, in the notation of Section 2, f0 corresponds 
to f and fi corresponds to gi for i = 1, …, n. The circuit netlist is 
instantiated into two copies, identified as DFNon and DFNoff, in 
the DFN. For every variable v (respectively function f) in DFNon, 
there is starred counterpart v* (respectively f*) in DFNoff. Let yi 
and yi

* be the output variables of fi and fi
*, respectively. The 

circuits DFNon and DFNoff can be converted to CNFs Con and Coff, 
respectively, in linear time. In addition, the output of the target 
function f in DFNon is asserted to true, i.e., y0 ≡ 1; that of f* in 
DFNoff is asserted to false, i.e., y0

* ≡ 0. Furthermore, equality 
constraints (yi ≡ yi

*) are imposed for i = 1, …, n. Thereby the 
entire CNF CDFN is  

Con ∧ Coff ∧ y0 ∧ ¬y0
* ∧ (y1 ≡ y1

*) ∧ ⋅⋅⋅ ∧ (yn ≡ yn
*),  (1.1) 

where (yi ≡ yi
*) is the shorthand for (yi ∨ ¬yi

*) ∧ (¬yi ∨ yi
*). 

The intuition behind this construct is that formula Con ∧ y0 
(respectively Coff ∧ ¬y0

*) imposes the constraint that the 
valuations over input variables (x1, …, xm) (respectively (x1

*, …, 
xm

*)) must be the on-set of f (respectively off-set of f*). By 
Proposition 1, we can thus test if h0 and h1 are disjoint. Precisely 
speaking, we conclude the following. 
Theorem 3. Given a target function f and a set of base functions 
gi for i=1, …, n, a dependency function h exists if and only if the 
CNF CDFN of the corresponding DFN is unsatisfiable.  

Proof: (⇒) By Definition 1, f can be expressed as h(g1(X), …, 
gn(X)). Proposition 1 asserts that the onset h1 and offset h0 of h 
must be disjoint. Observe that h0 and h1 are essentially the sets of 
satisfying assignments of variables yi of DFNon and yi

* of DFNoff, 
respectively. Hence CNF CDFN, which is the conjunction of Con 
and Coff, is unsatisfiable. 

(⇐) If CDFN is unsatisfiable, there are two cases. For the first case, 
Con or Coff is unsatisfiable. It happens only when f is a constant 
function. Con (Coff) is unsatisfiable if and only if f is constant zero 
(one). In this case, we may express f as a function over any base 
functions. For the second case, Con and Coff are both satisfiable. 
Then unsatisfiable CDFN implies its clauses of the equality 
constraints (yi ≡ yi

*) are violated. That is, the sets of images of the 
onset and offset of f under the base functions are disjoint. By 
Proposition 1, we know that h must exist. ■ 
In the sequel we shall assume a target function is non-constant. 
Remark 1. Note that, although DFN is similar to the miter 
structure used in combinational equivalence checking, the 
underlying principle is completely different. The DFN construct 
differs from the miter structure in that: Firstly, the sets of input 
variables of DFNon and DFNoff are disjoint. Secondly, the output 
variables of the target functions of DFNon and DFNoff are asserted 
to true and false, respectively. Thirdly, the equality constraints are 
imposed only on the corresponding pairs of base functions. 

We show how the dependency function can be derived using 
interpolation provided that the clause set CDFN is unsatisfiable. To 
apply Theorem 2, consider partitioning the clause set CDFN into 
two subsets A and B. We claim the following. 

Corollary 1. For unsatisfiable CDFN = A ∧ B with A = Con ∧ y0  
and B = Coff ∧ ¬y0

* ∧ (y1 ≡ y1
*) ∧ ⋅⋅⋅ ∧ (yn ≡ yn

*), the resultant 
interpolant A# derived from a refutation proof yields a desired 
dependency function h.  
Proof: Observe that the common variables of A and B are Y = 
(y1, …, yn), which is desirable for the dependency function. Since 
A ∧ B is unsatisfiable, by Theorem 2 there exists an interpolant A# 
which refers only to Y. In addition, conditions A ⇒ A# and A# ⇒ 
¬B suggest that the set of valuations over variables Y satisfying 
A# must be an over-approximation of h1(Y) and must be disjoint 
from h0(Y). Hence, A#(Y) is a valid implementation of the 
dependency function h(Y) with respect to the underlying target 
and base functions. ■ 
Therefore, as long as a SAT solver can produce an interpolant 
from a refutation proof, it can be exploited to generate the 
dependency function. The overall algorithm of the exploration of 
functional dependency is sketched in Fig. 2. 

