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Abstract. Henkin quantifiers, when applied on Boolean formulae, yield-
ing the so-called dependency quantified Boolean formulae (DQBF), offer
succinct descriptive power specifying variable dependencies. Despite their
natural applications to games with incomplete information, logic synthe-
sis with constrained input dependencies, etc., DQBF remain a relatively
unexplored subject however. This paper investigates their basic prop-
erties, including formula negation and complement, formula expansion,
and prenex and non-prenex form conversions. In particular, the proposed
DQBF formulation is established from a synthesis perspective concerned
with Skolem-function models and Herbrand-function countermodels.

1 Introduction

Henkin quantifiers [9], also known as branching quantifiers among other names,
generalize the standard quantification by admitting explicit specification, for
an existentially quantified variable, about its dependence on universally quanti-
fied variables. In addition to mathematical logic, Henkin quantifiers appear not
uncommonly in various contexts, such as natural languages [12], computation
[2], game theory [11], and even system design. They permit the expression of
(in)dependence in language, logic and computation, the modelling of incomplete
information in noncooperative games, and the specification of partial dependen-
cies among components in system design, which is the main motivation of this
work.

When Henkin quantifiers are imposed on first-order logic (FOL) formulae,
it results in the formulation of independence-friendly (IF) logic [10], which was
shown to be more expressive than first-order logic and exhibit expressive power
same as existential second-order logic. However one notable limitation among
others of IF logic under the game theoretical semantics is the violation of the law
of the excluded middle, which states either a proposition or its negation is true.
Therefore negating a formula can be problematic in terms of truth and falsity.
In a game theoretical viewpoint, it corresponds to undetermined games, where
there are cases under which no player has a winning strategy. Moreover, the
winning strategies of the semantics games do not exactly correspond to Skolem
and Herbrand functions in synthesis applications although syntactic rules for
negating IF logic formulae were suggested in [7, 6].
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When Henkin quantifiers are imposed on Boolean formulae, it results in the
so-called dependency quantified Boolean formulae (DQBF), whose satisfiability
lies in the complexity class of NEXPTIME-complete [11]. In contrast to QBF,
which is PSPACE-complete, DQBF offers more succinct descriptive power than
QBF provided that NEXPTIME is not in PSPACE. By expansion on univer-
sally quantified variables, a DQBF can be converted to a QBF with the cost of
exponential blow up in formula size [4, 5].

This paper studies DQBF in a synthesis perspective. By distinguishing for-
mula negation and complement, the connections between Skolem and Herbrand
functions are established. While the law of the excluded middle holds for nega-
tion, it does not hold for complement. The special subset of the DQBF whose
truth and falsity coincide with the existence of Skolem and Herbrand functions,
respectively, is characterized. Our formulation provides a unified view on DQBF
models and countermodels, which encompasses QBF as a special case. Some
fundamental properties of DQBF are studied in Section 3, and the potential
application of DQBF on Boolean relation determinization for input constrained
function extraction is discussed in Section 4. Discussions and conclusions are
then given in Section 5 and Section 6, respectively.

2 Preliminaries

As conventional notation, a set is denoted with an upper-case letter, e.g., V ;
its elements are in lower-case letters, e.g., vi ∈ V . The ordered version (i.e.,
vector) of V = {v1, . . . , vn} is denoted as v = (v1, . . . , vn). Two vectors v and
v′ satisfy v′ ⊆ v if V ′ ⊆ V . Substituting a term t (respectively a vector of
terms t = (t1, . . . , tn)) for some variable v (respectively a vector of variables
v = (v1, . . . , vn)) in a formula φ is denoted as φ[v/t] (respectively φ[v/t] or
φ[v1/t1, . . . , vn/tn]). A formula φ under some truth assignment α to its variables
is denoted as φ|α.

2.1 Quantified Boolean Formulae

A quantified Boolean formula (QBF) Φ over variables V = {v1, . . . , vk} in the
prenex form is expressed as

Q1v1 · · ·Qkvk.φ,

where Q1v1 · · ·Qkvk, with Qi ∈ {∃, ∀}, is called the prefix, denoted Φpfx ,and φ,
a quantifier-free formula in terms of variables V , is called the matrix, denoted
Φmtx. We call variable vi in a QBF an existential variable if Qi = ∃, or a universal
variable if Qi = ∀. A QBF is of non-prenex form if its quantifiers are scattered
around the formula without a clean separation between the prefix and the matrix.
Unless otherwise said, we shall assume that a QBF is in the prenex form and is
totally quantified, i.e., with no free variables. As a notational convention, unless
otherwise specified we shall let X = {x1, . . . , xn} be the set of universal variables
and Y = {y1, . . . , ym} existential variables.
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Given a QBF Φ over variables V , the quantification level ` : V → N of
variable vi ∈ V is defined to be the number of quantifier alternations between ∃
and ∀ from the outermost variable to variable vi in Φpfx, e.g., `(v1) = `(v2) = 0,
`(v3) = 1, and `(v4) = 2 for QBF ∃v1∃v2∀v3∃v4.φ.

