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Functional Timing Analysis Made Fast and General
Yi-Ting Chung and Jie-Hong R. Jiang, Member, IEEE

Abstract—Functional, in contrast to structural, timing analysis
for circuit delay computation is accurate, but computationally
expensive in refuting false critical paths. Despite recent progress
on satisfiability-based functional timing analysis, the formulation
generality and computation efficiency remain room for further
improvement. This paper provides a unified view on different
notions of timed characteristic functions and efficient trans-
formation for satisfiability solving. Experimental results show
functional timing analysis on industrial designs can be made
up to several orders of magnitude faster and more generally
applicable than prior methods.

Index Terms—functional timing analysis, satisfiability solving,
timed characteristic function.

I. INTRODUCTION

In modern synthesis flow of very large scale integration
(VLSI) design, timing analysis is essential in identifying
timing critical regions for re-synthesis, determining operable
clock frequencies, and avoiding wasteful over-optimization
and thus accelerating design closure in meeting stringent tim-
ing constraints. As timing analysis often has to be repeatedly
performed, how to make the computation efficient and accurate
becomes a crucial task.

There are two main approaches to timing analysis. Static
timing analysis (STA), based on pure structural (or topolog-
ical) analysis, though fast with linear-time complexity, can
be too pessimistic in estimating circuit delay due to the
ignorance of false or nonsensitizable paths [3]. Functional
timing analysis (FTA), on the other hand, provides accurate
delay calculation, but is computationally intractable, i.e., NP-
hard, in identifying false critical paths [10].

Many FTA algorithms, e.g., [1], [3], [5], [6], [9], [10], [13],
[14], [16], [18], have been proposed. When delay-dependency
is concerned, an FTA algorithm can be delay-independent
[5] or delay-dependent [3]. The former (latter) identifies true
and false paths without (with) respect to some timing library.
Whereas the former is incomplete in that not every delay path
can be concluded true or false regardless of arbitrary delay
assignments, this paper focuses on the latter analysis.

When the underlying computation engine is concerned,
an FTA algorithm can be equipped with an automatic test
pattern generator, e.g., [1], [6], or by a satisfiability (SAT)
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solver, e.g., [9], [13], [18]. Since ATPG-based computation
involves sophisticated circuit transformation and multi-fault
testing, it is difficult to implement and scale. In contrast,
SAT-based computation allows simple implementation due
to its clean separation between timed characteristic function
(TCF) construction [10] and SAT solving. Although recent
advances in SAT solving techniques [7], [11], [12] make
SAT-based FTA a viable approach, FTA for large industrial
designs remains challenging due to the massive numbers of
variables and clauses when translating a complex TCF into a
conjunctive normal form (CNF) formula for SAT solving. On
the other hand, prior SAT-based FTA methods focused only
on maximum delay computation; other timing computation
problems naturally addressable under the TCF formulation
are largely ignored. Moreover, prior methods [9], [18] cannot
handle arbitrary gate types. Although formulation for general
gate types has been proposed in [13], its complex formulas
make SAT solving inefficient.

The limitations of prior methods motivate this work towards
the development of a general TCF framework supporting
fast and scalable computation for various FTA problems and
arbitrary gate types. The main results include

1) a generalized FTA framework supporting delay compu-
tation, and analysis for combinational cyclic circuits,

2) a unified implication-based CNF encoding for various
types of TCFs for arbitrary complex gate types under
both combined and separate rise/fall-time delay models,

3) a TCF reduction technique with an improved equiva-
lence table, based on the list of essential arrival times,

4) a reusing strategy reducing CNF variables,
5) a model generation mechanism, which produces a true

critical path along with its sensitization condition if the
target delay is sensitizable, and

6) an algorithm to identify timing critical regions of a
circuit for potential timing optimization.

Experimental results show that our method achieves substan-
tial speedup over prior FTA methods and effective critical
region identification.

