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Abstract. Quantified Boolean formula (QBF) evaluation has a broad
range of applications in computer science and is gaining increasing atten-
tion. Recent progress has shown that for a certain family of formulas, Q-
resolution, which forms the foundation of learning in modern search-based
QBF solvers, is exponentially inferior in proof size to two of its exten-
sions: Q-resolution with resolution over universal literals (QU-resolution)
and long-distance Q-resolution (LQ-resolution). The relative proof power
between LQ-resolution and QU-resolution, however, remains unknown.
In this paper, we show their incomparability by exponential separations
on two families of QBFs, and further propose a combination of the two
resolution methods to achieve an even more powerful proof system. These
results may shed light on solver development with enhanced learning
mechanisms. In addition, we show how QBF Skolem/Herbrand certificate
extraction can benefit from polynomial LQ-resolution proofs in contrast
to their exponential Q-resolution counterparts.

1 Introduction

Quantified Boolean formulas (QBFs) can naturally express many decision prob-
lems encountered in verification [4,16], planning [15], two-player games [8], elec-
tronic design automation [10,12], and other fields in computer science. QBFs
extend formulas of propositional logic by adding quantifiers over the (Boolean)
variables, which makes them more expressive and allows a more compact repre-
sentation of logical constraints. Their efficient evaluation has significant practical
impacts and is gaining more and more research attention. State of the art evalua-
tion methods for QBF have been considerably influenced by the advancement of
satisfiability (SAT) solving of propositional logic [14] and contain methods based
on SAT techniques like conflict-driven clause learning (CDCL) [14]. However,
possibly to its higher complexity, QBF evaluation remains premature for robust
industrial applications and awaits new insights for a breakthrough.

Resolution is a fundamental technique in automated reasoning, in particular
for SAT [20]. CDCL, the key technique for efficiency in modern SAT solvers,
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can be considered as a guided resolution process. Not surprisingly, resolution
also plays an essential role in the learning mechanism (QCDCL) of modern QBF
solvers [2,7,9,13] In QBF, the existence of more than one sound resolution rule
enables different proof systems. In particular, Q-resolution [11], which allows
resolution only over existential variables and uses universal reduction to remove
universal variables, and its extensions by allowing resolution over universal vari-
ables (QU-resolution) [18] and by allowing tautological long-distance derivations
(LQ-resolution) [1,19], have been proposed.

Recent studies have shown that members of a certain family of QBFs [11]
have proofs in QU-resolution or LQ-resolution of polynomial size in the formula
size but any Q-resolution proof is claimed to be of exponential size [6,11,18]. On
the practical side, an embedding of LQ-resolution in the QCDCL-based solver
DepQBF [13] has resulted in significant performance gains [6]. This gives rise to
the question whether other resolution systems can have similar impacts. Also,
the relative proof complexity between QU-resolution and LQ-resolution remains
unknown.

In addition to its contribution to learning, resolution can produce a syntactic
proof of the truth or falsity of a QBF. However, besides a validation of the
decision result, many applications require a semantic certificate to represent a
concrete solution. Such certificates are typically represented in terms of Skolem
functions for true QBFs and Herbrand functions for false QBFs. They can be
extracted from Q-resolution proofs in time linear in the proof size [1] and their size
is usually related to the proof size. Thus, the study of certificate extraction from
the potentially smaller QU-resolution and LQ-resolution proofs is very important.

The quests for efficient QBF evaluation and for the extraction of compact
QBF (counter)models motivate the investigation of more powerful resolution
systems. In this work, we present the following related results. First, we show the
incomparability of QU-resolution and LQ-resolution with respect to their proof
complexities. To this end, we construct two families of QBFs for which either of
the two calculi has only proofs of exponential size, but the other can produce
proofs of polynomial size. Second, we define two stronger proof systems and show
an exponential separation to QU- and LQ-resolution for one of them. Third, we
propose a new procedure for (counter)model extraction from resolution proofs in
all the discussed proof systems. Finally, we present an experimental evaluation
of the new certificate extraction method.

2 Preliminaries

A Boolean variable over the domain {> (true),⊥ (false)} appears in a proposi-
tional formula φ as a positive literal or a negative literal. We refer to the opposite
polarity of a (positive or negative) literal l by l and to the variable of a literal
l by var(l). We use lit(v) ∈ {v, v} to refer to either literal of a variable v. A
propositional conjunctive normal form (CNF) formula is a conjunction of clauses,
each of which is a disjunction of literals. We denote a CNF formula by a set
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of clauses, a clause by a set of literals, and the empty clause by 2. We use the
Boolean connectives ¬,∧,∨,→,↔ with their standard interpretation.

Given a set V of Boolean variables, a set L = V ∪ {v | v ∈ V } of positive
and negative literals over V , and the existential (∃) and universal (∀) quantifiers,
a quantified Boolean formula (QBF) P.φ in prenex conjunctive normal form
(PCNF) consists of the prefix P = Q1v1 . . . Qkvk with Qi ∈ {∃,∀}, vi ∈ V , and
vi 6= vj if i 6= j, and the CNF matrix φ ⊂ 2L. All QBFs in this work are assumed
to be in PCNF, to be closed, i.e., all literals in the matrix are quantified in the
prefix, and to be free of tautological clauses. For each variable vi ∈ V , its quantifier
level lev(vi) is the number of alternations between ∃ and ∀ quantifiers from Q1 to
Qi. We apply this definition also to literals, i.e., lev(l) = lev(var(l)). The quantifier
index of vi is idx(vi) = i. Similarly, for literal l, idx(l) = idx(var(l)). The set V
of variables is partitioned into the set V∃ = {vi ∈ V | Qi = ∃} of existential
variables and the set V∀ = {vi ∈ V | Qi = ∀} of universal variables. We use
letters from the beginning of the Latin alphabet for existential variables/literals,
letters from the end for universal variables/literals, and v for either.