Any QBF Φ over variables X ∪ Y can be converted into the well-known
Skolem normal form [13]. In the conversion, every appearance of yi ∈ Y in Φmtx

is replaced by its respective newly introduced function symbol Fyi corresponding
to the Skolem function of yi, which refers only to the universal variables xj ∈ X
with `(xj) < `(yi). These function symbols are then existentially quantified
before (on the left of) other universal quantifiers in Φpfx. This conversion, called
Skolemization, is satisfiability preserving. Essentially a QBF Φ is true if and only
if its Skolem functions exist such that substituting Fyi

for every appearance of
yi in Φmtx makes the new formula true (i.e., a tautology).

Example 1. Skolemizing the QBF

∀x1∃y1∀x2∃y2.(x1 ∨ y1 ∨ ¬y2)(¬x1 ∨ ¬x2 ∨ y2)

yields
∃Fy1∃Fy2∀x1∀x2.(x1 ∨ Fy1 ∨ ¬Fy2)(¬x1 ∨ ¬x2 ∨ Fy2)

where Fy1 is a 1-ary function symbol referring to x1, and Fy2 is a 2-ary function
symbol referring to x1 and x2. Since the QBF is true, Skolem functions exist,
for instance, Fy1 = ¬x1 and Fy2 = x1 ∧ x2.

The notion of Skolem function has its dual form, known as the Herbrand
function. For a QBF Φ, the Herbrand function Fxi of variable xi ∈ X refers only
to the existential variables yj ∈ Y with `(yj) < `(xi). Essentially a QBF Φ is
false if and only if Herbrand functions exist such that substituting Fxi for every
appearance of xi in Φmtx makes the new formula false (i.e., unsatisfiable) [3].

2.2 Dependency Quantified Boolean Formulae

A dependency quantified Boolean formula (DQBF) generalizes a QBF in its al-
lowance for explicit specification of variable dependencies. Syntactically, a DQBF
Φ is the same as a QBF except that in Φpfx an existential variable yi is annotated
with the set Si ⊆ X of universal variables referred to by its Skolem function,
denoted as ∃yi(Si), or a universal variable xj is annotated with the set Hj ⊆ Y
of existential variables referred to by its Herbrand function, denoted as ∀xj(Hj)

,
where Si and Hj are called the support sets of yi and xj , respectively. However,
either the dependencies for the existential variables or the dependencies for the
universal variables (but not both) shall be specified. That is, a prenex DQBF is
in either of the two forms:

S-form: ∀x1 · · · ∀xn∃y1(S1) · · · ∃ym(Sm).φ (1)
H-form: ∀x1(H1) · · · ∀xn(Hn)∃y1 · · · ∃ym.φ (2)

where φ is some quantifier-free formula. Note that the syntactic quantification
order in the prefix of a DQBF is immaterial and can be arbitrary because the



4

variable dependencies are explicitly specified by the support sets. Such quan-
tification with dependency specification corresponds to the Henkin quantifier
[9].1

By the above syntactic extension of DQBF, the inputs of the Skolem (re-
spectively Herbrand) function of an existential (respectively universal) variable
can be explicitly specified, rather than inferred from the syntactic quantification
order. That is, an existential variable yi (respectively universal variable xj) can
be specified to be semantically independent of a universal variable (respectively
an existential variable) whose syntactic scope covers yi (respectively xj). Unlike
the totally ordered set formed by those of a QBF, the support sets of the exis-
tential or universal variables of a DQBF form a partially ordered set in general.
This extension makes DQBF more succinct in expressive power than QBF [11].

For the semantics, the truth and falsity of a DQBF can be interpreted by the
existence of Skolem and Herbrand functions. Precisely an S-form (respectively
H-form) DQBF is true (respectively false) if and only if its Skolem (respectively
Herbrand) functions exist for the existential (respectively universal) variables
while the specified variable dependencies are satisfied. Consequently, Skolem
functions serve as the model to a true S-form DQBF whereas Herbrand functions
serve as the countermodel to a false H-form DQBF.

Alternatively, the truth and falsity of a DQBF can be understood from a
game-theoretic viewpoint. Essentially an S-form DQBF can be interpreted as a
game played by one ∀-player and m noncooperative ∃-players [11]. An S-form
DQBF is true if and only if the ∃-players have winning strategies, which corre-
spond to the Skolem functions. Similarly an H-form DQBF can be interpreted
as a game played by one ∃-player and n noncooperative ∀-players. An H-form
DQBF is false if and only if the ∀-players have winning strategies, which corre-
spond to the Herbrand functions.