The rest of this paper is organized as follows. Section II
provides the background of circuit behavior model and sensi-
tization criteria. TCFs and their effective CNF translations are
then presented in Section III, and the reduction techniques of
TCFs are showed in Section IV. Section V presents efficient
and general FTA algorithms for delay computation and critical
region identification. Experimental results are evaluated in
Section VI. Finally, conclusions are given in Section VII.

II. PRELIMINARIES

A. Propositional Satisfiability
In this paper we encode an FTA problem as a propositional

formula in the conjunctive normal form (CNF) for SAT
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solving. The dual representation of CNF is the disjunctive
normal form (DNF). Precisely, a CNF (DNF) formula is a
conjunction of clauses (disjunction of cubes); a clause (cube)
is a disjunction (conjunction) of literals; a literal is a Boolean
variable or its negation. The corresponding literal of variable
x in a cube or clause c is denoted as lit(x) ∈ c. The polarity
of literal l, denoted pol(l), for variable x is defined to be 0 if
l = ¬x and 1 if l = x. The satisfiability problem asks whether
there exists a satisfying assignment to the set of variables that
makes a CNF formula true. The reader is referred to [12], [11],
[7] for modern SAT solving techniques, and to [19], [15] for
circuit-to-CNF conversion.

B. Circuit Model

A (combinational) circuit C(N,E) is composed of nodes
(or gates) N and directed edges E ⊆ N × N . Two disjoint
subsets of N are distinguished as primary inputs (PIs) and
primary outputs (POs). Each node is associated with two
attributes: function and delay. We assume the function can
be arbitrary, from simple gate types, such as buffer, inverter,
NAND, NOR, etc., to complex function units, such as XOR,
multiplexer, AOI, etc. In the sequel, we sometimes do not
distinguish a node from its function and its output variable
when it is clear from the context. We assume the gate delay
can vary from pin to pin and vary between rise and fall time.
Without loss of generality, interconnect delays are assumed to
be integrated into the gate delays under this timing model.

For a node f in a circuit, we let FI (f) and FO(f) denote
the fanin and fanout nodes of f , respectively. For g ∈ FI (f),
we say g is of controlling value vc ∈ B = {0, 1} of f if the
output value of f can be completely determined by g with
value vc regardless of the truth assignments to other inputs.
On the contrary, g is of non-controlling value vn ∈ B of f
if the output value of f cannot be completely determined by
g with value vn without referring to the truth assignments to
other inputs. For example, any input of an AND gate is of
controlling value 0. For a complex gate, such as XOR, its
inputs may not have controlling values however.

The notion of controlling values can be generalized to
controlling cubes. For a complex gate f , a truth assignment
to a minimal (strict) subset S ⊂ FI (f) that determines
the output value of f independent of other fanins forms a
controlling cube. Specifically, let P1 and P0 denote the sets
of all prime implicants (or, simply, primes) of the onset and
offset of f , respectively. The set of all controlling cubes can
be obtained by the union of P1 and P0 excluding the minterm
primes, that is, the primes whose literal counts equal the size
of FI(f). In addition, a literal in a controlling cube c is
called a controlling literal of c. For example, the controlling
cubes of the gate f with function P1 = {xy,¬x¬y¬z} and
P0 = {x¬y,¬xy,¬xz} has a controlling cube set C =
{xy, x¬y,¬xy,¬xz}, and ¬y is a controlling literal of cube
x¬y.

C. Sensitization Criteria

Among the various modes of circuit operation when func-
tional timing analysis is concerned, floating-mode operation,

which we adopt, is the most popular due to its simplicity and
robustness [10]. Under this mode of operation, the signals of
a circuit are of unknown initial values and steady to their
final values induced by a set of truth assignments on the
PIs. Therefore only one input vector is necessary for the
timing analysis. In contrast, a two-vector based analysis, e.g.,
[16], does not respect the monotone speedup property, which
maintains that the analyzed circuit delay should not increase
due to the delay decrease of some constituent delay elements
[10]. Moreover, since the two-vector analysis is with respect
to fixed exact delays, it is improper in practice because often
the delay of a delay element varies. In contrast, a delay in
floating mode analysis is treated as an upper/lower bound. The
analysis obeys the monotone speedup property and handles
delay variation naturally. Therefore it is more desirable for
logic synthesis than two-vector analysis.

