
A Robust Functional ECO Engine by

SAT Proof Minimization and Interpolation Techniques
Bo-Han Wu, Chun-Ju Yang, Chung-Yang (Ric) Huang, Jie-Hong Roland Jiang

Graduate Institute of Electronics Engineering/Department of Electrical Engineering, National Taiwan University

Abstract

Functional rectification in late design stages has been a crucial
process in modern complex system design. This paper proposes a
robust functional ECO engine, which applies SAT proof minimization
and interpolation techniques to automate patch construction to make
old implementation and golden specification functionally equivalent.
The SAT proof minimization technique provides a sound and efficient
way of fixing easy errors, and the interpolation technique provides a
complete and robust way of fixing remaining errors. Experimental
results show that our engine performs robustly to generate small
patches in fixing various design rectification instances.

I. INTRODUCTION

In the modern VLSI design flow, a design typically goes through
many synthesis and optimization stages. If the specification changes or
a functional bug is found at a late stage, it is impractical to restart the
design flow from the beginning as it would greatly affect the cost and
time-to-market. This is when engineering change order (ECO) comes
into play. The goal of the engineering change is to help the designer
identify a part of the old implementation that should be modified such
that the resulting circuit is functionally equivalent to the golden
specification. In other words, we need a patch that, when applied to
the old circuit, makes it equivalent to the golden one. Here the patch
size should be minimized so as to lower the cost in consequent
rectifications.

A simple and intuitive approach to ECO is to choose an internal
signal in the old circuit, and replace it with a newly synthesized signal
based on the golden circuit. With different formulations such as
functional decomposition and synthesis by quantification, several
algorithms under this idea have been proposed [1-2]. By the use of
BDDs, these algorithms are relatively easy to implement. However,
there are two major drawbacks of these algorithms. First, it is
generally more expensive, if not impossible, to rectify the actual
difference between two circuits by a single signal. For example, if
there are two small, but yet far-from-each-other changes in the golden
circuit, the single replacement would be limited in the common region
of the transitive fanout cones of these two changes. The other
drawback is that the size of the problem instance is bounded by the
BDD capacity, which makes these algorithms impractical for modern
designs.

To avoid these drawbacks, some researchers treat ECO as a design
error correction problem [3-4]. By viewing the old circuit as an
erroneous design, and treating the golden circuit as the corrected one,
the patch generation is exactly an error correction process, to which
many approaches exist already. Usually an error correction algorithm
comes with an error model [5], which describes all the possible error
types, including wrong gate-type, missing inverter, misplaced wire,
and so on. The advantage of the error-model approach is that with the
smaller search space it will allow us to find the solution within
acceptable runtime. Nevertheless, its disadvantage is that these
algorithms often fail to produce the patch when the golden circuit is
too different from the old one or the difference cannot be represented
by the error models.

Since the error-model approach possesses such possibility of
failure, a technique called test-vector-guided approach is proposed to
avoid the BDD capacity problem as well as to guarantee fixing the old
circuit. For example, Co’Re [6] uses a set of error minterms to identify
the signal to be fixed and then resynthesizes a replacing logic from the
nearby signals. The circuit is guaranteed to be fixed under the chosen

minterms, but not necessarily for the others. As a consequence, if a
discrepancy still exists between the fixed old circuit and the golden
one, more error minterms for the discrepancy will be added to the
error minterm set and the whole process needs to be started over again.
Although this algorithm seems efficient for some examples, in the
worst case, it may end up fixing only a small set of minterms at a time
and resulting in long runtime. If the design has many primary inputs,
the number of error minterms can be enormous, and thus there is a
chance that this algorithm will not converge in acceptable runtime.

Instead of performing ECO by examining the behavior of primary
inputs and primary outputs, a recent work DeltaSyn [7] has been
proposed to match the old and golden circuits in two phases. First, it
seeks for functionally equivalent signals in the two circuits by both
structural and functional information. With the location of these
equivalent signals known, part of the two circuits is matched from
primary inputs up to these signals. Then, the two circuits are matched
from primary outputs by the Boolean matching technique in [8]. This
algorithm would work perfect if the difference between the two
circuits is small and close to primary outputs. However, for cases that
the golden circuit is much different from the old one, it may result in
large unmatched subcircuit and patches.