A (partial) assignment to a QBF Φ = P.φ is a set σ ⊂ L where it holds that
if l ∈ σ then l 6∈ σ. The assignment condition cond(σ) is the conjunction (

∧
l∈σ l)

of literals in σ. A clause C is evaluated under an assignment σ to Cdσ such that
Cdσ = > if C ∩ σ 6= ∅, Cdσ = ⊥ if C \ {v | v ∈ σ} = ∅, and Cdσ = C \ {v | v ∈ σ}
otherwise. A QBF Φ is evaluated under an assignment σ to Φdσ by replacing
each C ∈ φ by Cdσ. The QBF ∀xP.φ is true if and only if P.φd{x} and P.φd{x}
are true. The QBF ∃eP.φ is true if and only if P.φd{e} or P.φd{e} is true.

A clause containing a variable in both polarities is tautological. In QBF
reasoning the derivation of such clauses can be useful under certain conditions.
A universal variable x contained in a clause C as both x and x is called a merged
variable. A merged literal l∗ is used to replace both literals l and l in C. We
define var(l∗) = var(l), lev(l∗) = lev(l), and idx(l∗) = idx(l).

The QBF proof systems considered in this work are based on the two derivation
rules resolution and universal reduction. Given two clauses C1 and C2, and a pivot
variable p with p ∈ C1, p ∈ C2, resolution produces the clause resolve(C1, p, C2) =
C1\{p}∪C2\{p}. We call this rule an ordinary resolution if the following condition
holds: For all (merged or regular) literals l1 ∈ C1 \ {p} and l2 ∈ C2 \ {p} it holds
that if var(l1) = var(l2) then l1 = l2 and l1 is not merged. Otherwise we refer
to it as long-distance resolution. We further distinguish ordinary resolution into
resolve∃ if p ∈ V∃ and resolve∀ if p ∈ V∀. We call long-distance resolution over
pivot p ∈ V∃ proper and denote it by resolve∃L if the following index restriction
holds: For all (merged or regular) literals l1 ∈ C1 \ {p} and l2 ∈ C2 \ {p} it holds
that if var(l1) = var(l2) and either l1 6= l2 or l1 is merged, then var(l1) ∈ V∀
and idx(l1) = idx(l2) > idx(p). Note that since p ∈ V∃ and l1, l2 ∈ V∀, lev can be
used instead of idx. Given a clause C, universal reduction produces the clause
reduce(C) = C \ {l | var(l) ∈ V∀ and lev(l) > lev(l′) for all l′ ∈ C with var(l′) ∈
V∃}, i.e., it removes from C all universal variables whose quantifier levels are
greater than the largest level of any existential variable in C. Note that reduce
applies to merged literals from C in the same way as it applies to regular literals.
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The following three QBF resolution proof systems are sound and complete: Q-
resolution [11] contains the derivation rules reduce and resolve∃. QU-resolution [17]
and LQ-resolution [1] extend Q-resolution by the rules resolve∀ and resolve∃L,
respectively. A {Q,QU,LQ}-resolution proof Π of the falsity of a QBF Φ = P .φ is
a directed acyclic graph (DAG) representing clauses derived from φ by repeated
applications of the respective rules in process of deriving 2. The operation reduce
is applied to any clause in Π from which it can remove a literal. (Note that
the definition of a QU-resolution proof in [17] does not include the mandatory
application of reduce. We discuss the influence of arbitrarily postponing the reduce
operation in Section 3.1.) We call application of a derivation rule a step. The
size of Π is the number of clauses in Π that are derived by resolution (not by
reduction). By topological order we refer to any order following the derivation
steps in Π from the clauses in φ to 2.

To witness the falsity (truth) of a QBF, a countermodel (model) can be built
in terms of Herbrand (Skolem) functions. A false (true) QBF Φ = P.φ warrants
the existence of a Herbrand (Skolem) function hv (sv) for each v ∈ V∀ (v ∈ V∃)
referring only to the variables {e ∈ V∃ | lev(e) < lev(v)} ({x ∈ V∀ | lev(x) <
lev(v)}) such that substituting each appearance of a variable v in φ by its function
hv (sv) makes the resultant formula, denoted Φ[H] for H = {hv | v ∈ V∀} (Φ[S]
for S = {sv | v ∈ V∃}), unsatisfiable (tautological).

3 Resolution Proof Systems and their Complexities

In this section, we first show an exponential gap between the proof complexities
of LQ-resolution and QU-resolution with respect to two families of QBFs obtained
by modifications of a family of QBFs introduced in [11] (in the sequel called
“KBKF family”). Then we introduce two new resolution proof systems, both of
which are extensions of Q-resolution, and show an exponential separation between
QU-resolution, LQ-resolution, and one of the new resolution systems.

3.1 Incomparability of LQ- and QU-resolutions

We first give an intuition of how to engineer a false QBF that inhibits resolve∀
and resolve∃L steps in any of its resolution proofs. Ex. 1 shows a false QBF for
which any resolution proof cannot contain resolve∀ or resolve∃L steps.

Ex. 1. Consider the false QBF Φ = ∃a∀x∀y∃b.(a, x, y, b)(a, x, y, b)(x, y, b)(x, y, b).
The falsity of Φ is shown by the Herbrand functions hy = hx = a. Let Π be a
QU-resolution proof of Φ. Since lev(x) = lev(y), the universal reduction reduce
always removes both x and y at once. Thus, any clause in Π either contains
both x and y in the same polarity, or neither x nor y in any polarity. It follows
that Π cannot contain any clause derived by resolve∀. Alternatively, let Π be an
LQ-resolution proof of Φ. Due to the level restriction, any resolve∃L step must
have a as pivot variable, so resolve∃L((a, x, y, b), a, (a, x, y, b)) = (x∗, y∗, b) is the
only possible such step. However, this resolvent can never be used in a derivation
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of 2, because the necessary pivot literal b always occurs in clauses together with
literals of x and y, which forbids any further resolution.

