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ABSTRACT
Computing with biochemical reactions emerges in synthetic
biology. With high-level programming languages, a target
computation can be intuitively and effectively specified. As
control flows form the skeleton of most programs, how to
translate them into biochemical reactions is crucial but re-
mains ad hoc. This paper shows a systematic approach to
transforming control flows into robust molecular reactions.
Case studies demonstrate its usefulness.

1. INTRODUCTION
The advancement of systems biology [2] reveals that bio-

chemical reactions in living organisms intertwine and conduct
complex “computation” resulting in intelligent reactive be-
haviors. The curious exercise to build artificial systems with
biochemical components gives birth to the field of synthetic
biology [1, 10]. A well-known example, among myriad others,
is the synthetic oscillator [4]. Engineering computation us-
ing biochemical reactions not only satisfies human curiosity,
but also sharpens our understanding about nature’s design
principles of biological circuits.

With proper quantitative interpretation on molecular con-
centrations, a set of biochemical reactions can be thought
of as a computing system. Given initial molecular concen-
trations as input, the reactions (can be described by differ-
ential equations) evolve the concentrations in the configu-
ration space toward some target concentrations as output.
Under such quantitative interpretation, biochemical systems
are similar to hardware and software systems. Therefore the
design methodology of hardware and software systems can be
brought to biochemical systems. Implementation substrates,
such as the DNA strand displacement technique [17], have
been demonstrated for molecular computing.

To build complex systems, hardware/software design with
high-level programming languages has become a standard ap-
proach due to their supported intuitive and effective features.
To synthesize a program down to an actual physical realiza-
tion, several transformation steps often have to be conducted
at various abstraction levels. Compiling a program to molec-
ular realization of biochemical systems shares strong similar-
ity to compiling a program to silicon realization of integrated
circuits. As control flows form the skeleton of most if not all
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programs, one key step in the compilation is to transform the
control flows.

Synthesizing molecular reactions has been pursued, e.g.,
in [5, 6] for some arithmetic operations, [9] for digital signal
processing, [15, 16] for writing and compiling code into bio-
chemistry, etc. Nevertheless the involved control flows are
relatively simple, e.g., without composition of looping and
branching statements. Also the compilation of program con-
trol flows may seem somewhat ad hoc. A general principle
and methodology remain lacking to handle complex control
flows.

This paper proposes a systematic framework converting
control flow statements into biochemical reactions. Several
techniques, including the dimerized absence indicator, reac-
tion buffer, restoration reaction, error-tolerant precision con-
trol, etc., are devised to enhance reaction robustness and
practicality. To show concrete applications, we perform case
studies on arithmetic division and on greatest common divi-
sor computation, which were not shown before. Simulation
results confirmed the usefulness and robustness of the pro-
posed methodology. In particular, our synthesized reactions
work robustly at both the mesoscopic scale (involving tens to
thousands of individual molecules) under discrete stochastic
simulation [7] and the macroscopic scale under continuous
deterministic simulation, in contrast to the mesoscopic re-
striction of [16].

The rest of this paper is organized as follows. Preliminar-
ies are given in Section 2. Methods of regulating reactions
are discussed Section 3. Section 4 presents the conversion of
control-flow statements to reactions. Section 5 performs eval-
uation based on case studies. Section 6 compares our results
with prior work. Finally, Section 7 concludes this paper.

2. PRELIMINARIES

2.1 Chemical Kinetics
To simplify discussion, this paper adopts the classical chem-

ical kinetic (CCK) model [12] of biochemical reactions (al-
though our formulation works under stochastic simulation as
well). We assume that the molecules involved in reactions
are of large quantities and thus satisfying the following basic
assumptions of the CCK model. First, molecules are equally
distributed in space and their spatial non-uniformity effects
are negligible. Second, the reactions happen continuously
and deterministically. Under these assumptions, the dynamic
behavior of a biochemical systems can be characterized with
ordinary differential equations (ODEs). From an application
viewpoint, it can be exploited as a resource for computing in
term of molecular concentrations, which correspond to num-
bers and logic values.