Under the floating-mode operation, various path sensitiza-
tion criteria can be defined.The exact criterion [3] and viable
criterion [10] are two commonly studied criteria. When the
truth and falsity of a specified path is concerned, the analysis
of the former is exact whereas that of the latter is conservative
[3]. Nevertheless, when the timing analysis is performed for
all paths of a circuit without tracing a particular path, the
viable criterion becomes exact as was shown in [14]. This
paper is mainly concerned with computing the longest/shortest
true delay among all paths.

III. TIMED CHARACTERISTIC FUNCTIONS

A timed characteristic function of a node f characterizes a
set of PI assignments that make the output value of f change
from its initial unknown value to a final steady value and
meet a specified timing requirement. Specifically, an earlier
TCF χf,<t (respectively, a later TCF χf,>t) is satisfiable
if there exists some PI assignment making f steady earlier
(respectively, later) than time t. Similarly, a no-earlier TCF
χf,≥t (respectively, a no-later TCF χf,≤t) is satisfiable if
there exists some PI assignment making f steady no-earlier
(respectively, no-later) than time t. Clearly χf,<t = ¬χf,≥t

and χf,>t = ¬χf,≤t. Moreover, a 0/1-specified TCF χf=v,�t,
for v ∈ {0, 1} and � ∈ {<,≤, >,≥}, further constrains the
final steady value of f to logic value 0 or 1. For example,
χf=1,<t characterizes the set of PI assignments that make f
steady to value 1 earlier than time t. By the TCF definition,
we know that χf,≥t1 → χf,≥t2 for t1 ≥ t2, and such
implication properties hold for other types of TCFs as well.
Note also that χf,<t = χf=0,<t ∨ χf=1,<t. Although adding
0/1-specificity may double the TCF formula size, it allows
distinction between rising and falling delays and thus permits
more accurate timing analysis.
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Fig. 1. Circuit under Timing Analysis
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Example 1: Consider the circuit of Figure 1. Assume every
gate is of 1 unit delay, and the signal arrival times of inputs
a, b, and c are 0. Then the various TCFs of f with t = 2 can
be computed as follows.

χf=0,>2 = 0 χf=1,>2 = 0 χf,>2 = 0
χf=0,≤2 = (¬a ∨ ¬b)¬c χf=1,≤2 = ab ∨ c χf,≤2 = 1
χf=0,<2 = 0 χf=1,<2 = c χf,<2 = c
χf=0,≥2 = (¬a ∨ ¬b)¬c χf=1,≥2 = ab¬c χf,≥2 = ¬c

It can be verified that χf,�t = χf=0,�t ∨ χf=1,�t for
� ∈ {<,≤, >,≥}, and χf,>t = ¬χf,≤t. Since the maximum
topological delay of this circuit is 2, the later TCFs χf=0,>2,
χf=1,>2, and χf,>2 are all false, that is, no PI assignments can
make f settle to value 0 or 1 later than time 2. In contrast, the
no-later TCF χf,≤2 is a tautology, but χf=0,≤2 and χf=1,≤2

are not tautologies due to the logic value constraints of f (that
is, to make f = 0, both a ∧ b and c must be 0, whereas to
make f = 1, a∧ b or c must be 1). For the earlier TCF χf,<2,
it characterizes the set of PI assignments that make the value
of f settle earlier than the topological maximum delay. By
the timing constraint and the circuit structure, f can only be
sensitized by the path from c to f , rather than by the paths
from a to m to f and from b to m to f . Since c cannot sensitize
f to value 0 before the value of m is determined, χf=0,<2 is
unsatisfiable. On the other hand, χf=1,<2 = c because f = 1
can be sensitized by c = 1 at time 1. For the no-earlier TCF
χf,≥2, it characterizes the PI assignment ¬c that sensitizes the
structural critical paths.

