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ABSTRACT
Boolean relations are an important tool in system synthesis
and verification to characterize solutions to a set of Boolean
constraints. For physical realization as hardware, a deter-
ministic function often has to be extracted from a relation.
Prior methods however are unlikely to handle large problem
instances. From the scalability standpoint this paper demon-
strates how interpolation can be exploited to extend deter-
minization capacity. A comparative study is performed on
several proposed computation techniques. Experimental re-
sults show that Boolean relations with thousands of variables
can be effectively determinized and the extracted functional
implementations are of reasonable quality.

1. INTRODUCTION
Relations are a powerful tool to represent mappings. Ad-

mitting one-to-many mappings, they are strictly more generic
than functions. Taking the Boolean mappings {(x1, x2) ∈
B2} → {(y1, y2) ∈ B2} of Figure 1 as an example, we can
express the (one-to-one) mapping of (a) using Boolean func-
tions f1 = x1x2 and f2 = ¬x1¬x2 for outputs y1 and y2,
respectively. On the other hand, there is no similar func-
tional representation for the mapping of (b) due to the one-
to-many mapping under (x1, x2) = (0, 1). However, this
mapping can be specified by the relation (with characteristic
function) R = ¬x1¬x2¬y1y2 ∨ ¬x1x2¬y1¬y2 ∨ ¬x1x2y1y2 ∨
x1¬x2¬y1¬y2 ∨ x1x2y1¬y2.

Owing to their generality, relations can be exploited to
specify the permissible behavior of a design. For instance, the
behavior of a system can be specified using relations as con-
straints over its input stimuli, state transitions, and output
responses. Moreover, the flexibility of a circuit can be natu-
rally characterized by a relation. In fact, relations subsume
the conventional notion of don’t-cares. To see it, assume Fig-
ure 1 (b) to be a relaxed permissible mapping of (a). That
is, under input (x1, x2) = (0, 1) the output (y1, y2) can be
(1, 1) in addition to (0, 0). This flexibility is not expressible
using the conventional don’t-care representation, and it can
be useful in circuit optimization. By trimming off the output
choice (0, 0) under input (0, 1), the resulting mapping in (c)
has new output functions f1 = x2 and f2 = ¬x1, simpler
than those of (a).

Compared with relations, functions, though more restric-
tive, are often closer to physical realization due to their deter-
ministic nature. Therefore conversions between relations and
functions are usually indispensable. To name two examples,
in reachability analysis, the transition functions of a state
transition system are often converted to a transition relation
to abstract away input variables; in circuit synthesis, optimal
functions can be extracted from a relation representing some
specification or permissible behavior.

Whereas converting functions to relations is straightfor-
ward, converting relations to functions involves much compli-

Figure 1: Boolean mappings.

cation. Among many possibilities, relation-to-function con-
version in its two extremes can be range-preserving, where
all possible output responses under every input stimulus1 are
produced (with the help of parametric variables), and can be
deterministically reducing, where only one output response
under every input stimulus is produced (without the need of
parametric variables). Both extremes have important appli-
cations in system synthesis and verification. The former is
particularly useful in verification. As the constraints speci-
fied by a relation are preserved, the conversion helps create
a testbench to generate simulation stimuli [10, 22, 21] mim-
icking the constrained system environment. The later on the
other hand is particularly useful in synthesis [4]. As the syn-
thesized components are typically much compact than those
with range preserved [2], it is attractive for generating the fi-
nal implementation. This paper is concerned with the latter,
in particular, determinizing a relation and extracting func-
tional implementation in the Boolean domain.