 

 
Note that the choice of clause sets A and B is not unique. For 

instance, letting A = Con ∧ y0 ∧ (y1 ≡ y1
*) ∧ ⋅⋅⋅ ∧ (yn ≡ yn

*) and B = 
Coff ∧ ¬y0

* is valid as well. In fact, different refutation proofs and 
different choices of A and B can be exploited to obtain the 
flexibilities implementing the dependency function. 

Figure 2. Algorithm: Functional dependency by SAT. 

Figure 1. Dependency Function Network. 
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FunctionalDependencyBySAT 
 input: target function f and base functions {g1, …, gn} 
 output: a dependency function h 
 begin 
 01   Construct clause set CDFN  
 02   if (CDFN is UNSAT)  
 03      Partition CDFN into clause sets A and B 
 04      Derive an interpolant A# from refutation proof  
 05      return A# 

 06   return no solution   
end 



Remark 2. One reason that makes our SAT-based approach 
outperforms BDD-based ones is due to the efficiency in selecting 
base functions. In our method, we can simply include all 
candidate base functions rather than iterating over a sequence of 
carefully selected subsets of the candidate functions. Therefore, 
our method can detect functional dependency in one run. 
However, BDD-based methods may require multiple runs.  

3.2 Incremental SAT Solving 
The above discussion assumes the target function is given. 
However, for a given circuit netlist, there may be many different 
choices of the target function. Often we need to detect functional 
dependency for different target functions one at a time. Consider 
we have explored the functional dependency for target function f0 
and base functions {f1, …, fn}. Suppose now we want to switch 
the target function to f1 and add f0 to the base functions. Only 
slight modification is needed migrating from the original SAT 
instance, CDFN0, to the new one, CDFN1, because the sets of base 
functions are almost the same. Since the search spaces for the two 
SAT instances are very similar, incremental SAT solving [21] is 
helpful in amortizing the computation overhead. We investigate 
how to incorporate incremental SAT solving in our framework by 
reusing helpful clauses learned from solving previous SAT 
instances in subsequent computation. 

Since not all previously learned clauses are valid in solving 
the current SAT instance, invalid clauses need to be disabled. To 
avoid sophisticated clause removal, we adopt the MiniSat [11] 
interface, where unit assumptions [11] can be made on a list of 
literals such that the subsequent SAT solving is restricted to the 
specified solution subspace and the assumptions are discharged 
upon return. We introduce auxiliary variables and make unit 
assumptions on them to enable or disable “dynamic clauses.” Let 
the auxiliary variable controlling clause c be αc. We replace c in 
the original SAT instance with the new clause (αc ⇒ c) such that 
c is enabled (disabled) when αc = 1 (0). Because in our case these 
“dynamic clauses” result from the equality constraints of CDFN, 
we introduce auxiliary variables αi as the switches of the 
conditional satisfaction of equality constraints (yi ≡ yi

*). For αi = 1 
(0), equality constraint yi ≡ yi

* is turned on (off). For fi to be the 
target function and the others the base functions, the entire CNF 
CDFN of Eq. (1.1) now becomes 

Con ∧ Coff ∧ yi ∧ ¬yi
* ∧ (α0 ⇒ (y0 ≡ y0

*)) ∧ (α1 ⇒ (y1 ≡ y1
*)) ∧ ⋅⋅⋅ 

∧ (αn ⇒ (yn ≡ yn
*)) ∧ α0 ∧  ⋅⋅⋅ ∧ αi–1 ∧ ¬αi ∧ αi+1 ∧ ⋅⋅⋅ ∧ αn. 

Again to compute interpolants, we partition the above clause set 
into two subsets A and B with 

A = Con ∧ yi and  

B = Coff ∧ ¬yi
* ∧ (α0 ⇒ (y0 ≡ y0

*)) ∧ (α1 ⇒ (y1 ≡ y1
*)) ∧ ⋅⋅⋅ ∧ (αn 

⇒ (yn ≡ yn
*)) ∧ α0 ∧  ⋅⋅⋅ ∧ αi–1 ∧ ¬αi ∧ αi+1 ∧ ⋅⋅⋅ ∧ αn. 