Recent work [9] also exploited SAT solving and interpolation as
the underlying ECO techniques. The authors utilized MAX-SAT to
locate the potential signals to rectify design discrepancy. Then SAT-
based function dependency check [10] and function decomposition
[11] are used to derive replacing signals and to fit in FPGA look up
tables, respectively. Although this algorithm does not suffer from the
problem mentioned above, it may probably produce a patch far from
optimal when MAX-SAT fails to identify the real positions of the
difference between the two circuits. We improve the work by
providing an equivalent yet simpler interpolation formulation.

In this paper, we propose a robust ECO engine that can efficiently
work on complicated as well as simple ECO problems. We enhance
the error-model and the test-vector-guided approaches by recording
the potential fixes on a MUX-remodeled circuit. Then the SAT proof-
core minimization technique is applied to minimize the patch size. If
the above method does not work well, or if it can only fix partial
differences, we will resort to the interpolation-based technique to
resynthesize the (remaining) functional difference between the old and
golden circuits. Our formulation implicitly takes the observability
don’t-cares into consideration and the interpolation engine will utilize
it to minimize the patch circuit. Experimental results show that our
ECO engine can consistently identify the patches with small sizes
efficiently.

The rest of this paper is organized as follows. In Section II we first
outline our algorithm. Sections III and IV respectively describe the
MUX-remodeled SAT proof minimization solution and the
interpolation technique in details. Experimental results are presented
in Section V, and Section VI concludes this paper.

II. OVERVIEW OF OUR ECO ALGORITHM

Fig. 1 outlines our ECO algorithm. In the beginning, the inputs of
the old and the golden circuits are merged together by their pin names.
Then FRAIG [12] is applied to identify the functionally equivalent
part of the circuits. Please note that we merge the functionally
equivalent sub-circuit only when there is exactly one of the equivalent
signals in the old circuit. This way, we can ensure that the signal in the
old circuit is reused and the equivalent part of the golden circuit is
removed from the problem. It can always lead to a smaller patch size.

Next, a MUX-remodeled SAT proof minimization (MSPM)
approach tries to solve the problem with an error-model library
containing different types of modifications. This approach makes use
of simulation and equivalent checking to recursively identify possible
modifications one at a time. Then a collection of individual
modifications are remodeled by MUX gates on the old circuit and if
there exists an assignment on the selecting signals of the MUXes that
can make the old and golden circuits equivalent, we find a feasible
patch of this problem. We then apply SAT proof minimization
technique to minimize the patch.

 However, in some cases, the difference between the two circuits
is so complex that the MSPM is unable to rectify it. To solve this
problem, we first turn to the incremental MSPM, which tries to fix as
many primary outputs as possible. The remaining unfixed part is then
passed to the interpolation technique. Since the interpolation actually
synthesizes the functional difference between the old and the golden
circuits, it is guaranteed to find a solution. In addition, during the
interpolation solving process, we can still check whether there are
primary outputs that can be fixed by incremental MSPM after one or
more interpolants have been replaced into the old circuit. As this
iteration goes on, we can always find a patch, which in the extreme
case, is generated entirely by interpolation.

III. MUX-REMODELED SAT PROOF MINIMIZATION

MSPM is a recursive algorithm with the capability of finding
small modifications for the error cubes and then minimizing the
resulting patch. The flowchart is as shown in Fig. 2. At each recursion
level, the merged circuits are first passed to the equivalence checker to
find an error vector. If an error vector is found, the circuits are
simulated with this vector and the simulation result is then used to
identify the remodeling candidates. When such a candidate is found, it
is remodeled by our MUX model for later patch minimization. Then
the resulting modified circuits are solved recursively as a sub-problem
by the same procedure. If the solving of the sub-problem fails, that is,
if we cannot find a remodeling candidate from the error-model library,
the modification is reverted and we continue to find another potential
error.

 Since we do not need this algorithm to be a complete solution, we
can set a limit on the recursion depth and the number of modifications
tried at each recursion. Therefore, we can easily change the size of the
search space as a tradeoff on runtime. In the following subsections, we
will describe how to find remodeling candidates, detail MUX
remodeling and patch minimization, and extend MSPM in an
incremental manner.

A. Finding a Remodeling Candidate

Given an error vector v

, we say a signal s in the old circuit is

rectifiable under v

 if and only if it satisfies the following property:

 ,),(
)(

)]([iv
ds

Oldd
vGOld i

ii
 (1)

where Oldi is the function of a primary output in the old circuit, and Gi
is the corresponding one in the golden circuit. In other words, if we
change the value of s, we rectify the difference between the two
circuits under the vector v

.