Brayton and Somenzi [4] were among the first to observe
the utility of Boolean relations in logic minimization. Boolean
relations are useful not only in characterizing circuit flexibil-
ities [20, 15], but also in characterizing solutions to design
specifications/constraints [2]. There were intensive efforts
focusing on the exact or heuristic optimization of functions
implementing a given relation. Such optimization objectives,
for instance, can be in terms of two-level logic minimization
under the SOP representation [5, 7, 14, 9, 19], or in term
of some polynomial functions over BDD sizes [1]. State-of-
the-art methods, such as [19, 1], are based on decision di-
agrams. As BDDs are not memory efficient in representing
large Boolean functions, these methods have intrinsic limita-
tions and are not scalable to large problem instances. There
has been growing need for scalable determinization of large
Boolean relations. Synthesis from specifications shows one
such example [2]. The quest for scalable determinization
methods remains.

From the scalability standpoint, we seek reasonable rep-
resentation of large Boolean functions and, in particular, use

1In some occasions input stimuli are unimportant and their
correspondences with output responses need not be pre-
served.



and-inverter graphs (AIGs) (see, e.g., [17]) as the underlying
data structure. Due to their simple and multi-level nature,
AIGs are often much compact and are closer to final logic im-
plementation than the two-level SOP form. Moreover they
provide a convenient interface with SAT solvers in terms of
conversion to CNFs and representation of interpolants [18].
Therefore, unlike previous efforts on relation solving, our ob-
jective is to convert a large relation to a set of functions with
reasonable quality. Similar attempts were pursued recently
in other efforts of scalable logic synthesis, e.g., [11, 12, 13,
16].

Our main exploration includes 1) exploiting interpolation
[6] for Boolean relation determinization and function extrac-
tion, 2) studying expansion- and substitution-based quantifi-
cations with reuse, and 3) showing support minimization in
the interpolation framework. A comparative empirical study
is performed on various computation schemes. Experimen-
tal results suggest that interpolation is essential to scalable
relation determinization and function extraction. Boolean re-
lations with thousands of variables can be determinized effec-
tively and the extracted functions are typically of reasonable
quality compared with their respective reference models.

This paper is organized as follows. Essential backgrounds
are given in Section 2. Section 3 presents the main results on
relation determinization and function extraction; Section 4
discusses function simplification. Experimental results and
discussions are given in Section 5. Finally, Section 6 con-
cludes the paper and outlines some future work.

2. PRELIMINARIES
As a notational convention, substituting function g for

variable v in function f is denoted as f [v/g].

2.1 Boolean Relation
A relation R ⊆ X × Y can be equivalently represented as

a characteristic function R : X × Y → B such that (a, b) ∈ R
for a ∈ X, b ∈ Y if and only if R(a, b) = 1.

Definition 1. A relation R : X × Y → B is total (in X)
if ∀a ∈ X,∃b ∈ Y.R(a, b) = 1. Otherwise, R is partial.

Unless otherwise said we shall assume that a relation R ⊆
X × Y is total in X.

Definition 2. Given a partial relation R : X × Y → B,
an (input) assignment a ∈ X is undefined if no (output)
assignment b ∈ Y makes R(a, b) = 1.

This paper assumes that X is the input space Bn spanned
by input variables ~x = (x1, . . . , xn) and Y is the output space
Bm spanned by output variables ~y = (y1, . . . , ym).

Given a Boolean relation R : Bn×Bm → B with input vari-
ables ~x = (x1, . . . , xn) and output variables ~y = (y1, . . . , ym),

we seek a functional implementation ~f = (f1, . . . , fm) with
fi : Bn → B such that

D =

m∧
i=1

(yi ≡ fi(~x))

is contained by R, i.e., the implication D ⇒ R holds. Equiv-
alently, the relation after substituting fi for yi

R[y1/f1, . . . , ym/fm]

equals constant 1.
Note that the above relation D is a deterministic relation,

i.e.,

∀a ∈ X,∀b, b′ ∈ Y.((D(a, b) ∧D(a, b′)) ⇒ (b = b′)).

Therefore seeking a functional implementation of a total re-
lation can be considered as determinizing the relation. On
the other hand, any deterministic total relation has a unique
functional implementation.