Consider the following biochemical reaction

α1X1 + · · ·+ αmXm
k−→ β1Y1 + · · ·+ βnYn,

where coefficients αi’s and βj ’s specify the stoichiometric
amounts, molecules Xi’s and Yj ’s are the reactants and prod-



ucts, respectively, and k is the rate constant. Let [A] de-
note the concentration of molecule A. The dynamics of these
molecules can be described by
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where the last term is the reaction rate, proportional to the
rate constant and the reactant concentrations.

For a set of reactions, the slowest reaction that determines
the speed of the whole process is called the rate-limiting step.
In a reaction, the reactant totally consumed when the reac-
tion is complete is called the limiting reactant.

2.2 Reaction Rate and Execution Precedence
The rate, or speed, of a biochemical reaction is determined

by its reactant concentrations and rate constant. Given two
coexisting reactions, the more the difference is between their
reaction rates, the less their executions are overlapping. With
a substantial rate difference between two reactions, one can
approximately consider the slow reaction executes only after
the fast reaction has finished. However since the molecules
coexist and the reactions are concurrent, they are not per-
fectly well interleaved and there always exists some extent of
“leakage” that the slow reaction executes before fast reaction
finishes.

When a high-level program is transformed into a set of re-
actions, different reaction rates can be exploited to prioritize
the computations of the program. To reduce the number of
required reaction rates, concepts such as module locking [6]
and absence indicators [9] were proposed. Essentially only
two, fast and slow, reaction rates are needed. This paper
adopts a similar approach with a robustness improvement to
be discussed in Section 3.2. In the sequel, we shall denote
fast and slow reaction rates with rf and rs, respectively.

2.3 Boolean Abstraction
For molecule A, the Boolean interpretation of its concen-

tration with respect to some non-negative constant θ is a
function defined as

fθ(A) =

{
1, if [A] ≥ θ, and
0, otherwise,

where θ is a reaction-dependent threshold. With this ab-
straction, we interpret molecule A is of high and low con-
centrations if fθ(A) = 1 and fθ(A) = 0, respectively. When
molecule A participates in a reaction, fθ(A) effectively indi-
cates whether A is active or inactive in the reaction. In the
sequel, for simplicity we assume a uniform threshold θ for all
reactions, and abbreviate fθ(A) as Aθ. Our formalism how-
ever can be easily extended to a general setting with different
θ’s.

The propositional conditions on multiple molecule concen-
trations can be expressed by a Boolean formula using logic
connectives: conjunction ∧, disjunction ∨, and negation ¬.
For example, formula (Aθ ∧ Bθ) ∨ ¬Cθ expresses the condi-
tion that A and B are of high concentrations, or C is of low
concentration.

3. REACTION REGULATION
In information processing, computation must be performed

in a proper order such that data dependencies are maintained
to ensure operational correctness. How to arrange reactions
in a desired temporal order is an important issue in molecu-
lar computation. This section introduces some key elements
for reaction regulation.

3.1 Reaction Pre/Postconditions
In a programming language, the precondition and post-

condition of a line of code are the state/variable conditions
before and after executing this line of code. Similarly, when
translated to biochemical reactions, the precondition and post-
condition of a reaction are the respective molecular concen-
tration conditions before and after the exhaustive firing of
this reaction.

In compiling a program into biochemical reactions, often
we need to regulate a reaction based on the presence or ab-
sence of some molecule. Without loss of generality, consider
the simple reaction X → Y , which is to be activated by the
presence of molecule Z. Then this reaction can be expressed,
among other possibilities, as (X + Z → Y + Z), where Z
serves as a catalyst or an enzyme. For this reaction to be
active, Zθ is a precondition, and ¬Xθ and Yθ are postcondi-
tions. For brevity, in the sequel the above reaction is denoted
as

X
Zθ−−→ Y

where the catalyst precondition Zθ is shown above the arrow
and should be distinguished from the rate constants rf and
rs.