Definition 1 reproduces the definition of the KBKF family [11]. Theorem 3.2
in [11] claims that any Q-resolution proof for members of this family is of size
exponential in t [11], but its proof is not completely given. It has further been
shown that there exist a QU-resolution proof [17] and an LQ-resolution proof [6]
of size polynomial in t. For the remainder of this section it is important to keep
in mind that for all i ∈ [1..t], lev(ei) = lev(di) < lev(xi) and lev(xt) < lev(fi).

Definition 1 (KBKF family[11]). For t > 1, the tth member KBKF[t] of the
KBKF family consists of the following prefix and clauses:

∃d1e1 ∀x1 ∃d2e2 ∀x2 .. ∃dtet ∀xt ∃f1..ft
B = (d1, e1)

Di = (di, xi, di+1, ei+1) Ei = (ei, xi, di+1, ei+1) for i ∈ [1..t− 1]

Dt = (dt, xt, f1, .., f t) Et = (et, xt, f1, .., f t)
Fi = (xi, fi) F ′

i = (xi, fi) for i ∈ [1..t]

We now apply ideas from Ex. 1 to transform the KBKF family into the family
KBKF-qu, for which, based on Theorem 3.2 in [11], the smallest QU-refutations
are of exponential size but there exist LQ-refutations of size polynomial in t. It
follows from the existence of these proofs that the members of this family are
false. For t > 1, KBKF-qu[t] is obtained from KBKF[t] by adding fresh universal
variables yi to some clauses.

Definition 2 (KBKF-qu family). For t > 1, the tth member KBKF-qu[t] of the
KBKF-qu family consists of the following prefix and clauses:

∃d1e1 ∀x1y1 ∃d2e2 ∀x2y2 .. ∃dtet ∀xtyt ∃f1..ft
B = (d1, e1)

Di = (di, xi, yi, di+1, ei+1) Ei = (ei, xi, yi, di+1, ei+1) for i ∈ [1..t− 1]

Dt = (dt, xt, yt, f1, .., f t) Et = (et, xt, yt, f1, .., f t)
F1 = (xi, yi, fi) F ′

i = (xi, yi, fi) for i ∈ [1..t]

The following proposition shows that the shortest Q-refutation for KBKF-qu[t]

is at least as long as the shortest Q-refutation for KBKF[t].

Proposition 1. Given a false QBF Φ = Q1v1 .. Qkvk. C1∧C2∧ ..∧Cn over the
set V of variables, it holds that for any variable v ∈ V , if Φ∗ = Q1v1 .. Qkvk. C1∧
..∧ (Cj ∪ {lit(v)})∧ ..∧Cn is false, then the smallest {Q,QU,LQ}-resolution proof
for Φ∗ is at least as large as that for Φ.

The validity of Proposition 1 can be understood by the fact that removing the
literal lit(v) from the clause (Cj ∪ {lit(v)}) can only decrease the proof size of Φ∗.
Note that adding a fresh variable v 6∈ V to P influences neither the satisfiability
of Φ, nor the validity of any of its Q-resolution proofs. Thus Proposition 1 can
be extended for addition of fresh variables to P and their literals to φ.

Theorem 1. For t > 1 there exists an LQ-refutation of polynomial size for
KBKF-qu[t], but any QU-refutation for KBKF-qu[t] is of exponential size in t (based
on Theorem 3.2 in [11]).
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Proof. Except for the clause B, each clause of KBKF-qu[t] contains two universal
variables x, y with the same level and the same polarity. For any QU-refutation, in
order to have a resolve∀ step over two clauses C1 and C2 with x (respectively y)
as pivot, y (x) must be removed from one of the clauses, which can only be done
by reduce. Whenever y (x) is reduced, so is x (y). Therefore, any QU-refutation
will be a Q-refutation , and by Theorem 3.2 in [11] and Proposition 1, the shortest
Q-refutation for KBKF-qu is exponential. On the other hand, by following the
method proposed in Proposition 1 of [6], a polynomial LQ-refutation can be
obtained. ut

We continue with the following modification of the KBKF family that inhibits
resolve∃L steps but allows polynomial QU-refutations. For t > 1, KBKF-lq[t] is
retrieved from KBKF[t] by adding literals f1, .., f t to clauses B, Di and Ei, and
literals f i+1, .., f t to clauses Fi and F ′i , for all i ∈ [1..t− 1].

Definition 3 (KBKF-lq family). For t > 1, the tth member KBKF-lq[t] of the
KBKF-lq family consists of the following prefix and clauses:

∃d1e1 ∀x1 ∃d2e2 ∀x2 .. ∃dtet ∀xt ∃f1..ft
B = (d1, e1, f1, .., f t)

Di = (di, xi, di+1, ei+1, f1, .., f t) Ei = (ei, xi, di+1, ei+1, f1, .., f t) for i ∈ [1..t− 1]

Dt = (dt, xt, f1, .., f t) Et = (et, xt, f1, .., f t)

Fi = (xi, fi, f i+1, .., f t) F ′
i = (xi, fi, f i+1, .., f t) for i ∈ [1..t− 1]

Ft = (xt, ft) F ′
t = (xt, ft)

Observation 1. For t > 1 any member KBKF-lq[t] of the KBKF-lq family is an
extended quantified Horn (QE-Horn) formula [11] and QE-Horn formulas are
closed under LQ-resolution.

The closure of QE-Horn formulas under LQ-resolution directly follows from
their closure under Q-resolution (observe that the resolve∃L rule does not influence
existential literals in the clauses). On the other hand, note that QE-Horn formulas
are not closed under QU-resolution. Further, the following three invariants hold
for any member of KBKF-lq family.

Lemma 1 (Invariant 1). Given any LQ-resolution proof Π of a formula KBKF-

lq[t], the following holds for any clause C ∈ Π: For all i ∈ [1..t], if fi ∈ C then
lit(xi) ∈ C, and if f i ∈ C then for any j ∈ [i..t] either f j ∈ C or lit(xj) ∈ C.