2.2 Satisfiability and Interpolation
The reader is referred to prior work [11] for a brief intro-

duction to SAT solving and circuit-to-CNF conversion, which
are essential to our development. To introduce terminology
and convention for later use, we restate the following theo-
rem.

Theorem 1 (Craig Interpolation Theorem). [6]
Given two Boolean formulas φA and φB, with φA∧φB unsat-
isfiable, then there exists a Boolean formula ψA referring only
to the common variables of φA and φB such that φA ⇒ ψA

and ψA ∧ φB is unsatisfiable.

The Boolean formula ψA is referred to as the interpolant of
φA with respect to φB . Modern SAT solvers can be extended
to construct interpolants from resolution refutations [18].

In the sequel, we shall assume that Boolean relations,
functions, and interpolants are represented using AIGs.

3. RELATIONS TO FUNCTIONS

3.1 Single-Output Relation
We consider first the functional implementation of a single-

output relation R(~x, y) with y the only output variable.

3.1.1 Total Relation

Proposition 1. A relation R(~x, y) is total if and only if
the conjunction of ¬R(~x, 0) and ¬R(~x, 1) is unsatisfiable.

Theorem 2. Given a single-output total relation R(~x, y),
the interpolant ψA of the refutation of

¬R(~x, 0) ∧ ¬R(~x, 1) (1)

with φA = ¬R(~x, 0) and φB = ¬R(~x, 1) corresponds to a
functional implementation of R.

Proof. Since R is total, Formula (1) is unsatisfiable by
Proposition 1. That is, the set {a ∈ X |R(a, 0) = 0 and R(a, 1) =
0} is empty. Hence φA (respectively φB) characterizes the set
SA = {a ∈ X | R(a, 1) = 1 and R(a, 0) = 0} (respectively
SB = {a ∈ X | R(a, 0) = 1 and R(a, 1) = 0}). As φA ⇒ ψA

and ψA ⇒ ¬φB , the interpolant ψA maps every element of
SA to 1, every element of SB to 0, and every other element
to either 0 or 1. Let D be (y ≡ ψA). Then D ⇒ R.

Therefore interpolation can be seen as a way to exploit flex-
ibility for function derivation without explicitly computing
don’t cares.

Corollary 1. Given a single-output total relation R, both
R(~x, 1) and ¬R(~x, 0) are legitimate functional implementa-
tion of R.

Proof. Let φA = ¬R(~x, 0) and φB = ¬R(~x, 1). Because
φA ⇒ R(~x, 1) and R(~x, 1) ⇒ ¬φB , R(~x, 1) is a legitimate
interpolant. Similarly, ¬R(~x, 0) is a legitimate interpolant,
too.

In fact, the cofactored relations R(~x, 1) and ¬R(~x, 0) are the
largest (weakest) and smallest (strongest) interpolants, re-
spectively, in terms of solution spaces. Therefore to derive a
functional implementation of a single-output total relation,
interpolation is unnecessary. However practical experience
suggests that functional implementations obtained through
interpolation are often much simpler in AIG representation.



3.1.2 Partial Relation
Note that Theorem 2 works only for total relations be-

cause partial relations make Formula (1) satisfiable. To han-
dle partial relations, we treat undefined input assignments as
don’t-care conditions (this treatment is legitimate provided
that the undefined input assignments can never be activated)
and define complete totalization as follows.

Definition 3. Given a single-output partial relation R,
its complete totalization is the new relation

T (~x, y) = R(~x, y) ∨ ∀y.¬R(~x, y). (2)

Note that T = R if and only if R is total.
Accordingly Theorem 2 is applicable to a totalized relation

T with

φA = ¬T (~x, 0) and (3)

φB = ¬T (~x, 1), (4)

which can be further simplified to

φA = ¬R(~x, 0) ∧R(~x, 1) and (5)

φB = ¬R(~x, 1) ∧R(~x, 0). (6)

Observe that the conjunction of Formulas (5) and (6) is triv-
ially unsatisfiable. Further, either of ¬R(~x, 0) and R(~x, 1) is
a legitimate interpolant. Therefore, as long as the undefined
input assignments of R are never activated, the interpolant is
a legitimate functional implementation of R. (This fact will
play a role in the development of Section 3.2.2.)