A precondition can involve the presence and/or absence
of multiple molecules and thus can be a complex Boolean
expression. For example,

X
Aθ∧Bθ−−−−−→ Y

corresponds to

X +A+B → Y +A+B

and

X
Aθ∨Bθ−−−−−→ Y

corresponds to

X +A → Y +A
X +B → Y +B

It should be noted however that, by the CCK model, reaction
activation can only be possible by the presence, instead of
absence, of some molecule. Therefore to activate a reaction
by the absence of some molecule, we need to introduce the
so-called absence indicator [9].

3.2 Absence Indicator
Let A′ be the complementary molecule of A such that the

presences of molecules A and A′ are mutually exclusive. In [9,
16], A′ is called the absence indicator of A with the following
basic realization:

∅ rs−→ A′

A+A′ rf−→ A

(2A′ rf−→ A′)

That is, the environment constantly and slowly generates A′,
and A fast degrades A′. So A′ exists (to some small extent
due to the third reaction) only when A is absent.

The validity of these reactions for absence indication re-
lies on the mesoscale assumption. At the mesoscopic level,
the absence of some type of molecules can be clearly de-
fined as absolute zero of a molecular count. So the number
of molecule A′ can be effectively suppressed to zero when
molecule A is present. When it comes to the macroscopic
level, however, this notion of absence no longer holds. By
the mass action kinetics, at equilibrium

rs = rf · [A] · [A′]



Figure 1: RGB reactions regulated by prior absence in-

dicator (by ODE simulation with SBW simulator)

As the equilibrium concentration [A′] is proportional to rs/rf
([A] can be treated as a constant at equilibrium), it cannot
be exactly zero. (Note that the third reaction is neglected for
simplicity without affecting the conclusion.) This “leakage”
of A′ strongly degrades the regulatory robustness of absence
indicator in bulk reactions.

To overcome this shortcoming, we propose a robust dimer-
ized absence indicator A∗ of A with the following reactions:

∅ rs−→ A′

A+A′ rf−→ A

2A′ rs−−⇀↽−−
rf

A∗

At equilibrium, the concentration of A∗ satisfies

rs · [A′]2 = rf · [A∗]

By substituting [A′] by its equilibrium concentration, [A∗]
is proportional to (rs/rf )

3. Compared to the prior absence
indicator A′, the new one A∗ is further suppressed. This sup-
pression makes the leakage of A∗ negligible under the pres-
ence of A. Thereby A∗ is much more robust than A′ and is
suitable even under the mass action kinetics.

Moreover, the dimerized absence indicator is advantageous
in two aspects. First, its regulated reaction is flexible in ei-
ther of fast and slow rates (preferably fast as implicitly as-
sumed in the sequel). Second, its regulated reaction has rate
almost independent of its reactant concentrations due to the
new rate-limiting step. Therefore, undesirable interferences
among reactions are reduced.

To assess the robustness of dimerized absence indicator,
consider the following reaction cycle

R
¬Bθ−−−→ G

G
¬Rθ−−−→ B

B
¬Gθ−−−→ R

where ¬Aθ stand for A∗
θ as a convention in the sequel unless

otherwise stated. Let Rθ = 1, Gθ = 0, Bθ = 0 initially. The
reaction cycle is expected to behave as an oscillator. The
simulation results by the SBW simulator [14] for cases using
the prior (¬Aθ = A′

θ) and dimerized (¬Aθ = A∗
θ) absence

indicators are shown in Figures 1 and 2, respectively. The
ratios of rate constant rf to rs used in the simulations of
Figures 1 and 2 are 104 : 1 and 102 : 1, respectively. (The x
and y axes of the plots in this paper are of relative units by the
default setting of the SBW simulator.) As seen from Figure 1,

Figure 2: RGB reactions regulated by dimerized absence

indicator (by ODE simulation with SBW simulator)

Figure 3: RGB reactions regulated by dimerized absence

indicator (by stochastic simulation with iBioSim simula-

tor)

the reactions regulated by the prior absence indicator fails to
oscillate (G already transfers to B before the absence of R
due to the leakage of non-negligible R′

θ). In contrast, the
dimerized absence indicator robustly sustains the oscillation
due to its effective leakage suppression (in the presence of R
the transfer rate from G to B is negligible compared to that
from R to G).