Proof. First, observe that the invariant holds for any clause in the original clause
set of KBKF-lq[t]. Let C be a clause derived from C ′ by exactly one derivation step,
such that fi ∈ C and fi ∈ C ′. If lit(xi) ∈ C ′ then it must hold that lit(xi) ∈ C,
because resolution on universal variables is forbidden and the presence of fi
disallows the universal reduction of lit(xi) in both C ′ and C. Thus by induction
it holds for any clause C that if fi ∈ C then lit(xi) ∈ C.

Now let C be a clause derived from C ′ by exactly one derivation step, such
that f i ∈ C and f i ∈ C ′. If lit(xj) ∈ C ′ for some j ∈ [i..t], then lit(xj) ∈ C for
the same reasons as above. If f j ∈ C ′ for some j ∈ [i..t], then either lit(xj) ∈ C
(in the case where fj is the pivot variable, i.e., C = resolve(C ′, fj , C

′′) with
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fj , lit(xj) ∈ C ′′ by the above discussion), or f j ∈ C (in any other case). Thus by

induction it holds for any clause C that if f i ∈ C then for any j ∈ [i..t] either
f j ∈ C or lit(xj) ∈ C. ut

Lemma 2 (Invariant 2). Given any LQ-resolution proof Π of a formula KBKF-

lq[t] the following holds for any clause C ∈ Π: For all i ∈ [1..t], if lit(di) ∈ C or
lit(ei) ∈ C then fj 6∈ C for any j ∈ [1..t].

Proof. First, the invariant holds for any clause in the original clause set of
KBKF-lq[t]. Now let C = resolve(C1, p, C2), where lit(ei) ∈ C or lit(di) ∈ C, and
lit(ei) ∈ C1 or lit(di) ∈ C1 for some i ∈ [1..t].

If lit(ek) ∈ C2 or lit(dk) ∈ C2 for some k ∈ [1..t], then by inductive hypothesis
it holds that fj 6∈ C1 and fj 6∈ C2 for all j ∈ [1..t]. Therefore, by the definition of
resolve, it holds that fj 6∈ C for all j ∈ [1..t].

Else, lit(ei) 6∈ C2 and lit(di) 6∈ C2, thus we are left with p = fk for some
k ∈ [1..t]. By inductive hypothesis, fj 6∈ C1 for all j ∈ [1..t], therefore fk ∈ C1

and fk ∈ C2. By Observation 1 it holds that fj 6∈ C2 for all j ∈ [1..t] with j 6= k.
Thus for all j ∈ [1..t] it holds that fj 6∈ C.

Therefore, by induction it holds for any clause C and for all i ∈ [1..t] that if
lit(di) ∈ C or lit(ei) ∈ C then fj 6∈ C for any j ∈ [1..t]. ut

Lemma 3 (Invariant 3). Given any LQ-resolution proof Π of a formula KBKF-

lq[t] the following holds for any clause C ∈ Π: For all i ∈ [1..t] it holds that if
lit(di) ∈ C or lit(ei) ∈ C then for any j ∈ [1..i− 1] either f j ∈ C or lit(xj) ∈ C.

Proof. First, note that the invariant holds for any clause of the original clause
set of KBKF-lq[t]. Now, let C be a clause retrieved from C ′ by one derivation step,
such that lit(ei) ∈ C ′ or lit(di) ∈ C ′, and lit(ei) ∈ C or lit(di) ∈ C. If for some
j ∈ [1..i− 1] it holds that lit(xj) ∈ C ′, then lit(xj) ∈ C for the same reasons as
in the proof of Invariant 1 (recall that lev(ei) = lev(di) > lev(xj) for j ∈ [1..i− 1],
therefore disallowing universal reduction of lit(xj) in the presence of either lit(ei)
or lit(di)). If f j ∈ C ′ for some j ∈ [1..i− 1] , then either lit(xj) ∈ C (in the case
where fj is the pivot variable, i.e., C = resolve(C ′, fj , C

′′) with {fj , lit(xj)} ∈ C ′′
by Invariant 1), or f j ∈ C (in any other case).

Therefore by induction it holds for any clause C and for all i ∈ [1..t] that if
lit(di) ∈ C or lit(ei) ∈ C then for any j ∈ [1..i− 1] either f j ∈ C or lit(xj) ∈ C.

ut

Theorem 2. For t > 1 there exists a QU-resolution proof of polynomial size for
KBKF-lq[t], but any LQ-resolution proof for KBKF-lq[t] is of exponential size in t
(based on Theorem 3.2 in [11]).

Proof. For t > 1, a QU-refutation of polynomial size in t for KBKF-lq[t] can
be constructed as follows: The unit clause (ft) is obtained by the resolution
step resolve∀(Ft, xt, F

′
t). Then, for each i ∈ [1..t − 1], the unit clause (fi) is

obtained by recursively resolving all previous units (fi+1)..(ft) with the resolvent
resolve∀(Fi, xi, F

′
i ). For i ∈ [1..t] these unit clauses are used to remove all fi from
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the clauses Di, Ei, and B, and the existential literals ei and di are removed one
after another by resolve∃ over the remaining clauses.

For the remainder of this proof, let Π be an LQ-resolution proof for KBKF-

lq[t]. Let the three clauses C1 = (A1, p,X,R1), C2 = (A2, p,X,R2), and C =
(A,X∗, R) be parts of a resolve∃L step in Π, where X is a set of universal
literals, X = {x | x ∈ X}, X∗ = {x∗ | x ∈ X}, C = resolve∃L(C1, p, C2) is the
resolvent of C1 and C2, A = A1 ∪ A2, and R = R1 ∪ R2. Let xm and xn be
the variables with the lowest, respectively the highest, level among the variables
in X. By definition of resolve∃L it holds that lev(p) < lev(xm). Without loss
of generality, for i ∈ {1, 2} let Ri = {v ∈ Ci | v 6∈ X ∧ lev(v) > lev(xm)}
and Ai = {v ∈ Ci | v 6∈ (X ∪ Ri ∪ {p})}. Therefore, R = {v ∈ C | v 6∈
X∗ ∧ lev(v) > lev(xm)} and A = {v ∈ C | v 6∈ (X∗ ∪ R)}. It is important to
notice that the existential literals in R have to be removed from successors of C
before X∗ can be reduced. Further, fi 6∈ R for all i ∈ [1..t] by Invariant 2, and
R1, R2 6= ∅ because otherwise xm would be reduced before deriving C. Hence
R ⊂ {lit(ei), lit(di), lit(xi) | m < i ≤ t} ∪ {f i | 1 ≤ i ≤ t}.