Given a (partial or total) relation R with y being the only
output variable, in the sequel we let FI(y,R) denote a func-
tional implementation of y with respect to R. Among many
possibilities, FI(y,R) can be derived through the interpola-
tion of Formulas (5) and (6).

3.2 Multiple-Output Relation
We now turn attention to the functional implementation

of a multiple-output relation R(~x, y1, . . . , ym) with m > 1.
In essence, we intend to reduce the problem so as to apply
the previous determinization of single-output relations.

A determinization procedure contains two phases: The
first phase reduces the number of output variables; the sec-
ond phase extracts functional implementation. We study two
determinization procedures with different ways of reducing
the number of output variables. One is through existential
quantification; the other is through substitution.

3.2.1 Determinization via Expansion Reduction
As a notational convention, we letR(i) denote ∃ym, . . . , yi.R

for 1 ≤ i ≤ m. Through standard existential quantification
by formula expansion, i.e., ∃x.ϕ = ϕ[x/0] ∨ ϕ[x/1] for some
formula ϕ and variable x, one can reduce a multiple-output
relation R to a single-output relation R(2).

In the first phase, R(i) can be computed iteratively as
follows.

R(m) = ∃ym.R

...

R(i) = ∃yi.R
(i+1)

...

R(2) = ∃y2.R(3)

for i = m− 1, . . . , 2.
In the second phase, functional implementations of all out-

put variables can be obtained through the following iterative

calculation.

f1 = FI(y1, R
(2))

...

fi = FI(yi, R
(i+1)[y1/f1, . . . , yi−1/fi−1])

...

fm = FI(ym, R[y1/f1, . . . , ym−1/fm−1])

for i = 2, . . . ,m− 1.
The above procedure is similar to prior work (see, e.g.,

[19]) with some subtle differences: First, the quantification
results of the first phase are reused in the second-phase com-
putation. It reduces the number of quantifications fromO(m2)
to O(m). Second, interpolation is the key element in the
computation and AIGs are the underlying data structure.

3.2.2 Determinization via Substitution Reduction
Alternatively the solution to the determinization of a single-

output relation can be generalized as follows. Each time
we treat all except one of the output variables as the in-
put variables. Thereby we see a single-output relation rather
than a multiple-output relation. For example, let ym be the
only output variable and treat y1, . . . , ym−1 be additional
input variables. In the enlarged input space (spanned by
y1, . . . , ym−1 as well as ~x), however, R may not be total
even though it is total in the original input space X. Let
f ′m = FI(ym, R), obtained through interpolation mentioned
in Section 3.1.2. Note that since f ′m depends not only on ~x,
but also on y1, . . . , ym−1, it is not readily a functional imple-
mentation of ym.

In the first phase, the number of output variables can be
iteratively reduced through the following procedure.

f ′m = FI(ym, R)

R〈m〉 = R[ym/f
′
m]

...

f ′i = FI(yi, R
〈i+1〉)

R〈i〉 = R〈i+1〉[yi/f
′
i ]

...

f ′2 = FI(y2, R
〈3〉)

R〈2〉 = R〈3〉[y2/f
′
2]

for i = m− 1, . . . , 2.
In the second phase, the functional implementations can

be obtained through the following iterative calculation.

f1 = FI(y1, R
〈2〉)

...

fi = FI(yi, R
〈i+1〉[y1/f1, . . . , yi−1/fi−1])

...

fm = FI(ym, R[y1/f1, . . . , ym−1/fm−1])

for i = 2, . . . ,m− 1.
The following fact can be shown.