On the other hand, the proposed dimerized absence indi-
cator is applicable at the mesoscopic level, similar to prior
absence indicator. Figure 3 shows the simulation result of
iBioSim [8] using Gillespie’s method [7].

3.3 Reaction Buffer
Even with the dimerized absence indicator, it is not pos-

sible to achieve instant reaction cycle

A → B

B
¬Aθ−−−→ A

since the product of the second reaction violates its precon-
dition. To solve this problem, a buffer is needed to impose
sufficient reaction delay. The reaction cycle

A → B

B
¬Aθ−−−→ C

C
¬Bθ−−−→ A

with length three becomes achievable. Such molecule C is
called a buffer molecule. In fact, buffering is useful not only
in reaction cycles but also in other complex reactions to avoid
violation of reaction preconditions. As will be seen, this tech-
nique is useful in the case studies of Section 5.



Figure 4: A Petri net example

3.4 Reaction Decomposition
In the previous discussion, the number of reactants in a re-

action is unconstrained. Although it is not a serious problem
for macroscale reactions, at the mesoscopic level a reaction
with more than two reactants can be rare. For practicality
concern, it may be necessary to decompose a reaction with
many reactants to a set of reactions with fewer reactants. For
example, as was shown in [17, 16], a trimolecular reaction

A+B + C → D

can be decomposed into

A+B
rf−−⇀↽−−
rf

E

E + C → D

Generally, a reaction with n, say 2k + 1, reactants

A1 + · · ·+A2k+1 → B

can be converted into ⌊n/2⌋ bimolecular reactions

A1 +A2 −−⇀↽−− B1,2

...

A2k−1 +A2k −−⇀↽−− B2k−1,2k

and a reaction

B1,2 + · · ·+B2k−1,2k +A2k+1 → B

with ⌊n/2⌋+ (n mod 2) reactants. Applying decomposition
iteratively transforms a reaction with an arbitrary number of
reactants into a set of reactions each with no more than two
reactants.

3.5 Petri Net Visualization
A system of biochemical reactions can be intuitively visu-

alized with a Petri net [11], which is a bipartite graph con-
sisting of two types of nodes, i.e., circles (or places) and boxes
(or transitions), and directed and weighted edges connecting
between circles and boxes. In particular, a circle represents
a molecule and a box represents a reaction. The fanin and
fanout circles of a box correspond to the reactants and prod-
ucts, respectively, of the corresponding reaction. The amount
of a molecule is signified by the amount of tokens in the cor-
responding circle. The reaction of a box B can fire if the
molecule of every fanin circle C of B has a sufficient amount
specified by the weight on the edge connecting from C to B.
In our context, we augment the Petri net with inhibition arcs
[3]. An inhibition arc, denoted as a directed edge ended with
a bubble, connects from a circle to a box and signifies that
the corresponding molecule inhibits the corresponding reac-
tion. For example, the Petri net of Figure 4 represents the
reaction

A
¬Cθ−−−→ B

Note that for brevity we shall omit representing tokens in
circles and weights on edges in a Petri net.

4. CONTROL FLOW COMPILATION
By treating the reactant concentrations of a biochemical

reaction as inputs and the product concentrations as out-
puts, the reaction itself can be seen as an atomic step in
computation. By orchestrating a set of reactions in a well-
organized flow, complex computation can be achieved. This
section shows how to translate the program control flow into
biochemical reactions (independent of the choices on absence
indicator realizations).

4.1 Linear Flow
A system is often specified by a high-level program in

a well-ordered sequential manner whereas biochemical reac-
tions are intrinsically concurrent. One of the most basic el-
ements in control flow compilation is to transform a simple
control flow (consisting of only branchless and loop-free state-
ments) into biochemical reactions executed step by step in a
linear order. For example, consider the reactions:

A → B
C → D
E → F

Without regulation, these reactions are concurrent. When
their executions are intended to be in a sequential manner,
preconditions can be imposed as follows.