As was shown in [4, 5], an S-form DQBF Φ can be converted to a logically
equivalent2 QBF Φ′ by formula expansion on the universal variables. Assume that
universal variable x1 is to be expanded in Formula (1) and x1 6∈ S1 ∪ · · · ∪ Sk−1

and x1 ∈ Sk ∩ · · · ∩ Sm. Then Formula (1) can be expanded to

∀x2 · · · ∀xn∃y1(S1) · · · ∃yk−1(Sk−1)

∃yk(Sk[x1/0])∃yk(Sk[x1/1]) · · · ∃ym(Sm[x1/0])∃ym(Sm[x1/1]).φ|x1=0 ∧ φ|x1=1,

where Si[x1/v] denotes x1 in Si is substituted with logic value v ∈ {0, 1}, and
φ|x1=v denotes all appearances of x1 in φ are substituted with v including those
in the support sets of variables yi(Si) for i = k, . . . , m. (The subscript of the
support set of an existential variable are helpful for tracing expansion paths.
Different expansion paths of an existential variable result in distinct existential
variables.) Such expansion can be repeatedly applied for every universal vari-
ables. The resultant formula after expanding all universal variables is a QBF,
1 Henkin quantifiers in their original proposal [9] specify dependencies for existential
variables only. The dependencies are extended in this paper to universal variables.

2 That is, Φ and Φ′ characterize the same set of Skolem-function models (by properly
relating the existential variables of Φ′ to those of Φ).
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whose variables are all existentially quantified. As to be shown in Section 3.2,
expansion can be applied also to H-form DQBF.

3 Properties of DQBF

3.1 Negation vs. Complement

In the light of QBF certification, where there always exists either a Skolem-
function model or a Herbrand-function countermodel to a QBF, one intriguing
question is whether or not the same property carries to DQBF as well. To answer
this question, we distinguish two operators, negation (symbolized by “¬”) and
complement (by “∼”), for DQBF. Let ΦS and ΦH be Formulae (1) and (2),
respectively. By negation, we define

¬ΦS = ∃x1 · · · ∃xn∀y1(S1) · · · ∀ym(Sm).¬φ and (3)
¬ΦH = ∃x1(H1) · · · ∃xn(Hn)∀y1 · · · ∀ym.¬φ. (4)

By complement, we define

∼ΦS = ∃x1(H′
1)
· · · ∃xn(H′

n)∀y1 · · · ∀ym.¬φ and (5)
∼ΦH = ∃x1 · · · ∃xn∀y1(S′1)

· · · ∀ym(S′m).¬φ, (6)

where H ′
i = {yj ∈ Y | xi 6∈ Sj} and S′k = {xl ∈ X | yk 6∈ Hl}, which follow what

we call the complementary principle of the Skolem and Herbrand support sets.
By the above definitions, one verifies that ¬¬Φ = Φ, ∼∼Φ = Φ, and ¬∼Φ =

∼¬Φ. Moreover, because the Skolem functions of ΦS , if they exist, are exactly
the Herbrand functions of ¬ΦS , and the Herbrand functions of ΦH , if they exist,
are exactly the Skolem functions of ¬ΦH , the following proposition holds.

Proposition 1. DQBF under the negation operation obey the law of the ex-
cluded middle. That is, a DQBF is true if and only if its negation is false.

Since any DQBF can be converted to a logically equivalent QBF by formula
expansion, it also explains that the law of the excluded middle should hold
under negation for DQBF as it holds for QBF.

A remaining question is whether or not the complement of DQBF obeys the
law of the excluded middle. The answer to this question is in general negative as
we show below. Based on the existence of Skolem and Herbrand functions, we
classify DQBF into four categories:

CS = {Φ | Φ is true and ∼Φ is false},
CH = {Φ | Φ is false and ∼Φ is true},
CSH = {Φ | Φ and ∼Φ are true for S-form Φ, or false for H-form Φ}, and
C∅ = {Φ | Φ and ∼Φ are false for S-form Φ, or true for H-form Φ}.

Note that if Φ ∈ CS , then ∼Φ ∈ CH ; if Φ ∈ CH , then ∼Φ ∈ CS ; if Φ ∈ CSH , then
∼Φ ∈ CSH ; if Φ ∈ C∅, then ∼Φ ∈ C∅.
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Under the above DQBF partition, observe that the complement of DQBF
obeys the law of the excluded middle if and only if CSH and C∅ are empty. In fact,
as to be shown, for any QBF Φ, Φ 6∈ CSH∪C∅. As a consequence, the complement
and negation operations for any QBF Φ coincide, and thus ¬∼Φ = Φ. However,
for general DQBF, CSH and C∅ are not empty as the following two examples
show.