To find a remodeling candidate to rectify the error vector, clearly,
we should identify the rectification signals first. To locate such signals,
the two circuits are first simulated with the error vector v

. Then

starting from the outputs with different simulation values, we traverse
backward on the old circuit to see if there is a controlling signal that,
when its value is flipped, can change the values on the outputs
simultaneously. If we fail to find such signals, we will continue for
the next error vector.

Our error-model library includes various frequently-encountered
error patterns and can be categorized as follows:

 Missing inverter: There is an inverter missing or undesirably

present on a wire.

 Rewiring: An input of a gate is connected from an incorrect signal.

 Wrong gate type: A gate is of wrong type. Let a and b be the

gate inputs, we categorize gates into five types, including ba

(AND), ba (OR), ba (XOR), ba , and ba . Note that the

last two types are included to cover the missing inverter
modifications on wire branches.

For a rectification signal, we modify it by different types of error
models in the library that can flip the simulation values. If the
resulting values at primary outputs are rectified, then we have a
remodeling candidate. However, there may be too many such
candidates and most of them may be spurious. To quickly screen out
the spurious ones, we simulate the circuits together with a great
amount of correct vectors. In other words, a valid remodeling
candidate should fix the error vector, yet at the same time keep the
correct vectors intact. This can greatly reduce the probability of
choosing a wrong candidate.

B. MUX remodeling

Once we find a remodeling candidate, we do not commit it
directly. Instead, we use a MUX to remodel the modification. As
illustrated by the example in Fig. 3, suppose the OR gate is a
remodeling candidate for a rectification signal (the AND gate) in the
old circuit. We then build the MUX structure, which has the original
signal as one of its input, and the modified signal as the other. In a
later recursion step, we can set the value of D to 1 so that the signal C
is equivalent to the modified signal. This allows us to identify the next
remodeling candidate for other error vectors.

This MUX model makes it easy to recover from the modification
if we need to backtrack in the searching process and at the same time
enables the patch minimization as we will describe in the following
subsection.

Old

Circuit

Revised

Circuit

FRAIG MSPM
Incremental

MSPM

Unsolved

Interpolation

Solving
Output Patch

Solved

Figure 1. Flowchart of our algorithm

Input

Circuit
Any Error

Minterm?

Modify Old

Circuit

MUX

Remodel

Recursively

Solve

Revert Last

Change

Minimize

Patch

Output

Patch

no

yes

Figure 2. Flowchart of MSPM solution

A

A

B

B

C

D

0
1

The old gate

The modified gate

Figure 3. An example of MUX modeling

C. Patch Minimization by SAT Proof

For the MUX-remodeled circuit, if there exists an assignment on
the selecting signals of the MUXes that make the old and golden
circuits equivalent, a possible patch is found. This equivalence
checking problem is solved by the SAT engine when it concludes that
the output difference of the merged circuits is unsatisfiable.

To facilitate the generation of the patch, we arrange the MUX
selecting signals as the earlier decision variables in the SAT process.
In other words, any assignment on the selecting signals can be viewed
as an assumption for the subsequent equivalence checking proof. If the
SAT returns satisfiable, we can learn a (partial) assignment on the
selection signals that is impossible to be a patch (i.e. make the proof
unsatisfiable). We then add this learned constraint to the SAT problem
and continue. If there is a conflict occurring at or before the decision
levels of these selecting signals, an assignment that leads to the output
equivalence is found. We can then compute the SAT proof core based
on this assumption and identify a minimal set of modification signals
as the ECO patch.

With this patch minimization technique, redundant modifications
in the patch are easily found and discarded, and the patch size is
reduced.

D. Incremental MSPM

When MSPM fails to fix the entire old circuit, we can still attempt
to fix some of the primary outputs. At each time, we extract one
erroneous primary output along with all correct primary outputs at a
time. If MSPM is able to rectify this subcircuit, we accept this
modification. This process is repeated until no erroneous primary
output can be fixed.

To be more specific, we attempt to fix one erroneous primary
output at a time until we can no longer fix any primary output by
MSPM. This can speed up the ECO process by resolving the simple
fixes first before we turn to a more sophisticated procedure by the
interpolation technique.

IV. INTERPOLATION-BASED ECO

Fig. 4 outlines the flow of our interpolation-based ECO approach.
We first search for a rectification signal which is able to fix some
primary outputs and select a set of signals as the inputs of the patch
function (Subsections A and B). Using these patch input signals, old
and golden networks, we compose two networks that characterize the
on-set and off-set of the patch functions (Subsection A). Then by
proving the unsatisfiability on the conjunction of the on-set and off-set
networks, we can derive an interpolant that can serve as a patch of this
ECO problem (Subsection C). A synthesis process is followed to
optimize the patch, and the above flow is repeated if any of the
primary outputs is not yet fixed.