To check the satisfiability of the above CDFN, the unit clauses {yi, 
¬yi

*, α0, ⋅⋅⋅, αi–1, ¬αi, αi+1, ⋅⋅⋅, αn} will be on the unit assumptions 
of MiniSat. Effectively, the SAT solving is restricted to the 
solution subspace with yi = 1, yi

* = 0, αi = 0 and αj = 1 for j ≠ i. If 
the result is satisfiable, no functional dependency exists under the 
target function. Otherwise, a conflict clause is returned, which 
refers only to a subset of the auxiliary variables in addition to the 
output variables yi and yi

* of the target function. It indicates some 
of the unit assumptions are self-contradicting. Hence there exists a 
dependency function that depends only on the corresponding base 
functions. This property gives a quick answer if we are interested 
only in the input size of the dependency function. Moreover, from 
this conflict clause we may construct an interpolant under the 

contradicting solution subspace and thus derive the dependency 
function. 

3.3 Enumeration of Different Dependency 
Functions 
For a fixed target function f functionally depending on a set of 
base functions, it is often the case that the don’t care set 
Bn\{h0∪h1} for the dependency function h is not empty. Hence 
there is flexibility implementing h differently. Obtaining these 
don’t cares is preferable. However, the capability of SAT solvers 
is limited in this respect as they tend to find “a” satisfying 
assignment or “a” refutation proof. A refutation proof uniquely 
determines an interpolant and, thus, an implementation of the 
dependency function. To overcome this deficiency, we propose 
two methods identifying two different types of alternatives of a 
dependency function implementation: those with the same support 
variables and those with different ones. For the former, we reorder 
the resolution sequence of a refutation proof to obtain different 
interpolants and, thus, different implementations of the 
dependency function. For instance, the reordering method in [22] 
is one possibility (where variables local to the clause set A are 
resolved as early as possible to strengthen interpolants). By 
proper strengthening and weakening an interpolant, the difference 
between the strengthened and weakened interpolants provides a 
subset of the don’t cares of h. However, practical experience 
suggests that the so obtained don’t care set may not be large. For 
the latter, we block the SAT solver from searching the same 
instance and force it to search a new refutation proof with a 
different set of support variables. This can be done by making 
proper unit assumptions under the MiniSat interface. 

4. EXPERIMENTAL RESULTS 
The proposed algorithm was implemented in ABC [23] modified 
to equip with the proof-logging version of MiniSat [11]. All the 
experiments are conducted on a 3.2GHz Linux machine with 2GB 
memory. The experiments are designed so as to demonstrate 

1. the efficiency and scalability of SAT-based in contrast to 
BDD-based computation [1], 

2. the benefit of our incremental SAT formulation, and 

3. the characteristics of the derived dependency functions. 

 Large circuits from the ISCAS89 and ITC99 benchmark 
suites are chosen. To have fair comparison with [1], functional 
dependency among the transition functions of a circuit is explored. 
Among the transition functions of a given circuit, each of them is 
specified in turn as the target function and all others as base 
functions. We then explore the corresponding functional 
dependency and compute dependency functions if they exist. 

Table 1 compares our approach with the prior work [1]. 
Columns 1 and 2 respectively list the name and the number of 
nodes of each circuit. The numbers of flip-flops, denoted #FF, of 
a circuit and its retimed version (min-period retiming using ABC 
[23]) are listed in Columns 3 and 6, respectively. Among the flip-
flops of an original circuit (respectively a retimed circuit), those 
whose transition functions possess functional dependency are 
counted in Columns 4 and 5 (respectively Columns 7 and 8), 
denoted as #Dep. In particular, #Dep-S and #Dep-B are obtained 
by the SAT- and BDD-based methods, respectively. In fact, 
#Dep-S data are exact and complete. In comparison, the BDD-
based method only succeeded in a few circuits and detected only a 
subset of the dependency over a few support variables. The 



runtime (in seconds) and memory (in Megabytes) usage are 
shown in the following columns. Note that the reported memory 
usage includes the underlying system memory whereas the prior 
work was built on VIS [24] and ours on ABC. Despite the uneven 
comparison, the scalability of our approach is evident and 
outperforms the prior work. As plotted in Fig. 3, it is easily seen 
from the power regression lines that the runtime of our approach 
scales polynomially with the circuit size. 