Example 2. Consider the DQBF

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).((y1 ⊕ x1) ∧ (y2⊕x2)) ∨ ((y2 ⊕ x2) ∧ (y1⊕x1)),

where symbols “⊕” and ⊕ stand for Boolean xor and xnor operators, respec-
tively. Φ has Skolem functions, e.g., x1 and ¬x2 for existential variables y1 and
y2, respectively, and ¬∼Φ has Herbrand functions, e.g., y2 and y1 for universal
variables x1 for x2, respectively. That is, Φ ∈ CSH .

Example 3. Consider the DQBF

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).(y1∨¬x1∨x2)∧(y2∨x1∨¬x2)∧(¬y1∨¬y2∨¬x1∨¬x2).

It can be verified that Φ has no Skolem functions, and ¬∼Φ has no Herbrand
functions. That is, Φ ∈ C∅.

By these two examples, the following proposition can be concluded.

Proposition 2. DQBF under the complement operation do not obey the law of
the excluded middle. That is, the truth (falsity) of a DQBF cannot be decided
from the falsity (truth) of its complement.

Nevertheless, if a DQBF Φ 6∈ CSH ∪ C∅, then its truth and falsity can surely
be certified by a Skolem-function model and a Herbrand-function countermodel,
respectively.3 That is, excluding Φ ∈ CSH ∪ C∅, DQBF under the complement
operation obeys the law of the excluded middle.

A sufficient condition for a DQBF not in CSH (equivalently, a necessary
condition for a DQBF in CSH) is presented in Theorem 1.

Theorem 1. Let φ be a quantifier-free formula over variables X ∪ Y , let Φ1 =
∀x1 · · · ∀xn∃y1(S1) · · · ∃ym(Sm).φ and Φ2 = ∀x1(H1) · · · ∀xn(Hn)∃y1 · · · ∃ym.φ with
Hi = {yj ∈ Y | xi 6∈ Syj}. Then there exist Skolem functions f = (f1, . . . , fm)
for Φ1 and Herbrand functions g = (g1, . . . , gn) for Φ2 only if the composite func-
tion vector g ◦ f admits no fixed-point, that is, there exists no truth assignment
α to variables x = (x1, . . . , xn) such that α = g(f(α)).

Proof. Since Φ1 is true and has Skolem functions f , formula φ[y/f ] must be a
tautology. On the other hand, since Φ2 is false and has Herbrand functions g,
formula φ[x/g] must be unsatisfiable. Suppose that the fixed-point condition α =
g(f(α)) holds under some truth assignment α to x. Then φ[y/f ]|α = φ[x/g]|β
for β = f(α) being the truth assignment to y. It contradicts with the fact that
φ[y/f ] must be a tautology and φ[x/g] must be unsatisfiable.
3 In general a false S-form DQBF has no Herbrand-function countermodel, and a true
H-form DQBF has no Skolem-function model.
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The following corollary shows that Φ 6∈ CSH for any QBF Φ.

Corollary 1. For any QBF Φ, the Skolem-function model and Herbrand-function
countermodel cannot co-exist.

Proof. If a QBF is false, its Skolem-function model does not exist and the corol-
lary trivially holds. Without loss of generality, assume a true QBF is of the
form Φ = ∃y1∀x1 · · · ∃yn∀xn.φ. Let {y1 = f1(), . . . , yn = fn(x1, . . . , xn−1)}
be a model for Φ. Further by contradiction assume there exist a countermodel
{x1 = g1(y1), . . . , xn = gn(y1, . . . , yn)}. So the fixed-point condition is {x1 =
g1(f1()), . . . , xn = gn(f1(), . . . , fn(x1, . . . , xn−1))}. Since no cyclic dependency
presents in the fixed-point equations, the set of equations always has a solution.
In other words, due to the complete ordering of the prefix of a QBF, a fixed-
point exists. By Theorem 1, the Skolem-function model and Herbrand-function
countermodel cannot co-exist.

A sufficient condition for a DQBF not in C∅ can be characterized by procedure
HerbrandConstruct as shown in Figure 1. Note that although the algorithm
computes Herbrand functions of ¬∼ΦS for a false S-form DQBF ΦS , it can be
used to compute Skolem functions of ¬∼ΦH for a true H-form DQBF ΦH by
taking as input the negation of the formula.

Given a false S-form DQBF Φ with n ≥ 1 universal variables, procedure Her-
brandConstruct in line 1 collects the support set Hn for universal variable xn.
Let Hn = {ya1 , . . . , yak

} and the rest be {yak+1 , . . . , yam}. It then recursively
constructs the Herbrand functions of the formula expanded on xn until n = 1.
By formula expansion on xn in line 3, variables {yak+1 , . . . , yam}, which depend
on xn, are instantiated in Φexp into two copies, say, {y′ak+1

, y′′ak+1
, . . . , y′am

, y′′am
}.