Lemma 1. [8] Given a relation R and f ′m = FI(ym, R),
the equality R[ym/f

′
m] = ∃ym.R holds.

It may be surprising, at first glance, that any f ′m = FI(ym, R)
results in the same R[ym/f

′
m]. This fact is true however and



a detailed exposition can be found in the work [8]. By induc-
tion on i = m, . . . , 2 using Lemma 1, one can further claim
that R〈i〉 = R(i).

Note that the above computation implicitly relies on the
don’t-care assumption of partial relations. This assumption
is indeed legitimate because the don’t cares for deriving f ′i
can never be activated when substituting f ′i for yi in R〈i+1〉.

Comparing R(i) of Section 3.2.1 and R〈i〉 of Section 3.2.2,
one may notice that the AIG of R(i) is in general wider in
width but shallower in depth, and, in contrast, that of R〈i〉

narrower but deeper.
As an implementation technicality, relations R(i) (simi-

larly R〈i〉) can be stored in the same AIG manger. So struc-
turally equivalent nodes are hashed together, and logic shar-
ing is possible among relations R(i) (similarly R〈i〉).

3.3 Deterministic Relation
We consider the special case of extracting functions from

a deterministic relation.

Lemma 2. Given a deterministic relation D(~x, ~y) total in
the input space X with

D =

m∧
i=1

(yi ≡ fi), (7)

let

φA = D(~x, y1, . . . , yi−1, 1, yi+1, . . . , ym) and (8)

φB = D(~x, y′1, . . . , y
′
i−1, 0, y

′
i+1, . . . , y

′
m), (9)

where y and y′ are independent variables. Then the inter-
polant of φA with respect to φB is functionally equivalent to
fi.

Proof. Since D is deterministic and total in X, for every
a ∈ X there exists a unique b ∈ Y such that D(a, b) = 1. It
follows that the formulas

∃y1, . . . , yi−1, yi+1, . . . , ym.D[yi/0] (10)

and

∃y1, . . . , yi−1, yi+1, . . . , ym.D[yi/1] (11)

must induce a partition on the input space X, and thus the
interpolant of φA with respect to φB must logically equivalent
to Formula (11), which is unique.

Back to the computation of Section 3.2.2, let

D = R ∧
∧
i

(yi ≡ f ′i). (12)

Since the relation D is deterministic, the computation of
Lemma 2 can be applied to compute fi. The strengths of
this new second-phase computation are twofold: First, no
substitution is needed, in contrast to the second-phase com-
putation of Section 3.2.2. Hence the formula sizes of φA and
φB in interpolant computation do not grow, unlike the previ-
ous second-phase computation. As interpolant sizes are more
or less proportional to the formula sizes of φA and φB , this
approach is particularly desirable. Second, only functions f ′i ,
but not relations R〈i〉, are needed in the computation. Since
the formula sizes of R〈i〉 are typically much larger than those
of f ′i , this approach saves memory by discharging R〈i〉.

4. FUNCTION SIMPLIFICATION
The following lemma can be exploited in reducing the sup-

port variables of a functional implementation.

Table 1: Profile of original benchmark circuits.

circuit (n, m)
orig

#n #l #v

s5378 (214, 179) 624 12 1570
s9234.1 (247, 211) 1337 25 3065
s13207 (700, 669) 1979 23 3836
s15850 (611, 597) 2648 36 15788
s35932 (1763, 1728) 8820 12 7099
s38584 (1464, 1452) 9664 26 19239
b10 (28, 17) 167 11 159
b11 (38, 31) 482 21 416
b12 (126, 121) 953 16 1639
b13 (63, 53) 231 10 383

Lemma 3. For two Boolean formulas φA and φB with an
unsatisfiable conjunction, there exists an interpolant with-
out referring to variable xi if and only if the conjunction
of ∃xi.φA and φB (equivalently the conjunction of φA and
∃xi.φB) is unsatisfiable.