The strength of incremental SAT solving in accelerating 
computation is shown in Fig. 4. The x-axis and y-axis, 
respectively, represent the iteration number and the runtime of 
solving a SAT instance at that particular iteration. The y-axis is 
log-scaled. Five sample circuits of different sizes from Table 1 are 
plotted for the first 100 iterations. As can be seen in all of the 
plots, the runtimes of the first iterations are the maximum of 
among their first 100 iterations. In fact, all the circuits of Table 1 
exhibit the same behavior. After the first iteration, the runtimes 
for SAT solving decrease rapidly and become relatively short and 
stable within about 10 iterations. This demonstrates the 
effectiveness for incremental SAT solving. 

The experiments tend to suggest that (1) the average runtime 
for a circuit is linear in the number of its nodes and (2) the solving 
time for an unsatisfiable SAT instance is often much shorter than 
that for a satisfiable one. The statistics are plotted in Fig. 5. The 
x-axis and y-axis, respectively, represent the number of nodes of 
each circuit and the average runtime of SAT iterations. Both axes 
are log-scaled. Every circuit in Table 1 is plotted as a spot in Fig. 
5. The first tendency can be seen from the two power regression 
lines indicating highly (positive) correlated data set. The second 
tendency can be seen from the fact that the line for the retimed 
circuits is well below that for the original circuits. As evident in 
Columns 4 and 7 of Table 1, more functional dependency exists 
for the retimed circuits. Effectively, more unsatisfiable SAT 
instances are there. It reflects the fact that in our experiments a 
satisfiable instance usually takes longer time to solve than an 
unsatisfiable one. It seems contradicting with common sense. 
However, the tendency can be explained as follows. Because the 
input sizes of interpolants are mostly very small (to be shown in 
Fig. 6), it suggests that conflicts can be found locally. Also, 
incremental SAT solving increases implicativity [25] and thus 
enhances early conflict detection. Thus, decisions over only a few 
variables might be enough to draw an unsatisfiable conclusion. In 
contrast, in a satisfiable case to obtain a single satisfying 
assignment, decisions must be made over all variables. (Note that 
it may not be necessarily so for circuit-SAT and other ODC-
aware CNF solvers, where not all variables are valuated for a 
satisfying assignment.) 

We characterize the derived dependency functions (i.e. 
interpolants) in terms of their input sizes in Fig. 6, where a single 
dependency function, if it exists, is derived for each transition 
function of a given circuit. The x-axis and y-axis indicate the 
numbers of support variables and of dependency functions, 
respectively. The y-axis is log-scaled. As can be seen, most of the 
functions have less than 10 support variables. On the other hand, 
complex functional dependency can also be detected easily by the 
SAT-based approach. For instance, in the retimed b18 circuit, a 
dependency function of input size around 300 is obtained, which 
is not possible using BDD-based methods. Furthermore, to see if 
the input variables of an interpolant are indeed irredundant (i.e. 
support variables), Fig. 7 gives the statistics. (Note that multiple 

interpolants may locate at the same spot.) For every y-axis index, 
say i, the corresponding number on the right hand side of Fig. 7 
indicates the number of interpolants with i spurious variables. As 
can be seen, no spurious variables appear in most (98.3%) of the 
interpolants. Only in few occasions the derived interpolants 
contain redundancy. On the other hand, Fig. 8 shows the relation 
between the interpolant size in terms of AIG (And-Inverter Graph) 
nodes and the number of input variables. The size grows 
polynomially with respect to the number of input variables, as 
seen from the two power regression lines. Figures 6, 7 and 8 
demonstrate the fact that the derived interpolants are mostly small. 

From practical experience in enumerating different 
dependency functions for a target function, we note that the 
number of available dependency functions (with different support 
sets) varies greatly from function to function. A great amount of 
trivial dependency exists due to the transitivity of dependency. 
This transitivity results in vast redundant enumeration. How to 
effectively avoid unnecessary enumeration remains to be done. 
Nevertheless, if the candidate base functions are specified (e.g. 
for circuit rewiring), finding a dependency function is easy. On 
the other hand, we emphasize that the BDD-based method is more 
effective than the SAT-based one in computing the don’t care set 
for a dependency function. This deficiency of the SAT-based 
computation is due to the fact that an interpolant (i.e. a 
dependency function) is with respect to a refutation and contains 
no don’t-care information. 