Then the VariableMerge step in line 6 lets gi = g†i [y
′
ak+1

/yak+1 , y
′′
ak+1

/yak+1 , . . . ,

y′am
/yam , y′′am

/yam ].4 In constructing the Herbrand function gn of xn, each as-
signment α to Hn is examined. Since Herbrand function aims to falsity φ, the
value of gn(α) is set to the xn value that makes φ[x1/g1, . . . , xn−1/gn−1]|α un-
satisfiable.

Theorem 2. Given a false S-form DQBF Φ, algorithm HerbrandConstruct re-
turns either nothing or correct Herbrand functions, which falsify ¬∼Φ.

Proof. Observe first that the functions returned by the algorithm satisfy the
support-set dependencies for the universal variables. It remains to show that
φ[x1/g1, . . . , xn/gn] is unsatisfiable. By contradiction, suppose there exists an
assignment β to the existential variables Y such that φ[x1/g1, . . . , xn/gn]|β = 1.
Let v ∈ {0, 1} be the value of gn|α for α being the projection of β on Hn ⊆ Y .
Then φ[x1/g1, . . . , xn−1/gn−1, xn/v]|β = 1. However it contradicts with the way
4 The method to perform VariableMerge in line 6 is not unique. In theory, as long as
no violation of variable dependencies is incurred, any substitution can be applied. In
practice, however the choice of substitution may affect the strength of the algorithm
HerbrandConstruct in terms of the likelihood of returning (non-empty) Herbrand
functions.



8

HerbrandConstruct
input: a false S-form DQBF Φ = ∀x1 · · · ∀xn∃y1(S1) · · · ∃ym(Sm).φ, and

the number n of universal variables
output: Herbrand-functions (g1, · · · , gn) of ¬∼Φ
01 Hn := {yi ∈ Y | xn 6∈ Si}
02 if (n > 1)
03 Φexp := FormulaExpand(Φ, xn);
04 g† := HerbrandConstruct(Φexp, n− 1);
05 if (g† = ∅) return ∅;
06 g := VariableMerge(g†);
07 for each assignment α to Hn

08 if (φ[x1/g1, . . . , xn−1/gn−1]|α,xn=0 is unsatisfiable)
09 gn(α) = 0;
10 if (φ[x1/g1, . . . , xn−1/gn−1]|α,xn=1 is unsatisfiable)
11 gn(α) = 1;
12 else return ∅;
13 else
14 for each assignment α to Hn

15 if (φ|α,xn=0 is unsatisfiable)
16 gn(α) = 0;
17 if (φ|α,xn=1 is unsatisfiable)
18 gn(α) = 1;
19 else return ∅;
20 return (g1, . . . , gn);
end

Fig. 1. Algorithm: Herbrand-function Construction

how gn|α is constructed. Hence the returned Herbrand functions (g1, . . . , gn), if
they are not empty, are indeed correct Herbrand functions.

The following corollary shows that Φ 6∈ C∅ for any QBF Φ.

Corollary 2. If Φ is a false QBF and its universal variables x1, . . . , xn follow
the QBF’s prefix order, algorithm HerbrandConstruct always returns non-empty
Herbrand functions.

Proof. We prove the statement by induction on the number of universal vari-
ables. For the base case, without loss of generality consider QBF Φ = ∃y1 · · · ∃yk

∀x∃yk+1 · · · ∃ym.φ. After line 1, HerbrandConstruct enters line 14. Since the QBF
is false and has only one universal variable x, expanding on x yields a purely
existentially quantified unsatisfiable formula: ∃y1 · · · ∃yk(∃y′k+1 · · · ∃y′m.φ|x=0 ∧
∃y′′k+1 · · · ∃y′′m.φ|x=1). By its unsatisfiability, for every assignment α to y1, · · · , yk,
formula ∃y′k+1 · · · ∃y′m.φ|α,x=0∧∃y′′k+1 · · · ∃y′′m.φ|α,x=1 must be unsatisfiable. Since
∃y′k+1 · · · ∃y′m.φ|α,x=0 and ∃y′′k+1 · · · ∃y′′m.φ|α,x=1 share no common variables, at
least one of them must be unsatisfiable. Hence the procedure returns a non-
empty Herbrand function.
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For the inductive step, assume the previous recursive calls for k = 1, . . . , n−1
of HerbrandConstruct do not return ∅. We show that the current call for k = n
cannot return ∅. Expanding Φ on xn yields Φexp = ∀x1 · · · ∀xn−1∃y1(S1) · · · ∃yk(Sk)

(∃y′k+1(Sk+1)
· · · ∃y′m(Sm).φ|xn=0∧∃y′′k+1(Sk+1)