Main Reactions Preconditions
01 A → B
02 C → D ¬Aθ

03 E → F ¬Cθ

A Petri net representation of these reactions is shown in
Figure 5 (a). Essentially the exhaustion condition of some
reactant of a reaction can be used as a precondition for its
subsequent reaction. In a general setting, where a reaction
involves multiple reactants and products, the catalyst pre-
condition can be built as a complex Boolean expression to
ensure correct activation. Again, due to the (rs/rf )

3 sup-
pression power of the dimerized absence indicator, a reaction
can be fired only when its preceding reaction is almost ex-
hausted. It robustly regulates the linear execution order of
these reactions.

4.2 Branching Statement
We examine mainly the if-else construct whereas a sim-

ilar methodology is applicable to other branching constructs,
such as switch, as well. Without loss of generality, consider
the following example of ordered conditional reactions.

Main Reactions Preconditions
· · ·

01 Q → R
02 if P1(A,B) ¬Qθ

03 S1 → T1 Post(P1)
· · ·

04 Si → Ti

05 H → I ¬Siθ

06 else if P2(A,B) ¬Qθ

07 U1 → V1 Post(P2)
· · ·

08 Uj → Vj

09 H → I ¬Ujθ

10 else ¬Qθ

11 W1 → X1 Post(¬P1 ∧ ¬P2)
· · ·

12 Wk → Xk

13 H → I ¬Wkθ

14 Y → Z ¬Hθ

· · ·

A Petri net representation of these reactions is shown in
Figure 5 (b), where the reactions of lines 1 and 14 are omit-
ted. In this example, P1 and P2 are predicates, which ex-
presses the entering conditions of the if block and else if



Figure 5: Petri net visualization of (a) linear flow, (b) branching statement, and (c) looping statement

block, respectively. Their truths depend on their arguments’
molecular concentrations. In the sequel, we shall assume that
the predicates express disjoint conditions, that is, P1 ∧ P2

equals false in this example. This assumption can always be
maintained because, even if the original predicates are non-
disjoint, they can be made disjoint by prioritizing them. In
this example, P2 can be modified as P2 ∧ ¬P1.

For a predicate P , we associate it with two forms of defini-
tions: a descriptive definition and an operational definition.
The former defines P with a logical statement, and the latter
defines P with a set of biochemical reactions and a postcon-
dition of these reactions. For example, P (A,B) = A > B is a
descriptive definition, and P (A,B) = Aθ∧¬Bθ, the postcon-
dition with respect to reaction A+B → C, is an operational
definition. Note that, given a descriptive definition for a pred-
icate, its equivalent operational definition is not unique. In
the sequel, we call the reactions (respectively postcondition)
in the operational definition of P simply as the reactions (re-
spectively postcondition) of P . In the sequel, we denote the
postcondition of P as Post(P ).

The postcondition of a predicate and other stronger con-
ditions (that imply this postcondition) can be exploited to
selectively enable its subsequent reactions. When the pred-
icates of an if-else statement are mutually contradicting,
disjoint postconditions can be derived to uniquely activate
the starting reaction(s) of the desired code-block. In the
example, the if code-block can be enabled by Post(P1) =
Aθ ∧¬Bθ, else if block by Post(P2) = ¬Aθ ∧Bθ, and else

block by Post(¬P1 ∧ ¬P2) = ¬Aθ ∧ ¬Bθ. Note that the
three predicates P1, P2, (¬P1 ∧ ¬P2), share the same reac-
tion. Moreover, their preconditions are the same, i.e., ¬Qθ.

On the other hand, to ensure the first reaction right after
an if-else statement, i.e., Y → Z in the example, is prop-
erly activated when leaving the statement, we insert a control
reaction H → I at the end of every code-block of the if-else
statement, and assume H is of high concentration initially.
So this control reaction is activated by ¬Siθ ∨¬Ujθ ∨¬Wkθ.
Thereby ¬Hθ can be used as the precondition for Y → Z.
As shown in the example, the corresponding precondition of
a main reaction step is shown on the right-hand side.

4.3 Looping Statement
We study the while construct whereas a similar method-

ology is applicable to other looping constructs, such as for,
as well. Without loss of generality, consider the following
ordered looping reactions.