5. RELATED WORK 
The previous efforts closest to ours are [1] and [4]. Both of them 
rely on BDD-based computation. In [1] combinational functional 
dependency was generalized to sequential dependency. In this 
paper we focus on combinational dependency. In [4], similar to 
our enumeration for different dependency functions, a BDD-based 
technique was used. It allows a more implicit enumeration. 
However, the size of the set of base functions was limited to no 
more than 16. Other work [18] applied interpolation in the context 
of SAT-based model checking for approximated image 
computation. 

6. CONCLUSIONS AND FUTURE WORK 
We have shown that the exploration of functional dependency can 
be solved by a pure SAT-based formulation. Experimental results 
demonstrated the great success of the proposed method. The 
approach is scalable to large designs and discovers much more 
functional dependency far beyond the capability of prior methods. 
The success is attributed to several key ingredients including 
Craig interpolation and incremental SAT solving. We hope that 
our results may benefit several areas of logic synthesis and formal 
verification, for example, in finding rewiring and resubstitution 
candidates for circuit optimization, in identifying redundant 
registers in RTL synthesis, in reducing state space in formal 
sequential equivalence checking, etc.  

Future work includes integrating our technique in logic 
synthesis and generalizing it for other applications. (Some 
preliminary results in synthesizing industrial designs have been 
demonstrated in [26].) Generalizing our method for sequential 
dependency [1] is an important subject to pursue. In addition, it 
would be interesting to explore new applications of Craig 
interpolation.  

 



Table 1. SAT- vs. BDD-based Exploration of Functional Dependency.  

  Original Retimed SAT (original) BDD (original) SAT (retimed) BDD (retimed)
Circuit #Nodes #FF. #Dep-S #Dep-B #FF. #Dep-S #Dep-B Time Mem Time Mem Time Mem Time Mem
s5378 2794 179 52 25 398 283 173 1.2s 18m 1.6s 20m 0.6s 18m 7s 51m

s9234.1 5597 211 46 x 459 301 201 4.1s 19m x x 1.7s 19m 194.6s 149m
s13207.1 8022 638 190 136 1930 802 x 15.6s 22m 31.4s 78m 15.3s 22m x x 
s15850.1 9785 534 18 9 907 402 x 23.3s 22m 82.6s 94m 7.9s 22m x x 
s35932 16065 1728 0 -- 2026 1170 -- 176.7s 27m 1117s 164m 78.1 27m -- -- 
s38417 22397 1636 95 -- 5016 243 -- 270.3s 30m -- -- 123.1 32m -- -- 
s38584 19407 1452 24 -- 4350 2569 -- 166.5s 21m -- -- 99.4s 30m 1117s 164m

b12 946 121 4 2 170 66 33 0.15s 17m 12.8s 38m 0.13s 17m 2.5s 42m
b14 9847 245 2 -- 992 724 -- 3.3s 22m -- -- 5.2s 22m -- -- 
b15 8367 449 0 -- 1134 793 -- 5.8s 22m -- -- 5.8s 22m -- -- 
b17 30777 1415 0 -- 3967 2350 -- 119.1s 28m -- -- 161.7s 42m -- -- 
b18 111241 3320 5 -- 9254 5723 -- 1414.9s 100m -- -- 2842.6s 100m -- -- 
b19 224624 6642 0 -- 7164 337 -- 8184.8s 217m -- -- 11040.6s 234m -- -- 
b20 19682 490 4 -- 1604 1167 -- 25.7s 28m -- -- 36 30m -- -- 
b21 20027 490 4 -- 1950 1434 -- 24.6s 29m -- -- 36.3 31m -- -- 
b22 29162 735 6 -- 3013 2217 -- 73.4s 36m -- -- 90.6 37m -- -- 

 (“--”: memory usage exceeds 1Gb.  “x”: runtime exceeds 12,000 seconds.) 
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Figure 3. Runtime vs. circuit size. 

Figure 4. Runtime of the first 100 SAT iterations.

Figure 5. Average runtime of SAT iterations vs. circuit size. 

Figure 6. Frequency distribution of different support sizes. 
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Figure 8. Interpolant size vs. number of input variables. 

Figure 7. Number of total input variables vs. number of spurious 
input variables of derived interpolants. 