· · · ∃y′′m(Sm).φ|xn=1). By the induc-

tive hypothesis, functions g†1, · · · , g†n−1 are returned. Moreover, g†i for any i =
1, . . . , n − 1 is independent of y′j and y′′j for j = k + 1, . . . , m. So we con-
struct gi = g†i . Since g1, . . . , gn−1 have been constructed in a way such that
∃y1 · · · ∃yk(∃y′k+1 · · · ∃y′m.φ[x1/g1, · · · , xn−1/gn−1]|xn=0 ∧∃y′′k+1 · · · ∃y′′m.φ[x1/g1,
· · · , xn−1/gn−1]|xn=1) is unsatisfiable, under every assignment α to y1, · · · , yk for-
mula (∃y′k+1 · · · ∃y′m.φ[x1/g1, · · · , xn−1/gn−1]|xn=0 ∧ ∃y′′k+1 · · · ∃y′′m.φ[x1/g1, · · · ,
xn−1/gn−1]|xn=1) is unsatisfiable. Moreover, since ∃y′k+1 · · · ∃y′m. φ[x1/g1, · · ·,
xn−1/gn−1]|xn=0 and ∃ y′′k+1 · · · ∃y′′m. φ[x1/g1, · · · , xn−1/gn−1]|xn=1 do not share
any variables, at least one of them must be unsatisfiable. So gn is returned.

Note that the above proof does not explicitly perform the substitution gi =
g†i [y

′
ak+1

/yak+1 , y
′′
ak+1

/yak+1 , . . . , y
′
am

/yam
, y′′am

/yam
] in VariableMerge because all

gi in fact do not depend on primed or double-primed variables in the QBF case.
Procedure HerbrandConstruct is useful in deriving Herbrand functions not

only for QBF but also for general DQBF as the following example suggests.

Example 4. Consider the DQBF Φ = ∀x1∀x2∃y1(x1)∃y2(x2).φ with φ = (y1∨x2)∧
(y2∨x1)∧(¬y1∨¬y2∨¬x1∨¬x2). HerbrandConstruct(Φ, 2) computes Herbrand
functions for ¬∼Φ with the following steps. Expanding Φ on x2 yields Φexp =
∀x1∃y1(x1)∃y′2∃y′′2 .φ|x2=0 ∧ φ|x2=1 with φ|x2=0 = (y1) ∧ (y′2 ∨ x1) and φ|x2=1 =
(y′′2 ∨ x1)∧ (¬y1 ∨¬y′′2 ∨¬x1). The recursive call to HerbrandConstruct(Φexp, 1)
determines the value of function g†1(y

′
2, y

′′
2 ) under every assignment α to (y′2, y

′′
2 ).

In particular, g†1(0, 0) = 0 due to φexp = (y1) ∧ (x1) ∧ (x1); g†1(0, 1) = 0 (or 1)
due to φexp = (y1) ∧ (x1) ∧ (¬y1 ∨ ¬x1); g†1(1, 0) = 0 due to φexp = (y1) ∧ (x1);
g†1(1, 1) = 1 due to φexp = (y1) ∧ (¬y1 ∨ ¬x1). So g†1(y

′
2, y

′′
2 ) = y′2y

′′
2 (or y′′2 ), and

g1(y2) = g†1[y
′
2/y2, y

′′
2/y2] = y2.

Returning to HerbrandConstruct(Φ, 2), we have φ[x1/g1] = (y1 ∨x2)∧ (y2)∧
(¬y1 ∨ ¬y2 ∨ ¬x2). The value of function g2 for each assignment α to y1 can be
determined with g2(0) = 0 due to φ[x1/g1]|y1=0 = (x2)∧ (y2) and g2(1) = 1 due
to φ[x1/g1]|y1=1 = (y2) ∧ (¬y2 ∨ ¬x2). That is, g2(y1) = y1. The computed g1

and g2 indeed make φ[x1/g1, x2/g2] = (y1) ∧ (y2) ∧ (¬y1 ∨ ¬y2) unsatisfiable.

Since the DQBF subset CS ∪ CH obeys the law of the excluded middle under
the complement operation, Theorems 1 and 2 provide a tool to test whether a
DQBF Φ can be equivalently expressed as ¬∼Φ, that is, whether a DQBF has
either a Skolem-function model or a Herbrand-function countermodel. Figure 2
shows the four DQBF categories and the regions characterized by Theorems 1
and 2.
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Fig. 2. Four DQBF categories and regions characterized by Theorems 1 and 2.

3.2 Formula Expansion on Existential Variables

Formula expansion on existential variables for DQBF can be achieved by nega-
tion using De Morgan’s law and expansion on universal variables. It leads to the
following expansion rule, which is dual to expanding universal variables.