Proof. (⇐=) Assume the conjunction of ∃xi.φA and φB

(similarly φA and ∃xi.φB) is unsatisfiable. Since φA ⇒ ∃xi.φA

(similarly φB ⇒ ∃xi.φB), the conjunction of φA and φB is
unsatisfiable as well. Also by the common-variable property
of Theorem 1, the existence condition holds.

(=⇒) Observe that ∃xi.φA (respectively ∃xi.φB) is the
tightest xi-independent formula that is implied by φA (re-
spectively φB). The existence of an interpolant of φA with
respect to φB without referring to xi infers the unsatisfiabil-
ity of the conjunction of ∃xi.φA and φB as well as that of φA

and ∃xi.φB .

By the lemma, we can possibly knock out some variables
from an interpolant.

Note that, in Lemma 3, it suffices to quantify xi over
φA or φB even though it is okay to quantify on both. In
practice, quantification on just one formula results in smaller
interpolants because the unsatisfiability is easier to be shown
in SAT solving.

5. EXPERIMENTAL RESULTS
The proposed methods were implemented in the ABC

package [3]; the experiments were conducted on a Linux ma-
chine with Xeon 3.4GHz CPU and 6Gb RAM.

To prepare Boolean relations, we constructed the transi-
tion relations of circuits taken from ISCAS and ITC bench-
mark suites. Different amounts of don’t cares were inserted
to the transition relations to introduce nondeterminism. We
intended to retrieve a circuit’s transition functions in the fol-
lowing experiments.

The original circuits2 were minimized with the ABC com-
mand dc2, and so were the AIGs produced during deter-
minization and function extraction. The profile of the orig-
inal circuits (after the removal of primary-output functions
and after dc2 synthesis) is shown in Table 1, where “(n,m)”
denotes the pair of input- and output-variable sizes of the
transition relation, “#n” denotes the number of AIG nodes,
“#l” AIG logic levels, and “#v” the summation of support
variables of all transition functions.

We first study the usefulness of interpolation in contrast
to cofactoring, which can be considered as a way of deriv-
ing special interpolants as mentioned in Section 3.1.1. In
the experiment, a circuit was determinized via expansion re-
duction, where the functional implementations extracted in
the second phase were derived differently using interpolation

2Since a circuit’s primary-output functions are immaterial to
our evaluation, we are concerned only about the sub-circuit
responsible for transition functions.



Table 2: Function extraction from relations — without don’t care insertion.

circuit
BDD Xp St SD

#n #l #v time #n #l #v time #n #l #v time #n #l #v time

s5378 783 10 1561 286.4 1412 25 1561 49.6 1328 23 1561 58.5 1625 34 1561 32.4
s9234.1 — — — — 7837 59 2764 158.6 8015 45 2765 282.4 8637 45 2766 100.7
s13207 — — — — 5772 140 3554 769.3 6625 223 3554 949.5 6642 109 3554 247.2
s15850 — — — — 42622 188 13348 2700.0 42902 153 13318 3029.6 41014 357 13329 404.7
s35932 — — — — 7280 10 6843 4178.5 7310 10 6843 3982.7 7293 12 6843 2039.2
s38584 — — — — 22589 277 17678 5772.8 22691 387 17676 8481.0 17018 178 17676 2438.1
b10 200 10 152 0.1 197 8 152 0.9 231 14 152 1.7 234 14 152 1.0
b11 1301 18 394 0.9 1504 57 394 5.1 1759 55 394 14.9 1959 53 394 8.0
b12 1663 14 1574 56.7 2166 25 1574 24.0 2368 35 1575 78.8 2662 33 1576 38.6
b13 240 10 349 3.1 224 10 349 2.2 222 11 349 3.5 222 11 349 2.7

ratio 1 3.40 4.16 0.91 3.47 4.98 0.91 3.24 4.41 0.91
ratio 2 1.70 0.89 0.97 2.24 1.79 0.97 2.40 1.97 0.97 2.53 1.90 0.97
ratio 3 1.00 1.00 1.00 1.31 2.02 1.00 1.41 2.23 1.00 1.48 2.15 1.00