A. Theorems of the Interpolation-Based ECO Technique

In this subsection, we present the theorems that constitute our
interpolation-based ECO techniques. We first focus on the single-
output ECO problem in order to simplify the explanation. Table I lists
the notations used in this subsection.

Theorem 1 Let c be stuck-at-0 and stuck-at-1 in two copies of the old
network, respectively. If the following formula is unsatisfiable, then c
can be a rectification signal for the difference between the old and
golden circuits.

 11111 ,0 IfVIGIcOld v

 22222 ,1 IfVIGIcOld v

Proof:

To help describing Formula (2), we construct the corresponding
networks as Fig. 5.

By definition, there must be at least one function such that
modifying the rectification signal to this function will result in
equivalence of the old and golden networks. Since V is equivalent to

vf

 by definition, if Formula (2) is unsatisfiable, then either Old1 is

equivalent to G1 or Old2 is equivalent to G2. That is, for all the
combinations of values on I1, I2, and V, one of conditions, c=0 or c=1,
will always make the old and golden networks equivalent. In other

words, we can find a maximal set of value combinations on V, say
0v

,

that can make the old and golden networks equivalent under the c=0

condition. Clearly, the rest of the value combinations on V, say
1v

,

will make the networks equivalent under c=1. Therefore, there must

be a function of V with
0v

 and
1v

 as its off- and on-sets, respectively,

that can replace the signal c and fix the old network. Therefore, the
signal c is a rectification signal.

Note that our formula is similar to the one proposed in [9], which
can be rewritten in our notations as:

 111111111 ,1,0 IfVIGIcOldIGIcOld v

 222222222 ,0,1 IfVIGIcOldIGIcOld v

In comparison, it is clear that our formulation is simpler. In our
experience, this simplification can always lead to more than twice
speedup with less memory consumption.

The signals V in Theorem 1 are introduced to serve as the
common variables between the two duplicated networks. They will be
used as the input variables of the patch function later.

Theorem 2 If Formula (2) is unsatisfiable, we perform Craig

interpolation on V with [Old1(c=0,I1) G1(I1)] (V=)(1Ifv

) as the

=

common
variables

Golden1
Old1

V

{
I1

c

0
fv Golden2Old2

V

{

I2

c

1
fv

1

¼

OR

1

¼

OR

Figure 5. The corresponding network for Formula (2).

Rectifiables
Searching

On&Off set
Composing

Patch
Optimization

All POs
fixed?

NO

YE
S

START END

 Figure 4. Flow of our interpolation-based ECO approach.

TABLE I. NOTATIONS FOR THE ILLUSTRATION OF THE

INTERPOLATION-BASED ECO ALGORITHM

Variable Description

c A selected signal from old network.
V Output variables of functions f and,

effectively, patch inputs.

vf

 Input functions of variables V in terms of
primary inputs

I1, I2 Two copies of the primary inputs.
G1, G2 Two copies of the golden network
Old1, Old2 Two copies of the old network

on-set and [Old2(c=1,I2)G2(I2)] (V=)(2Ifv

) as the off-set. In

addition, the interpolant must be able to serve as a patch function for
signal c to fix the difference between the old and golden circuits.

Proof:

We will prove this theorem by contradiction.

Let E0 be [Old1(c=0,I1)G1(I1)](V=)(1Ifv

), and E1 be

[Old2(c=1,I2)G2(I2)](V=)(2Ifv

). Formula (2) becomes E0 E1.

Since Formula (2) is unsatiafiable and V are the only common
variables between E0 and E1, there must be a Craig interpolation
defined on V [13-14]. Let the interpolant function be P(V). Assume
that P(V) is NOT a patch to fix the difference between old and golden
networks.

Let the cube Id make these two networks different with the
replacement of the signal c by P(V) and the signals on V have values

dv

. Let’s consider the following two cases of P(
dv

):

(a) P(
dv

)=0

Since c is replaced by P(V) now, we have c = P(
dv

)= 0. Plugging

Id and
dv

 to E0, the expression [Old1(c=0,Id)G1(Id)] (
dv

=)(dv If

)

should be true because P(V) is NOT a patch.

On the other hand, by the definition of interpolation, P(
dv

)

[Old1(c=0,Id)G1(Id)] (
dv

=)(dv If

) must hold. Then we will

obtain a conflict of 0 1. Therefore, the interpolant must be a feasible
patch function in this case.