Proposition 3. Given a DQBF ∀x1(H1) · · · ∀xn(Hn)∃y1 · · · ∃ym.φ, assume with-
out loss of generality that y1 is to be expanded with y1 6∈ H1 ∪ · · · ∪ Hk−1 and
y1 ∈ Hk ∩ · · · ∩Hn. The formula can be expanded to

∀x1(H1) · · · ∀xk−1(Hk−1)
∀xk(Hk[y1/0])∀xk(Hk[y1/1]) · · · ∀xn(Hn[y1/0])∀xn(Hn[y1/1])

∃y2 · · · ∃ym.φ|y1=0 ∨ φ|y1=1,

where Hi[y1/v] denotes y1 in Hi is substituted with logic value v ∈ {0, 1}, and
φ|y1=v denotes all appearances of y1 in φ are substituted with v including those
in the support sets of variables xi(Hi) for i = k, . . . , n.

Such expansion can be repeatedly applied for every existential variables. The
resultant formula after expanding all existential variables is a QBF. Note that,
when Skolem functions are concerned rather than Herbrand functions, the sup-
port sets of the existential variables should be listed and can be obtained from
Hi by the aforementioned complementary principle.

Example 5. Consider expanding variable y1 of DQBF

Φ = ∀x1(y1)∀x2(y2)∀x3(y3)∃y1∃y2∃y3.φ.

By De Morgan’s law and expansion on a universal variable, we obtain

¬¬Φ = ¬∃x1(y1)∃x2(y2)∃x3(y3)∀y1∀y2∀y3.¬φ

= ¬∃x1(0)∃x1(1)∃x2(y2)∃x3(y3)∀y2∀y3.¬φ|y1=0 ∧ ¬φ|y1=1

= ∀x1(0)∀x1(1)∀x2(y2)∀x3(y3)∃y2∃y3.φ|y1=0 ∨ φ|y1=1.
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3.3 Prenex and Non-prenex Conversion

This section studies some syntactic rules that allow localization of quantifiers
to sub-formulae. We focus on the truth (namely the Skolem-function model),
while similar results can be concluded by duality for the falsity (namely the
Herbrand-function countermodel), of a formula.

The following proposition shows the localization of existential quantifiers to
the sub-formulas of a disjunction.

Proposition 4. The DQBF

∀x∃y1(S1) · · · ∃ym(Sm).φA ∨ φB ,

where ∀x denotes ∀x1 · · · ∀xn, sub-formula φA (respectively φB) refers to vari-
ables XA ⊆ X and YA ⊆ Y (respectively XB ⊆ X and YB ⊆ Y ), is logically
equivalent to

∀xc

(
∀xa∃ya1 (Sa1∩XA) · · · ∃yap (Sap∩XA)

φA ∨ ∀xb∃yb1 (Sb1∩XB) · · · ∃ybq (Sbq∩XB)
φB

)
,

where variables xc are in XA ∩XB, variables xa are in XA\XB, variables xb

are in XB\XA, yai ∈ YA, and ybj ∈ YB.

Proof. A model to the former expression consists of every truth assignment to
X and the induced Skolem function valuation to Y . Since every such combined
assignment to X ∪ Y either satisfies φA or φB , by collecting those satisfying φA

(respectively φB) and projecting to variables XA ∪ YA (respectively XB ∪ YB)
the model (i.e., the Skolem functions for ya and yb) to the latter expression can
be constructed. (Note that, for a quantifier ∃yi splitting into two, one for φA

and the other for φB , in the latter expression, they are considered distinct and
have their own Skolem functions.)

In addition, the Skolem functions for ∀xa∃ya1 (Sa1∩XA) · · · ∃yap (Sap∩XA)
φA|α

and those for ∀xb∃yb1 (Sb1∩XB) · · · ∃ybq (Sbq∩XB)
φB |α under every assignment α

to xc can be collected and combined to form a model for the former expression.
In particular the respective Skolem functions faj |α and fbk

|α under α for yaj and
ybk

originating from the same quantifier yi in the former expression are merged
into one Skolem function fi =

∨
α

(
χα(faj |α ∨ fbk

|α)
)
, where χα denotes the

characteristic function of α, e.g., χα = x1x2¬x3 for α = (x1 = 1, x2 = 1, x3 = 0).

Example 6. Consider the QBF

Φ = ∀x1∃y1∀x2∃y2∀x3∃y3.φA ∨ φB

with φA refers to variables x1, x2, y1, y2 and φB refers to x2, x3, y2, y3. It has the
following equivalent DQBF expressions.

Φ = ∀x1∀x2∀x3∃y1(x1)∃y2(x1,x2)∃y3(x1,x2,x3).φA ∨ φB

= ∀x1∀x2∀x3

(
∃y1(x1)∃y2(x1,x2)φA ∨ ∃y2(x2)∃y3(x2,x3)φB

)

= ∀x2

(
∀x1∃y1(x1)∃y2(x1,x2)φA ∨ ∀x3∃y2(x2)∃y3(x2,x3)φB

)
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In contrast, conventionally the quantifiers of the QBF can only be localized to

∀x1∃y1∀x2∃y2 (φA ∨ ∀x3∃y3φB) .