Main Reactions Preconditions
01 Q → R
02 while P (A,B) ¬Qθ · ¬Fθ

03 ... → F Post(P )
· · ·

04 F → ...
05 X → Y Post(¬P )

A Petri net representation of these reactions is shown in
Figure 5 (c), where the reaction of line 1 is omitted. The
while statement is similar to the if-else statement in that
the former can be considered as an if-else construct with re-
peated execution on the if code-block until the if-predicate
becomes false. So leaving the while loop is the same as
switching to the else block. We simply use the negated
postcondition of the predicate of while as the precondition
of the first reaction after the while loop, i.e., X → Y in this
example.

On the other hand, entering the while statement is slightly
more complicated than entering the if-else statement. The
entering condition is determined by two reactions: the re-
action right before the while code-block, i.e., Q → R in our
example, and the last reaction in the while block. To achieve
proper activation of the while loop, we insert two reactions
· · · → F and F → · · · in the beginning and at the end, re-
spectively, in the while loop, where F is a new molecule not
used elsewhere with a low initial concentration. We then use
¬Qθ ∧¬Fθ as the precondition for the reactions of predicate
P . Reaction · · · → F ensures the newly introduced molecule
F is produced to halt the predicate reactions during the en-
tire execution of the while loop, whereas F → · · · ensures F
is consumed at the end of the while loop to reactivate the
predicate reactions. Moreover, another loop invariant needs
to be maintained is ¬Qθ to prevent the predicate reactions
from being unintentionally halted.

Another issue about the while loop is the restoration of
molecules. Sometimes the concentrations of some molecules
must be restored. Suppose, for example, the reactions of
predicate P (A,B) change the concentrations of A, B, and
other relevant molecules. Before next iteration the predi-
cate needs to be checked again, the concentrations of these
molecules must be restored to their correct amounts.

Let C be the molecule to be restored. We introduce a
restoration mechanism with the following reaction cycle.

C + · · · → D + · · ·
D → E
E → C

LetD andE be two new molecules with initial zero amounts.
So the amount of C used in reactions is accumulated in D.
Restoration of the used amount of C can be done by en-
abling the second and then third reactions, and thus passing



the amount of D to E and back to C. Noted that not every
reaction involving C should have D as a product. For the
cases we intend to reduce the amount of C, we can neglect
D as a product.

4.4 Compilation Strategy
The above constructs can be used as templates in sketch-

ing the control flow of a program. The following strategies
show the general steps for program compilation.

1. Identify linear, looping, and branching statements, and
based on their corresponding templates create control
flow reactions.

2. Resolve violation of precondition and postcondition of
reactions, and introduce reaction buffers if necessary.

3. Decompose reactions for practical realization.

4. Optimize and simplify reactions.

Although our program compilation currently remains a man-
ual process, we believe that the proposed methodology is sys-
tematic and takes a step forward to automating the design
of molecular computing.

5. CASE STUDY
We performed two case studies on division and greatest

common divisor computation, whose realizations with bio-
chemical reactions had not been shown before. The reac-
tions were written in the Systems Biology Markup Language
(SBML) [13] and simulated with the SBW simulator [14].
The dimerized absence indicator was used by default with
the ratio of rate constant rf to rs setting as 1000 : 1. More-
over, while our synthesized reactions work under both ODE
simulation and Gillespie’s simulation, only ODE simulation
results are shown. For brevity, the reaction codes presented
below are without reaction decomposition discussed in Sec-
tion 3.4 even though decomposition is also performed for sim-
ulation.

5.1 Division
A pseudo-code of division over integers is given below,

where A and B are the input dividend and divisor, respec-
tively, and Q and R are the output quotient and remainder,
respectively.

Division(A, B)
begin
01 while A ≥ B
02 A := A − B
03 Q := Q + 1
04 R := A
end

The pseudo-code can be translated into the following reaction-
code, where molecule C is initially of a unit amount.