Table 3: Function extraction from relations — with don’t care insertion.

circuit
BDD Xp St SD

#n #l #v time #n #l #v time #n #l #v time #n #l #v time

s5378 769 11 1561 200.2 1332 25 1561 49.05 1196 27 1561 60.99 1919 42 1561 32.74
s9234.1 — — — — 7696 55 2765 166.74 8739 64 2764 325.98 11613 99 2927 120.37
s13207 — — — — 5818 202 3554 897.86 6882 228 3554 1062.15 6218 204 3554 287.47
s15850 — — — — 40078 136 13309 2596.94 42097 164 13318 3012.36 41240 212 14276 467.95
s35932 — — — — 7360 25 6843 4811.1 7300 10 6843 7168.53 8823 19 8756 2775.32
s38584 — — — — 23726 331 17676 5476.67 21595 285 17676 8160.28 17708 281 18556 2591.71
b10 199 9 152 0.1 193 8 152 0.99 217 9 152 1.62 239 8 168 1.13
b11 1221 20 394 0.9 1562 52 394 5.5 1638 46 394 15.19 1896 54 394 8.54
b12 1619 15 1574 452.5 2261 23 1574 26.98 2081 24 1574 86.96 2458 25 1575 44.19
b13 243 11 349 1.6 229 12 349 2.45 236 10 349 4.2 232 10 349 2.9

ratio 1 3.35 4.53 0.91 3.42 4.52 0.91 3.43 4.97 0.98
ratio 2 1.65 0.94 0.97 2.27 1.71 0.97 2.18 1.66 0.97 2.74 1.99 0.97
ratio 3 1.00 1.00 1.00 1.38 1.82 1.00 1.33 1.76 1.00 1.66 2.11 1.00

Figure 2: Circuit b11 determinized by expansion reduc-

tion with function extraction by interpolation vs. cofac-

toring in the second phase.

and cofactoring to compare. Taking circuit b11 as a typical
example, Figure 2 contrasts the difference between the two
techniques. As can be seen, by cofactoring, the function sizes
grow almost exponentially during the iterative computation;
by interpolation, the function sizes remain under control. In
fact, derived by cofactoring, say, R(i+1) with yi = 1, function
fi has almost the same size as R(i+1) unless command dc2

can effectively minimize fi. However, dc2 is unlikely to be
helpful for large fi as justified by experiments.

Below we compare different determinization methods, in-
cluding BDD-based computation, that via expansion reduc-
tion (Section 3.2.1), denoted Xp, that via substitution reduc-
tion (Section 3.2.2), denoted St, and that via constructing
deterministic relation (Section 3.3), denoted SD. Dynamic
variable reordering and BDD minimization are applied in

BDD-based computation.
Table 2 shows the results of function extraction from rela-

tions without don’t care insertion. BDD-based computation
is not scalable as expected. There are five circuits whose
transition relations cannot be built compactly using BDDs
under 500K nodes and the computation cannot finish either
within 30 hours CPU time or within the memory limitation.
Ratio 1 and Ratio 2 are normalized with respect to the data
of the original circuits of Table 1, whereas Ratio 3 is nor-
malized with respect to the BDD-based derivation. Ratio 1
covers all the ten circuits, whereas Ratio 2 and Ratio 3 cover
only the five circuits that BDD-based derivation can finish.

By Ratio 1, we observe that the derived functions (without
further postprocessing to minimize) are about 3-times larger
in nodes, 4-times larger in logic levels, and 9% smaller in
support sizes. To be shown in Table 4, with postprocessing,
the derived functions can be substantially simplified and are
comparable to the original sizes. By Ratio 2, we see that
even BDD-based derivation may increase circuit sizes by 70%
while logic levels are reduced by 11%. By Ratio 3, we see that
the results of the SAT-based methods are about 40% larger
in nodes and 2-times larger in logic levels.