We now show by case distinction on the existential variables in R that the
clause C can either not contribute to the derivation of 2 in Π because at least
one of the merged variables can never be reduced, or that the subclause A can be
retrieved from C1, C2, and the input clauses in a polynomial number of derivation
steps in the Q-resolution calculus. Under the assumption that Π is of polynomial
size, its polynomial transformation into a Q-resolution proof contradicts with
Proposition 1 and Theorem 3.2 in [11], stating that any Q-resolution for any
member of KBKF-lq is exponential. Therefore, Π must be exponential.

Case 1. fn ∈ R. To remove fn, C has to be resolved with a clause C ′

containing fn. By Invariant 1, C ′ contains lit(xn). Thus fn cannot be removed
from R due to the level restriction on resolve∃L steps. Therefore, C 6∈ Π.

Case 2. lit(di) ∈ R or lit(ei) ∈ R. Recall that i > m, and without loss of
generality, let di ∈ R. To remove di, C has to be resolved with a clause C ′

containing di. By Invariant 3, C ′ either contains lit(xm) or fm. In the first case,
the level restriction on resolve∃L steps forbids the resolution, and in the latter
case, Invariant 1 applies to the resolvent similarly as in Case 1. Therefore, C 6∈ Π.

Case 3. f i ∈ R and i < n. Similarly to Case 2, to remove f i, C has to
be resolved with a clause C ′ containing fi. By Invariant 1, C ′ either contains
lit(xn), which blocks the resolution as in Case 1 and Case 2, or it contains fn
and therefore to its resolvent, Case 1 applies. Therefore, C 6∈ Π.

Case 4. f i ∈ R and i > n. Assume without loss of generality that f i ∈ R1.
For j ∈ [i..t] let the set X ′ contain xj if xj ∈ R1 and contain xj if xj 6∈
R1. By applying resolve∃ over an adequate subset of the clauses {Fj , F ′j | i ≤
j ≤ t}, the clause (fi, X

′) can be obtained in a polynomial number of steps
and be resolved with C to eliminate fi. This procedure can be applied to
eliminate all f i literals from R1 and thus enable reduce on the variables in X.
By applying the same rewriting to C2 eventually resolve∃L(C1, p, C2) transforms
into resolve∃(C1 \ {X,F1}, p, C2 \ {X,F2}), where F1 = {f i | i > n ∧ f i ∈ C1}
and F2 = {f i | i > n ∧ f i ∈ C2}. ut
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For {Q, QU, LQ}-resolution, we follow the assumption that universal reduction
is performed whenever possible. If one allows postponing the reduction arbitrarily
(as in the definition of QU-resolution in [17]), it will generalize the aforementioned
proof systems and allow a larger number of sound refutations. In the sequel we
call a refutation where the reduction of at least one universal variable has been
postponed a postponed refutation and a clause that contains a universal variable
which could be universally reduced, but is still present in at least one of its child
clauses, a postponed clause. The following corollary from Proposition 1 shows
that postponing cannot lead to shorter refutations in terms of the number of
resolutions for any of the {Q, QU, LQ}-resolution proof systems.

Corollary 1. Given a false QBF Φ, let Π be its shortest {Q, QU, LQ}-refutation,
and let Π∗ be its shortest postponed {Q, QU, LQ}-refutation. Then |Π∗| ≥ |Π|.

Proposition 1 can be applied to all topologically first postponed clauses
in a postponed refutation and therefore, the corollary follows. By Corollary 1,
Theorems 1 and 2 hold for postponed QU-refutations as well.

3.2 New Resolution Proof Systems

We propose two additional resolution systems for QBF. The first, LQU-resolution,
is defined as an extension of Q-resolution by adding both the resolve∀ and the
resolve∃L derivation rules. The second, LQU+-resolution, extends LQU-resolution
by the new derivation rule resolve∀L that allows proper long-distance resolutions
under universally quantified pivots. The proof for soundness of resolve∀L is similar
to that of resolve∃L rule in [1]. Note that the index restriction imposed on resolve∀L
cannot be simplified to level restriction as for resolve∃L, since the universal pivot
may have the same level as a merged literal in the same proof step. The following
example shows that relaxing the index restriction to the level restriction is
unsound for resolve∀L.

Ex. 2. Consider the true QBF Φ = ∀x ∀y ∃a. (x, y, a)1 (x, y, a)2 (x, y, a)3 (x, y, a)4.
The Skolem function sa = (x↔ y) shows that Φ is true. Note that lev(x) = lev(y),
but idx(x) < idx(y). If the index restriction is neglected, then the following
unsound proof Π can be built.

Π =


1. clause5 = resolve∀L(clause1, x, clause2) = (y∗, a)
2. clause6 = resolve∀L(clause3, y, clause4) = (x∗, a)
3. clause7 = resolve∃(clause5, a, clause6) = (x∗, y∗)
4. clause∅ = reduce(clause7) = 2


Note that the index restriction on x and y would disallow resolve∀L step 2.