Main Reactions Preconditions
01 while [A] ≥ [B]
02 (A + B → D) ¬Gθ

03 C → Q + E Aθ ∧ ¬Bθ

04 D → F ¬Cθ

05 E → G ¬Dθ

06 F → B ¬Eθ

07 G → C ¬Fθ

08 D → R ¬Aθ

A Petri net representation of these reactions is shown in
Figure 6. The predicate reaction, in line 2 (reaction-code),
is parenthesized to distinguish it from other reactions. The
same reaction is also usable for the reaction of code A :=
A−B (in line 2, pseudo-code). Lines 2, 4, 6 in the reaction-
code form a reaction cycle, and line 6 is the restoration step

Figure 6: Petri net visualization of division computation

Figure 7: Computation of Division(20, 3) without reac-

tion decomposition

of B, which is required since the computation A := A − B
should not change the amount of B. Lines 3, 5, 7 form a
reaction cycle to restore C. This cycle is triggered to add 1
to quotient Q, and the amount of C should remain the same
after an iteration so restoration is required.

Figures 7 and 8 show the SBW simulation results of com-
puting 20/3 by the above reactions without and with reaction
decomposition, respectively. The waveforms confirm their
correctness despite the irregular curve in Figure 8 due to the
reversible reactions discussed in Section 3.4.

5.2 Greatest Common Divisor Computation
A pseudo-code for the greatest common divisor (GCD)

computation is given below, where A and B are the input
integers, and GCD is the output.

GreatestCommonDivisor(A, B)
begin
01 while A ̸= B
02 if A > B
03 A := A − B
04 else if B > A
05 swap(A,B)
06 GCD := A
end

With the proposed constructs, the pseudo-code translates
to the reaction-code below.



Figure 8: Computation of Division(20, 3) with reaction

decomposition

Figure 9: Petri net visualization of GCD computation

Main Reactions Preconditions
01 while [A] ̸= [B]
02 (A + B → C) ¬Dθ ∧ ¬Fθ

03 if [A] > [B]
04 C → D Aθ ∧ ¬Bθ

05 D → B ¬Cθ

06 else if [B] > [A]
07 C → E ¬Aθ ∧ Bθ

08 B → G ¬Cθ ∧ ¬Aθ

09 E → F ¬Bθ

10 G → A ¬Eθ

11 F → A + B ¬Gθ

12 C → GCD ¬Aθ ∧ ¬Bθ

A Petri net representation of these reactions is shown in
Figure 9. The predicate reactions for the while and if-else

statements can be realized with the same reaction A+B → C
(line2, reaction-code). In addition, the same reaction works
for A := A − B (line 3, pseudo-code). If [A] > [B] is true,
lines 2, 4, 5 (reaction-code) form a reaction cycle restoring
B. If [B] > [A] is true, lines 7, 9, 11 (reaction-code) restore
A and B with amount [A]. Lines 8 and 10 restore A with
amount [B] − [A]. These two reaction paths perform the
swap of A and B. In the reaction cycle formed by lines 7,
9, 11, molecule F serves as a buffer, which is needed because
the reactant of reaction cycle involves B, which is one of the
molecules restored in line 11. The operations of line 8 and
line 11 must be interleaved such that the production of B in
line 11 does not affect the precondition of the reactions from
line 8 to 11. After [A] and [B] both becomes zero, the final
result remains in C. So the last step, when [A] = [B], we
pass the amount of C to GCD .

Figures 10 and 11 show the simulation results for the com-

Figure 10: Computation of GCD(30, 12) without reaction

decomposition

Figure 11: Computation of GCD(30, 12) with reaction

decomposition

putation of GCD(30,12) without and with reaction decompo-
sition, respectively. The result is correct except that the last
reaction C → GCD cannot be triggered. The cause is that
the amount of molecules are assumed to be exact multiples of
a predefined unit amount. In reality, the number of molecules
cannot be exactly controlled. So [A] and [B] can hardly equal.
Even though the rounding error can be ignored, it can still
cause a severe problem when used as a precondition.

This problem can be solved with the following modified
pseudo-code, where the amount of molecule Z sets the pre-
cision for error tolerance. In the experiment, Z is of concen-
tration 0.1 units.