The following proposition shows the localization of universal quantifiers to a
sub-formula of a conjunction.

Proposition 5. The DQBF

∀x∃y1(S1) · · · ∃yk(Sk).φA ∧ φB ,

where ∀x denotes ∀x1 · · · ∀xn, sub-formula φA (respectively φB) refers to vari-
ables XA ⊆ X and YA ⊆ Y (respectively XB ⊆ X and YB ⊆ Y ), is logically
equivalent to

∀x∃y2(S2) · · · ∃yk(Sk).
(
∃y1(S1∩XA)φA

)
∧ φB ,

for y1 6∈ YB.

Proof. The proposition follows from the fact that the Skolem function of y1 is
purely constrained by φA only, and is the same for both expressions. Note that
the former formula is equivalent to ∀x∃y1(S1∩XA) · · · ∃yk(Sk).φA ∧ φB .

Essentially DQBF allow tighter localization of quantifier scopes than QBF.
On the other hand, converting a non-prenex QBF to the prenex form may incur
the size increase of support sets of existential variables due to the linear (or
complete order) structure of the prefix. With DQBF, such spurious increase can
be eliminated.

4 Applications

Although to date there is no DQBF solver, we note that the framework pro-
vided by QBF solver sKizzo [1], which is based on Skolemization, can be easily
extended to DQBF solving. A natural application of DQBF is Boolean rela-
tion determinization [8, 3] in logic circuit synthesis. Consider a Boolean relation
R(x, y) as a characteristic function (quantifier-free Boolean formula) specifying
the input and output behavior of some (possibly non-deterministic) combina-
tional system with inputs X and outputs Y . To realize the outputs of the system,
the Skolem functions of the QBF

∀x∃y.R(x, y)

is to be solved. Often the inputs of some output yi need to be restricted to depend
only on a subset of X. This restriction can be naturally described by DQBF.
Therefore DQBF can be exploited for topologically constrained logic synthesis
[14].
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5 Discussions

IF logic [10] with the game-theoretical semantics is known to violate the law of
the excluded middle. A simple example is the IF logic formula ∀x∃y/x.(x = y)
for x, y ∈ {0, 1}, where y/x indicates the independence of y on x [7]. It assumes
that not only y is independent of x, but also is x independent of y. That is, it is
equivalent to ∀x()∃y().(x = y) in our dependency notation. In a game-theoretic
viewpoint, neither the ∃-player nor the ∀-player has a winning strategy. Therefore
this formula is neither true nor false, and has no equivalent DQBF since any
DQBF can always be expanded into a QBF, whose truth and falsity can be fully
determined.

On the other hand, the game-theoretical semantics of IF logic, when extended
to DQBF, does not provide a fully meaningful approach to synthesizing Skolem
and Herbrand functions. Unlike the unimportance of the syntactic quantification
order in our formulation, the semantic game of IF logic should be played with
respect to the prefix order. Since different orders correspond to different games,
the semantics is not directly useful in our considered synthesis application.

Henkin quantifiers in their original form [9] specified only the dependencies
of existential variables on universal variables. Such restricted dependencies were
assumed in early IF logic [10] research. As was argued in [7], the dependency of
universal variables on existential variables are necessary to accomplish a sym-
metric treatment on the falsity, in addition to truth, of an IF logic formula. With
such extension, IF logic formulae can be closed under negation. However, how
the dependencies of existential variables and universal variables relate to each
other was not studied. The essential notion of Herbrand functions was missing.
In contrast, our formulation on DQBF treats Skolem and Herbrand functions on
an equal footing. Unlike [7], we restrict a formula to be of either S-form or H-
form, rather than simultaneous specification of dependencies for existential and
universal variables. This restriction makes the synthesis of Skolem and Herbrand
functions for DQBF more natural.

Prior work [11, 5] assumed DQBF are of S-form only. In [11], a DQBF was for-
mulated as a game played by a ∀-player and multiple noncooperative ∃-players.
This game formulation is fundamentally different from that of IF-logic. The win-
ning strategies, if they exist, of the ∃-players correspond to the Skolem functions
of the DQBF. This game interpretation can be naturally extended to H-form
DQBF.

6 Conclusions

The syntax and semantics of DQBF presented in this paper made DQBF a
natural extension of QBF from a certification viewpoint. Basic DQBF properties,
including formula negation, complement, expansion, and prenex and non-prenex
form conversion, were shown. Our formulation is adequate for applications where
Skolem/Herbrand functions are of concern.
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