Table 1 compares the five proof systems discussed in this section by listing
their derivation rules. In each line, the derivation rules for each proof system
are marked by “x”. All proof systems are sound and refutationally complete for
QBF. The completeness of LQU-resolution and LQU+-resolution follows from
the completeness of Q-resolution. The soundness of LQU-resolution and LQU+-
resolution is an extension of Theorem 4 in [1] and can be proved similarly.
We extend the definition of a {Q,QU,LQ}-resolution proof Π to {LQU,LQU+}-
resolution by adding the corresponding derivation rules.
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Table 1. Summary of Proof System Rules.

reduce resolve∃ resolve∀ resolve∃L resolve∀L

Q-resolution [11] x x

QU-resolution[17] x x x

LQ-resolution[1] x x x

LQU-resolution x x x x

LQU+-resolution x x x x x

3.3 Superiority and Limitation of LQU- and LQU+-resolutions

KBKF-qu and KBKF-lq families can be combined into a family KBKF-lqu that has
exponential smallest proofs in both QU-resolution and LQ-resolution, but polyno-
mial proofs in LQU-resolution. Proposition 2 and Theorem 3 below demonstrate
bounds on the shortest proofs for combinations of QBF formulas.

Proposition 2 (cf. [6], Proposition 5). Given a false QBF Φ = P.φ, a literal
e ∈ V∃, an LQU-resolution proof Π for Φ, both Φd{e} and Φd{e} are false QBFs
and Π can be modified in polynomial time with respect to its size to obtain a new
proof Πde (respectively Πde) deriving 2 from Φd{e} (respectively Φd{e}).

This proposition extends Proposition 5 in [6] by allowing e to have an arbitrary
quantifier level and allowing the proof to contain resolve∀ steps. The extension is
sound, since the proof in [6] is independent of the quantifier levels of existential
variables and can also be incorporated with resolve∀ and resolve∃L rules. 1 The
same result for Q-resolution has been proposed in [8]. By Proposition 2 also Φdσ
and Πdσ for any assignment σ to existential variables of Φ can be constructed.

Theorem 3. Given two disjoint sets V1 and V2 of variables, let Φ1 = P1.φ1 and
Φ2 = P2.φ2 be two false QBFs over V1 and V2, respectively. Let Π1 and Π2 be
their respective shortest LQU-resolution proofs. Let Φ = ∃aP1P2.(φ1∨a)∧(φ2∨a),
where a 6∈ V1 ∪ V2, and for i ∈ {1, 2}, (φi ∨ a) stands for {C ∪ {a} | C ∈ φi}.
Then Φ is false and the size of its shortest LQU-refutation is |Π1|+ |Π2|+ 1.

Proof. By following the resolution steps of Π1 on the clauses of (φ1 ∨ a) we
retrieve the clause (a), by following the resolution steps of Π2, on (φ2 ∨ a)
we retrieve (a), and resolving the two unit clauses results in 2. Thus an LQU-
resolution proof Π with |Π| = |Π| = |Π1|+ |Π2|+ 1 is constructed. Let Π be
any LQU-resolution proof for Φ and let Πd{a} be the proof generated for Φd{a}
as by Proposition 2 and let n1 (resp. n2) be the number of resolution steps in
Π under any pivot p ∈ V1 (resp. any pivot p ∈ V2). By construction, Φd{a} = Φ2

and therefore n2 ≥ |Πd{a}| ≥ |Π2|. The dual case holds for Πd{a}, resulting in
n1 ≥ |Πd{a}| ≥ |Π1|. Finally, in a derivation of 2 from Φ, there must be at least
one resolve∃ with pivot variable a. As V1 ∩ V2 = ∅ and a 6∈ V1 ∪ V2 we conclude
|Π| ≥ |Π1| + |Π2| + 1. Note that if V1 and V2 are not disjoint, then in similar
way we can only prove a weaker bound |Π| ≥ max(|Π1|, |Π2|) + 1. ut
1 The proof is found in the Appendix of [6], available in the online version of the paper

at http://www.kr.tuwien.ac.at/staff/widl/publications/2013/lpar13.pdf
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Definition 4 (KBKF-lqu family). For t > 1, let Pq.φq be the tth member of
the KBKF-qu family over variable set V q, and let P l.φl be the tth member of the
KBKF-lq family over variable set V l, where V q ∩ V l = ∅. Let a be a fresh variable
with a 6∈ V q ∪ V l. The tth member KBKF-lqu[t] in the KBKF-lqu family is defined
as ∃aPqP l.(φq ∨ a) ∧ (φl ∨ a).

Corollary 2. For t > 1, the smallest proofs for KBKF-lqu[t] are polynomial
for LQU-resolution, but are exponential for LQ-resolution and exponential for
QU-resolution (based on Theorem 3.2 in [11]).

Whether the LQU+-resolution calculus has an exponential separation with
respect to LQU remains an open problem. The following example, however, shows
how LQU+-resolution can be more beneficial than LQU-resolution in some cases.

Ex. 3. Consider the false QBF Φ = ∃a∀x∀y∃b.(a, x, b)1(a, x, b)2(x, y, b)3(x, y, b)4.

Notice that Φ is similar as in Ex. 1, that it has Herbrand functions hy = hx = a,
and that an LQU-resolution proof of the falsity of Φ cannot contain any of the
steps resolve∀ and resolve∃L, relevant to the derivation of an empty clause. There
exists, however, an LQU+-resolution proof Π, which contains a resolve∀L step.

Π =


1. clause5 = resolve∃L(clause1, a, clause2) = (x∗, b)

2. clause6 = resolve∀L(clause3, x, clause4) = (y∗, b)

3. clause7 = resolve∃(clause5, b, clause6) = (x∗, y∗)

4. clause∅ = reduce(clause7) = 2


4 Certificate Extraction

In this section we examine existing methods for countermodel construction from
{Q,LQ}-resolution proofs and extend them for {QU,LQU}-resolution proofs. All
the discussions can be dually extended to cube resolution proofs for true QBFs
as proposed in [1]. The Algorithm Countermodel construct [1] was proposed to
extract Herbrand functions from Q-resolution proofs. We show in the following
proposition that this algorithm is also sound for QU-resolution proofs.