(b) P(
dv

)=1

Similarly, [Old2(c=1,Id)G2(Id)] (
dv

=)(dv If

) is always true

due to the assumption. By the definition of interpolation, P(
dv

)

[Old2(c=1,Id)G2(Id)] (
dv

=)(dv If

) = must hold. Then we will

obtain a conflict of 11=. Therefore, the interpolant is a feasible
patch function in this case.

From the above two cases, we know that the interpolant must be a
valid patch.

Based on the two theorems, we can construct the circuits of
Formula (2) to search for a possible rectification signal and its
corresponding V. After a rectification signal and V are determined, we
will apply the rectification signal to generate an interpolant as the
desired patch by Theorem 2.

B. Searching for Rectification Signals

Given a primary output (PO) of the old circuit inequivalent to its
golden counterpart, by Theorems 1 and 2, it can always be rectified
and thus is a definite rectification signal. In our experience, however,
the corresponding patch size is often very large. Therefore we
iteratively search the rectification signal and patch inputs V until a
patch of reasonable size is found.

A node closer to primary inputs has a higher priority to be selected
as a candidate rectification signal because its fanin cone is usually
smaller and similarly its patch, if exist. After a node is selected as a
candidate of rectification signal, we select a cut from its fanin cone as
the corresponding patch inputs V. A cut closer to the node has a higher
priority to be selected since the patch is usually smaller. Our
experience suggests that the cut selection strategy performs very well
in most cases. However, to rectify rewiring-type ECO problems, this
strategy may miss some rectification opportunities when patch inputs
do not exist in the fanin cone of the given node. In such cases, it may
be beneficial to explore signals outside of the fanin cone. To identify
good candidates not restricted to the fanin cone, Formula (2) can be
useful by letting V be the primary inputs. By the interpolant resulted

from the unsatisfiability of Formula (2), we know which of the
primary inputs can rectify the circuit and search only those signals that
depend on these primary inputs.

Given a candidate rectification signal and its corresponding
candidate patch inputs V, we are ready to construct the circuit of
Formula (2). To test its satisfiability, we divide the computation into
two phases, the simulation phase and the SAT-based proof phase. In
the simulation phase, we adaptively simulate about 100~500 sets of
64-bit random vectors to test the satisfiability of Formula (2) in order
to quickly prune impossible rectification signals. If all the simulation
efforts fail to show the satisfiability of Formula (2), we enter the
second phase to test if it is indeed unsatisfiable.

In the SAT-based proof phase, we apply SAT solving on Formula
(2). If it is satisfiable, then we have picked a wrong combination of
rectification signal and patch inputs. So we have to choose either
another node or another set of patch inputs. On the other hand, if it is
unsatisfiable, the rectification signal and patch inputs are found and
we will modify the rectification signal using the obtained patch if its
size is reasonably small.

By the above two computation phases, we can reduce the usage of
a SAT solver, and thus find a good rectification signal very efficiently.
In addition, we ensure that there always exists at least one rectification
signal — the primary output. Because Formula (2) is always
unsatisfiable if signal c is a primary output and signal V contains all
primary inputs, the searching process will always succeed to find a
rectification signal.

C. Patch Generation by Interpolation

After a rectification signal is determined, we can construct an
interpolant from the refutation proof of Formula (2). Since the
interpolant can be highly redundant, it often can be substantially
simplified using logic optimization [15]. The resulting circuit, if
reasonably small, is the desired patch.

By the above approach, the functional ECO problem for single-
output circuits can be robustly resolved. Below we extend the
approach to multi-output circuits.

D. Extension to Multi-Output Circuits

We extend and rewrite Formula (2) for multi-output circuits as
follows:

 11111 ,0 IfVIGIcOld vp

 22222 ,1 IfVIGIcOld vp

where ―
p ‖ stands for the condition that at least one of a selected set

of to-be-fixed primary outputs of the old circuit is different from its
counterpart of the golden circuit (other primary outputs not
constrained by the formula will remain unchanged). Formula (3) is
unsatisfaible if and only if c is a rectification signal. The
corresponding interpolant is a function on V and is a valid patch
function to simultaneously fix all the selected primary outputs.