GreatestCommonDivisor err toler(A, B, Z)
begin
01 while |A − B| > Z
02 if A > B + Z
03 A := A − B
04 else if B > A + Z
05 swap(A,B)
06 GCD := A
end

The program translates to the reaction-code below. The
reactions added are lines 3, 4, 7 and 13. The reaction in line 3
(respectively 4) further tests whether [A]− [B] > [Z] (respec-
tively [B] − [A] > [Z]), and, if it holds, line 7 (respectively
line 13) restores the amounts of Z and A (respectively Z and
B). A buffer H is added to the reaction cycle formed by lines
6, 8, and 9 to avoid interference among restoring reactions.



Figure 12: Error-tolerant computation of GCD(30, 12)

without reaction decomposition

Figure 13: Error-tolerant computation of GCD(30, 12)

with reaction decomposition

Main Reactions Preconditions
01 while |[A] − [B]| > [Z]
02 (A + B → C) ¬Hθ ∧ ¬Fθ

03 (A + Z → X) ¬Hθ ∧ ¬Fθ ∧ ¬Bθ

04 (B + Z → Y ) ¬Hθ ∧ ¬Fθ ∧ ¬Aθ

05 if [A] > [B] + [Z]
06 C → D Aθ ∧ ¬Bθ ∧ ¬Zθ

07 X → A + Z ¬Cθ ∧ ¬Bθ

08 D → H ¬Cθ

09 H → B ¬Dθ

10 else if [B] > [A] + [Z]
11 C → E ¬Aθ ∧ Bθ ∧ ¬Zθ

12 B → G ¬Cθ ∧ ¬Aθ

13 Y → B + Z ¬Cθ ∧ ¬Aθ

14 E → F ¬Bθ

15 G → A ¬Eθ

16 F → A + B ¬Gθ

17 C → GCD ¬Aθ ∧ ¬Bθ

Figures 12 and 13 show the SBW simulation results with-
out and with reaction decomposition, respectively. In both
cases the previous precision problem is resolved. Although
the waveform of Figure 13 is not as perfect as that of Fig-
ure 12, the computation remains correct.

6. RELATED WORK
Among related prior efforts, [16] is the closest to ours.

The authors provide examples of arithmetic computation and
transform them into biochemical reactions. However a sys-
tematic methodology remains missing. Moreover, prior trans-
formation heavily relies on modularized reactions. Our frame-
work in contrast works for non-modularized reactions as well,

and can be more flexible thus achieving better optimality.
When molecular quantities are concerned, prior work as-

sumes reactions are in small quantities. Hence discrete stochas-
tic simulation is performed. The constructed reactions do not
work under continuous deterministic simulation however. In
contrast, our framework assumes more conservative realiza-
tion to work for both discrete and continuous simulations.
Our empirical experience suggests that discrete simulation in
our considered computation tends to make more optimistic
prediction than continuous simulation.

Compared to the prior absence indicator, our dimerized
absence indicator works much more robustly under both con-
tinuous and discrete simulations. Other new techniques, such
as reaction buffer insertion and a precision control mechanism
for error tolerance, are introduced to enhance the reliabil-
ity of molecular reactions. Also our restoration mechanism,
though conceptually similar to the copier construct [16], of-
fers greater flexibility for reaction optimization.

To overcome the leakage problem of absence indicator,
prior work [9] proposed a positive feedback mechanism to
boost the transfers of molecules. The transfers are acceler-
ated and the reaction rates rely lesser on the concentration of
absence indicator thus alleviate the impact of leakage. How-
ever it costs extra reactions for each transfer of molecules.

7. CONCLUSION AND FUTURE WORK
We have presented a systematic design principle in the

compilation of program control flows into biochemical re-
actions. Robust design techniques, including the dimerized
absence indicator, reaction buffer insertion, and a parame-
terized precision control mechanism, were proposed. Case
studies on division and GCD computation have confirmed
the usefulness and robustness of the proposed methodology.
For future work, the compilation process and reaction opti-
mization remain to be fully automated.
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