Proposition 3. For a false QBF Φ and a corresponding QU-resolution proof Π,
algorithm Countermodel construct of [1] returns a correct countermodel for Φ.

Proof. Theorem 3 of [1] shows the correctness of Countermodel construct for
Q-resolution proofs. Since the way it is proved is not affected by the presence of
resolve∀ steps, it is also sound for QU-resolution proofs. ut

Note that the algorithm Countermodel construct applied to QU-refutations of
KBKF[t] proposed in [18] returns countermodel H =

⋃
i∈[1..t] hxi with hxi = di∧ei,

since for each i ∈ [1..t] the literal lit(xi) is universally reduced only twice in
the whole proof, namely in clauses (di, xi) and (ei, xi). It is also worth noticing
that KBKF[t] has even simpler Herbrand functions than those constructed by
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LQU countermodel construct
input: a false QBF Φ and its LQ-resolution proof Π
output: Herbrand model H for Φ
begin
00 let Σ the set of all assignments to variables VPΠ

01 foreach assignment σ ∈ Σ
02 (Φσ, Πσ) := unmerge(Φ,Π, σ);
03 Hσ := Countermodel construct(Φσ, Πσ);
04 H := {hx | hx =

(∨
σ∈Σ(hσx ∧ cond(σ))

)
for hσx ∈ Hσ};

05 return H;
end

Fig. 1. Algorithm: LQU Countermodel Construction.

Countermodel construct, namely hxi = di for all i ∈ [1..t]. The existence
of these simple functions motivates to further investigate the (counter)model
extraction from proofs of different resolution systems.

In contrast to QU-resolution proofs, the algorithm Countermodel construct

is unsound for LQ-resolution proofs due to the possible presence of resolve∃L
steps. A conversion of an LQ-resolution proof into a Q-resolution proof in order
to apply Countermodel construct has been proposed [1], but it can result in an
exponential blow-up. We propose an algorithm to extract Herbrand functions for
a false QBF directly from its LQ-resolution proofs. The algorithm is outlined in
Fig. 1. By Proposition 3 it applies LQU-resolution proofs as well. The procedure
unmerge(Φ,Π, σ) is central to the algorithm. It transforms an LQU-resolution
proof Π into a QU-refutation as follows. Let VPΠ

⊆ V∃ be the exact set of the
pivot variables in the resolve∃L steps of Π. Given an LQU-resolution proof Π for
a false QBF Φ = P.φ and an assignment σ to a set Vσ of variables of Φ with
VPΠ

⊆ Vσ ⊆ V∃, unmerge(Φ,Π, σ) traverses Π in a topological order. Whenever
it encounters two clauses Ca = C1 ∪ {l, p} and Cb = C2 ∪ {l, p} resolving into
C = resolve∃L(Ca, p, Cb) = C1 ∪ C2 ∪ {l∗}, it applies the following rewriting rule.
Two cases are distinguished by the polarity of the pivot’s literal in σ.

(C1 ∪ {l, p}) (C2 ∪ {l, p})
(C1 ∪ C2 ∪ {l∗})

p∈σ−−→
(C1∪{l,p}) (C1∪{l,p})

(C1∪{p}) (C2 ∪ {l, p})
(C1 ∪ C2 ∪ {l})

(C1 ∪ {l, p}) (C2 ∪ {l, p})
(C1 ∪ C2 ∪ {l∗})

p∈σ−−→
(C1 ∪ {l, p}) (C2∪{l,p}) (C2∪{l,p})

(C2∪{p})

(C1 ∪ C2 ∪ {l})

If there are more than one merged literals in C, unmerge is applied several times
to eliminate all of them. Intuitively, this procedure adds clauses to φ in order to
substitute all resolve∃L steps. It preserves the order of reduce and does not create
any new resolve∃L steps. It never encounters resolve∃L on two clauses containing
merged literals because these literals are removed by the rewriting rule in an
earlier iteration. We denote the QBF resulting from unmerge(Φ,Π, σ) by Φσ, and
the resulting (QU-resolution) proof by Πσ.
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Given a Herbrand model H and an assignment σ, the Herbrand model Hdσ
results from replacing each variable v in H by > if v ∈ σ and by ⊥ if v ∈ σ. The
following two observations establish the connection between Φσ and Φdσ.

Observation 2. Let H be a set of Herbrand functions for a false QBF Φ, and
σ be an assignment to some existential variables of Φ. Then Hdσ is a set of
Herbrand functions for the false QBF Φdσ.

Observation 3. For any assignment σ to variables in VPΠ
, it holds that Πdσ =

(Πσ)dσ. By Observation 2, if H is a set of Herbrand functions for Φσ, then Hdσ
is a set of Herbrand functions for Φdσ.

The algorithm LQU countermodel construct takes a false QBF Φ and an
LQU-resolution proof Π of Φ as input. It then collects the pivots of all resolve∃L
steps in Π into the set VPΠ

and iteratively picks an assignment σ to the variables
in VPΠ

. For each assignment, a QU-resolution proof is constructed by unmerge in
Line 02. Note that unmerge was defined for any set of existential variables contain-
ing VPΠ

. It however suffices to consider the assignments to VPΠ
only. In Line 03,

Countermodel construct is applied to extract parts of the countermodel for Φ,
which are then put together in Line 04. Note that the Herbrand function Fx
returned by the algorithm LQU countermodel construct for a universal variable
x permits its dependency on the universal variables x′ with lvl(x′) < lvl(x). All
occurrences of such x′ in Fx should be substituted by the corresponding Her-
brand functions Fx′ , resulting into the function that depends only on existential
variables.

Theorem 4 below states the soundness of LQU countermodel construct. Note
that from this theorem also follows the soundness of LQU-resolution.

Theorem 4. Given a false QBF Φ = P.φ and an LQU-resolution proof Π for Φ,
LQU countermodel construct returns correct Herbrand functions for Φ.

Proof. Consider any assignment σ to VPΠ
variables. By construction, Hdσ = Hσ.