Fig. 6 shows the algorithm of the interpolation-based technique.
choose_node_POs will select a node and some primary outputs. Also,
choose_V will select a set of signals V within a specified circuit level
with respect to the chosen node. After the above process, we build the
Formula (3) circuit by circuit_setup, and check_rectifiable checks
whether the chosen node can be a rectification signal or not. If yes, the
generated optimized interpolant from get_interpolant_and_optimize
can fix the selected primary outputs po_to_be_fixed by the function
replace and keep the originally correct primary outputs still correct. If
not, we continue to select other candidate patch inputs V or other
rectification signals. Note that one of the conditions to leave the while-
loop in the algorithm is that all POs are functionally equivalent to the
golden circuit.

To avoid creating large patches, we set a size upper bound for
accepting a patch. The function size_check will determine to
acceptance or rejection the simplified interpolant according to its size.

If all the patches of a to-be-fixed primary output are rejected, we will
skip fixing it and continue to fix other primary outputs. There may be
some unfixed primary outputs at the end. In this case, we directly use
the corresponding correct outputs of the golden circuit as patches. This
strategy may prevent runtime overhead due to creating large useless
patches, and guarantee that patch sizes cannot be too large.

E. Example

In this subsection, we present an example in order to illustrate our
idea and algorithm more clearly.

Fig. 7 (a) and (b) show the old and the golden circuits, respectively.
To solve the simple example, we need to modify the old circuit such
that the outputs x and y have the same functionality. First, we search
for a rectification signal. Assume that we take signal d first. We then
choose signals b and c as the signal set V. The corresponding network
of Formula (2) is constructed as in Fig. 7(c) to test whether signal d is
a rectification signal or not. We obtain that {a1=0, b1=b2=1, c1=c2=1,
a2=0} satisfies Formula (2) so that signal d is not a rectification signal.
We then choose another signal x. Construct the network of Formula (2)
in the same way and choose signals a and signal d as the signal set V.
We can prove it unsatisfiable by SAT engine. Therefore, signal x is a
rectification signal and we can obtain the interpolant by the UNSAT

proof. Fig. 7(d) is the interpolant and is a feasible patch. After
replacing gate G1 in the old circuit by this patch, x and y are now
functionally equivalent and the ECO process is done.

V. EXPERIMENTAL RESULTS

 We integrate the above approaches: FRAIG, MSPM, incremental
MSPM and the interpolation techniques together as our ECO engine.
We create several testcases from two industry designs, and ISCAS89
and ITC99 benchmark circuits by randomly changing several cubes
and wires in the gate-level netlists or some lines in the RTL codes and
then performing logic optimization. The modified circuits are treated
as golden circuits, and the original ones are the circuits to be rectified.
The experiments are conducted on an AMD Opteron(TM) 280,
2.40GHz machine. We apply MiniSAT [16] for FRAIG operations
and unsatisfiability proof. Table II shows how we measure the cost of
the patch circuit.

A. Comparison of Hybrid and Interpolation-Only Methods

 Table III lists the results of 10 of the largest benchmark circuits.
We compare the results of the hybrid (i.e. MSPM + interpolation) and
the interpolation-only techniques. Column 2 records the types of
modifications on the old circuits. The numbers of nodes in the old and
golden circuits, denoted as OLD and GOLD, are shown in Columns 3
and 4, respectively. From Column 5 to 10 are the results of the hybrid
method, which include the patch sizes, total runtime, runtime for the
individual steps (FRAG, MSPM and interpolation), and the memory
usage. The results for the interpolation-only approach are presented in
Columns 11 to 15.

 Among all of these 10 testcases, the hybrid method can
consistently produce equal-sized or smaller patches than the
interpolation-only ECO. Please note that the runtime for the
interpolation-proof in 5 of the 10 testcases is zero. It means that these
cases are totally solved by the MSPM method. In these cases, the
patch sizes are ensured to be very small (patch sizes = 1 or 2) with less
memory usage. This is due to the fact that we limit the number of
remodeling candidates in the MSPM approach. For the case s38417,
incremental MSPM partially fixes some POs and then the
interpolation technique takes care of the rest. We can see that the patch
size by hybrid method is substantially smaller than the interpolation-
only approach (122 vs. 180) under comparable runtime. For the other
four cases, the patches are completely generated by the interpolation
technique and the sizes are also reasonably small.

In general, the performance of the ECO engine is greatly impacted
by several factors, including the utilization of simulation, optimization
of patches, number of POs to be fixed in each iteration, and the
limitation of the patch size accepted by our engine, etc. We perform a
great amount of regression to tune the best trade-off parameters for
them. We will discuss one of these experiments in the following
subsections.