Table 3 shows the results of function extraction from rela-
tions with don’t cares inserted. For a circuit with r registers,
dr · 10%e random cubes (conjunction of literals of input and
state variables) are created. Each cube represents some don’t
cares for a randomly selected set of functions. Presumably
the more the don’t cares are inserted, the simpler the tran-
sition functions are extracted. In practice, however, such
simplification3 is not guaranteed (even in BDD-based com-
putation). The reasons can be twofold: Firstly, the simplifi-

3Notice that, unlike BDD-based computation, our methods
do not explicitly perform don’t-care based minimization on
the extracted transition functions. The don’t-care choices
are made implicitly by SAT solving for interpolation.



Table 4: Function extraction from relations — effect of collapse minimization.

circuit
orig Xp

#n #l #v #n c #l c #v c #n #l #v #n c #l c #v c time c

s5378 624 12 1570 772 11 1561 1412 25 1561 760 11 1561 0.4
s9234.1 1337 25 3065 2791 25 2764 7837 59 2764 2751 22 2764 6.4
s13207 1979 23 3836 2700 20 3554 5772 140 3554 2709 20 3554 5.2
s15850* 2648 36 15788 — — — 42622 188 13348 — — — —
s35932 8820 12 7099 7825 9 6843 7280 10 6843 7857 9 6843 39.9
s38584 9664 26 19239 12071 23 17676 22589 277 17678 12132 21 17676 36.5
b10 167 11 159 195 10 152 197 8 152 195 10 152 0.0
b11 482 21 416 1187 21 394 1504 57 394 1226 21 394 0.2
b12 953 16 1639 1556 17 1574 2166 25 1574 1645 16 1574 0.4
b13 231 10 383 237 9 349 224 10 349 237 9 349 0.1

ratio 1 1.00 1.00 1.00 1.21 0.93 0.93 2.02 3.92 0.93 1.22 0.89 0.93
ratio 2 1.00 1.00 1.00 1.01 0.96 1.00

cation achieves only local optimums. Secondly, relations with
don’t cares inserted become more sophisticated and affect in-
terpolant derivation. Nevertheless the results of Table 2 and
Table 3 are comparable.

The above experiments of Xp, St, and SD used only light
synthesis operations in minimizing the extracted functions.
Nonetheless, it is possible to greatly simplify these functions
with heavier synthesis operations. To justify such possibili-
ties, we applied ABC command collapse once followed by
dc2 twice as postprocessing. Table 4 shows the statistics of
extracted functions by Xp for relations without don’t care
insertion. (Similar results were observed for St and SD, and
for cases with don’t care insertion.) The postprocessing re-
sults of the original functions and extracted functions are
shown. This postprocessing time is listed in the last column.
Operation collapse failed on circuit s15850, and the two ra-
tios shown excludes the data of s15850. As can be seen, the
postprocessing makes the extracted functions comparable to
the original ones. Since the postprocessing time is short, our
method combined with some powerful synthesis operations
can effectively extract simple functions from large relations,
where pure BDD-based computation fails. Our method can
be used as a way of bypassing the BDD memory explosion
problem.

6. CONCLUSIONS AND FUTURE WORK
We have shown that Boolean relations with thousands of

variables can be determinized inexpensively using interpo-
lation. The extracted functions from a relation are of rea-
sonable sizes. With such extended capacity, we would an-
ticipate real-world applications, which might in turn enable
constraint-based synthesis and verification, synthesis from
specifications, and other areas that require solving large Boolean
relations.

As we just presented a first step, there remain some ob-
stacles to overcome. In particular, the unpredictability of
interpolation prevents relation determinization from being
robustly scalable. Moreover, we may need good determiniza-
tion scheduling and powerful interpolant/AIG minimization
techniques, especially under the presence of flexibility.
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