Taking in account Observation 3, the Herbrand functions Hdσ falsify the formula
Φdσ. Thus H falsifies φ under any assignment to existential variables.

It remains to show that for each x ∈ V∀, its Herbrand function hx ∈ H
respects the variable ordering of P. (As constructed, hx includes all variables
in σ due to the assignment condition cond(σ).) Notice that under a given σ,
the constructed hσx is uniquely defined by the ordered set of clauses in Πσ from
which x is removed by universal reduction. By construction, Πσ has exactly the
same universal reduction steps as Π, with the only difference that every literal
l∗ is replaced by l or l, depending on σ. For two assignments σ1 and σ2, compare
clauses Cσ1 ∈ Πσ1 and Cσ2 ∈ Πσ2 that correspond to clause C ∈ Π and result
from universal reduction on x. If (l ∈ σ1)∧ (lev(l) < lev(x)) implies l ∈ σ2 for any
literal l, then by the definition of unmerge we conclude that Cσ1 = Cσ2 and that
x was universally reduced as the same literal to get both Cσ1 and Cσ2 . Thus hx
is independent of any variable in {v ∈ VPΠ

| lev(v) > lev(x)}. ut
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Table 2. Time and Memory Statistics for KBKF Family of QBF Instances.

t
DepQBF ResQu DepQBF-lq ResQu-lqu

time |Π| time memory verify time |Π| time memory verify

2 0 24 0 1 0 0 27 0 1 0
3 0 50 0 1 0 0 43 0 1 0
4 0 106 0 1 0.1 0 59 0 1 0.1
5 0 230 0 1 0.1 0 75 0 1 0.1
6 0 506 0 1 0.1 0 91 0 1 0.1
7 0 1.1k 0 1 0.1 0 107 0 1 0.1
8 0 2.5k 0 2 0.1 0 123 0 2 0.1
9 0 5.4k 0 3 0.1 0 139 0 2 0.1
10 0.1 11.8k 0.1 7 0.1 0 155 0 4 0.1
11 0.2 25.6k 0.1 14 0.3 0 171 0.1 8 0.1
12 0.5 55.3k 0.3 58 0.7 0 187 0.1 18 0.1
13 1.2 118.8k 0.6 123 2.3 0 203 0.3 37 0.1
14 2.8 254.0k 1.4 261 7.6 0 219 0.7 79 0.1
15 6.8 540.7k 3.0 550 30.5 0 235 1.8 169 0.1
16 16.6 1.15M 6.7 1.2G -1 0 251 3.9 360 0.8
17 41.0 2.42M 15.1 2.4G -1 0 267 9.4 767 5.4
18 102.8 5.11M 33.6 5.1G -1 0 283 20.5 1.6G 40.4
19 261.5 10.75M 74.1 10.7G -1 0 299 48.8 3.4G -1
20 674.2 22.54M 175.7 22.5G -1 0 315 95.1 7.2G -1

The time complexity of LQU countermodel construct is in the worst case ex-
ponential in the proof size. In practice, however, it can be more efficient than
converting LQ-resolution proofs into Q-resolution proofs [1], as will be evident
in Section 5. Note that the algorithm LQU countermodel construct is unsound
for LQU+-resolution proofs due to the presence of universal variables in VPΠ

.

5 Experiments

In this section we evaluate the proposed algorithm LQU countermodel construct

on members of the KBKF family. To the best of our knowledge, there is currently no
tool available to construct QU-resolution proofs (and consequently LQU-resolution
proofs). Hence we test LQU countermodel construct on LQ-resolution proofs,
and compare the results to those obtained by Countermodel construct [1] from
the corresponding Q-resolution proofs. The experiments were conducted on a
Linux machine with a Xeon 2.3 GHz CPU and 32 GB RAM.

Table 2 summarizes time and memory statistics for solving, extracting, and
verifying Herbrand functions for members of the KBKF family up to t = 20. ResQu
implements the algorithm Countermodel construct, ResQu-lqu implements
LQU countermodel construct, DepQBF stands for the solver proposed in [13],
and DepQBF-lq for its extension by LQ-resolution [6]. The column “time” refers
to the runtime in seconds, “|Π|” to the size of the resulting proof, “memory”
to the maximal memory consumption (in MB for unit unspecified entries), and
“verify” to the time needed by the SAT-solver MiniSAT [5] embedded in ABC [3]
to verify the certificate where “-1” stands for a timeout with a limit of 1,000s.

The superiority of LQ-resolution compared to Q-resolution is evident in all
aspects. Since Q-resolution proofs produced by DepQBF are exponential in t.
ResQu also requires resources exponential in t. On the other hand, LQ-resolution
proofs produced by DepQBF-lq are linear in t. Despite its exponential worst-
case behavior, ResQu-lqu considerably outperforms ResQu in both time and
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memory consumption, although it still requires exponential resources due to the
exponential size of the constructed Herbrand functions.

6 Conclusions and Future Work

Q
LQ QU

LQU

LQU+

Fig. 2. Relations among
the Proof Systems.

We have presented results related to both theoreti-
cal and practical aspects of QBF evaluation. On the
theoretical side, we have shown the incomparability
between two proof systems, QU-resolution and LQ-
resolution, from literature. Additionally, we have pro-
posed two new extended proof systems, LQU-resolution
and LQU+-resolution, and have shown the two new
systems to be exponentially stronger than both of the
above. It remains open whether an exponential gap
exists between the proof complexities of LQU-resolution and LQU+-resolution.
Fig. 2 summarizes our results on the relations between the discussed proof sys-
tems. Since modern QBF solvers heavily rely on resolution techniques, we expect
our theoretical results to inspire future work in the area of QBF solving.

On the practical side, we have designed a new algorithm to extract Herbrand
certificates from LQU-resolution proofs. An implementation and experimental
evaluation underline its practical applicability and advantage over the certificates
from Q-resolution. For future work, a polynomial time algorithm for certificate
extraction from LQU-resolution proofs would be very desirable.
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