B. Effects of Limitaions on Individual Patch Size

In this sub-section, we will utilize several different upper bounds
for individual patch size and discuss how this parameter affects the
patch size. For each upper bound, 15 cases are tested for the results. In
Fig. 8, the Y-axis represents the final patch size and the X-axis
represents the case number. We limit the individual patch size to be
1%, 5% and 10% of the FRAIGed circuits. From the results, the 10%
limitation can generate smaller patches for most cases, and the 1%
limitation seems too tight so that almost all fixes are choosing POs as
the patches and thus become very large. Therefore, we choose 10%
limitation for our ECO engine.

TABLE II. COSTS OF PATCHES FOR DIFFERENT GATE TYPES

Gate Type Size Gate Type Size Gate Type Size

AND2 1 OR2 1 NOT 1

NAND2 1 NOR2 1 XOR2 3

Algorithm: Multiple POs ECO

1: Procedure MultiplePO_ECO ()
2: Let p_set denote the set of all generated patches

3: unfix_set denote the set of all un-fixed POs

4: repeat
5: (n, po_to_be_fixed)choose_node_POs(unfix_set)
6: for_each level in level_vector do
7: V = choose_V(level)
8: circuit_setup(n, po_to_be_fixed, V)
9: if check_rectifiable(n) is True do
10: patch get_interpolant_and_optimize()
11: if size_check(patch) is passed do

12: p_set p_set patch
13: replace(patch)

14: goto EquivalenceCheck

15: end if

16: end if

17: end for_each
18: EquivalenceCheck:
19: if unfix_set is empty or all POs are selected do
20: return p_set

21: end if

22: end repeat

23: return p_set

Figure 6. Pseudo codes for multi-output ECO problems

Algorithm: Multiple POs ECO

24: Procedure MultiplePO_ECO ()
25: Let p_set denote the set of all generated patches

26: unfix_set denote the set of all un-fixed POs
27: level_vector [1,3,200]

28: repeat
29: n choose_a_node()
30: po_to_be_fixed choose_POs(n, unfix_set)
31: for_each level in level_vector do
32: V = choose_V(level)
33: circuit_setup(n, po_to_be_fixed, V)

34: isRect check_rectifiable(n)
35: if isRect is True do
36: patch get_interpolant()
37: Collapse(patch)
38: if size_check(patch) is passed do

39: p_set p_set patch

40: replace(patch)
41: goto EquivalenceCheck

42: end if

43: end if

44: end for_each
45: EquivalenceCheck:
46: if unfix_set is empty or all POs are selected do
47: return p_set

48: end if

49: end repeat

50: return p_set

Figure 6. Pseudo codes for multi-output ECO problems

a b c

d

x
old

G1

golden

a b c

e

y

 a1 a2

d=0 d=1
e1 e2

x1 y1 x2 y2

b1b2

b1

c1

c1 b2

c2

c2

a d

x
patch

(a) Old (b) Golden (c) Network of formula (2) (d) Patch

Figure 7. ECO Example of interpolation-based method.

VI. CONCLUSION

Most existing algorithms for engineering change orders can only
achieve high solution quality for certain types of cases. In this paper,
we propose a robust approach that can work for both structurally
similar and different circuits. Our MSPM algorithm uses error models
with SAT proof core minimization and is able to find a solution
quickly if a simple fix exists. Circuits that only differ in simple
rewiring or gate-type changes can be fixed with MSPM very
efficiently. On the other hand, if the difference is too complex for
MSPM, we then turn to incremental MSPM and the interpolation
technique. This hybrid solution chooses candidate nodes and re-
synthesizes their signals by interpolation generation. With FRAIG and
a more sophisticated interpolation generation technique, our approach
is quite robust and efficient.

ACKNOWLEDGEMENTS

This work is supported in part by National Science Council under
grants NSC 99-2221-E-002 -211 -MY3 and 99-2221-E-002-214-MY3.

REFERENCES

[1] C.-C. Lin, K.-C. Chen, S.-C. Chang, M. Marek-Sadowska, and
K.-T. Cheng, "Logic synthesis for engineering change," in Proc.
Design Automation Conference, 1995, pp. 647-652.

[2] D. Hoffmann and T. Kropf, "Efficient design error correction of

digital circuits," in Proc. International Conference on Computer
Design, 2000, pp. 465-472.

[3] A. Veneris and I. Hajj, "A fast algorithm for locating and
correcting simple design errors in VLSI digital circuits," in Proc.
Great Lake Symposium on VLSI Design, 1997, pp. 45-50.

[4] S.-Y. Huang, K.-C. Chen and K.-T. Cheng, "Error correction
based on verification techniques," in Proc. Design Automation
Conference, 1996, pp. 258-261.

[5] A. Veneris and I. Hajj, "Design error diagnosis and correction via

test vector simulation," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, pp. 1803-
1816, 1999.

[6] K.-H. Chang, I.L. Markov and V. Bertacco, "Fixing design errors
with counterexamples and resynthesis," in Proc. Asia and South
Pacific Design Automation Conference, 2007, pp. 944-949.

[7] S. Krishnaswamy, H. Ren, N. Modi, and R. Puri, "DeltaSyn: an
efficient logic difference optimizer for ECO synthesis." in Proc.

International Conference on Computer-Aided Design, 2009,
pp.789-796.

[8] A. Abdollahi and M. Pedram, ―Symmetry Detection and Boolean
Matching Utilizing a Signature-Based Canonical Form of

Boolean Functions,‖ IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems vol. 27, no. 6, June,
2009

[9] A. Ling, J. Zhu, S. Brown and S. Safarpour, "Towards automated
ECOs in FPGAs," in Proc. of International Symposium on Field

Programmable Gate Arrays, 2009.
[10] C.-C. Lee, J.-H. R. Jiang, C.-Y. R. Huang, and A. Mishchenko,

―Scalable exploration of functional dependency by interpolation
and incremental SAT solving,‖ in Proc. International Conference
on Computer-Aided Design, 2007, pp. 227–233.

[11] V. Manohararajah, D. P. Singh, and S. D. Brown, ―Post-
placement BDD-based decomposition for FPGAs,‖ in Proc.
International Conference on Field Programmable Logic and

Applications, 2005, pp. 31–38.
[12] A. Mishchenko, S. Chatterjee, R. Jiang and R. Brayton, "FRAIGs:

A unifying representation for logic synthesis and verification,"
EECS Dept., UC Berkeley, Tech. Rep, 2005.

[13] C.-J. Hsu, S.-L. Huang, C.-A. Wu and C.-Y. R. Huang,
"Interpolant Generation without Constructing Resolution Graph,"
in Proc. International Conference on Computer-Aided Design,
2009.

[14] K. L. McMillan, ―Interpolation and SAT-based modelchecking,‖
in Proc. International Conference on Computer Aided
Verification, pp. 1–13, 2008.

[15] Berkeley Logic Synthesis and Verification Group. ABC: A
System for Sequential Synthesis and Verification.
http://www.eecs.berkeley.edu/~alanmi/abc/

[16] N. Sorensson and N. Een, "Minisat v1. 13-a sat solver with
conflict-clause minimization," in SAT Competition, 2005.

Figure 8. Final patch sizes with limitations on the different

individual patch size.

TABLE III. EXPERIMENTAL RESULTS

Circuit

Name

Change

Type

Nodes MSPM+Interpolation Only Interpolation

OLD GOLD
Patch

size

Total

Time (s)

FRAIG

(s)

MSPM

(s)
Itp

Proof(s)

Mem

(M)

Patch

size

Total

Time (s)

FRAIG

(s)

Itp

Proof(s)

Mem

(M)

Industry01 RTL 794 668 2 0.8 0.07 0.7 0 5.285 6 0.22 0.06 0.01 42.55

Industry02 RTL 1668 3501 2 1.84 0.29 1.5 0 7.344 8 0.57 0.3 0.02 43.86

s9234.1 Cube 4476 3424 1 1.97 1.2 0.53 0 10.72 1 1.57 1.19 0.01 25.73

s13207 Cube 6936 5857 26 77.24 4.05 27.8 7.99 95.44 26 49.99 3.81 8.05 81.58

s13207 Rewire 6936 5822 7 42.36 3.84 30.09 1.94 86.81 7 13.36 3.82 1.93 73.12

s15850 Cube 8697 7118 1 8 6.14 1.86 0 18.8 3 8.55 6.1 0.31 40.49

s15850 Rewire 8697 7121 5 41.55 6.13 33.13 0.32 56.29 5 8.32 6.11 0.32 48.25

s38417 Cube 23915 20724 122 214.08 87.08 76.85 47.2 168.8 180 214.8 86.98 81.91 157.1

s35932 Cube 30938 23067 41 397.9 173.9 81.66 86.89 202.6 41 358.3 174 86.77 186.6

s35932 Rewire 30938 23045 1 188 173.2 15.1 0 60.6 1 193.4 173 11.27 96.84