Below we consider various timing analysis problems using
TCF formulation. Different TCFs are then compared for their
efficacy.

A. Maximum Delay for Signal Steadiness

Maximum delay computation is essential in detecting setup-
time violation. To ensure that the delay of a circuit is always
smaller than some threshold T , the satisfiability of formula∨

p∈PO

χp,≥T (1)

is checked. The formula is unsatisfiable if and only if the
circuit has no timing violation with respect to upper bound
T since there exists no PI assignment under which the value
of some PO remains unknown at time T . So the maximum
delay of a circuit can be computed by gradually reducing the
threshold T from some trivial upper bound, e.g., computed
by STA based on circuit topology, until Formula (1) becomes
satisfiable. Therefore the delay calculation can be applied for
checking setup time violation.

In implementation, the TCFs of Formula (1) can be con-
structed recursively from POs to PIs and further converted
into a CNF formula for SAT solving as we detail below.

1) Prior Formulation: For TCF formulation without 0/1-
specificity, prior work [18] reformulated the exact [3] and
viable [10] sensitization criteria (with path tracing) for circuit
maximum delay computation (without path tracing) with the

following no-earlier TCFs

χf,≥t =
∨

gi∈FI (f)

{χgi,≥t−di ∧ [(gi = vci) ∧∧
gj∈FI (f)

(χgj ,≥t−dj ∨ (gj = vnj )) ∨∧
gj∈FI (f)

(gj = vnj )]} and (2)

χf,≥t =
∨

gi∈FI (f)

χgi,≥t−di ∧

∧
gi∈FI (f)

(χgi,≥t−di ∨ (gi = vni)) (3)

respectively, where di is the pin-to-pin delay from gi to f and
vci and vni are the controlling and non-controlling values of
gi.1 Equations (2) and (3) were considered in [18] as exact and
approximative circuit delay computation, respectively, even
though Equation (3) is in fact exact [14].

The recursive definition of χf,≥t naturally translates to a
combinational circuit. For a k-input simple gate f , Equa-
tions (2) and (3) result in (k2+13k+2) and (5k+3) clauses
with (4k + 1) and (k + 1) extra variables being introduced,
respectively, by Tseitin’s circuit-to-CNF conversion [19]. The
satisfiability of such a TCF can be difficult to solve espe-
cially when the corresponding circuit is large. (Note that the
increased number of nodes in the new circuit is bounded from
above by the summation of the number of possible arrival
times of every node in the original circuit.)

For TCF formulation with 0/1-specificity, prior work [9]
intended to improve [18] by exploiting early TCF to simplify
TCF circuits. The following equations were proposed.

χf,≥t = χf=1,≥t ∨ χf=0,≥t

= (f ∧ ¬χf=1,<t) ∨ (¬f ∧ ¬χf=0,<t), (4)

which is used in expressing Formula (1). In addition,

χf=1,<t =

{ ∧
gi∈FI (f) χ

gi=1,<t−dri , for AND-gate f∨
gi∈FI (f) χ

gi=1,<t−dri , for OR-gate f

χf=0,<t =

{ ∨
gi∈FI (f) χ

gi=0,<t−dfi , for AND-gate f∧
gi∈FI (f) χ

gi=0,<t−dfi , for OR-gate f
(5)

where dri and dfi are the corresponding rising and falling pin-
to-pin delays from gi to f , respectively. In Equation (4), TCF
χf,≥t is obtained from two subcases χf=1,<t and χf=0,<t.
Note that χf=v,≥t ̸= ¬χf=v,<t, but rather χf=v,≥t = (f ⊕
¬v) ∧ ¬χf=v,<t.

Observe that, since Equation (5) in circuit representation
consists of a single gate, no internal variable needs to be
introduced in conversion to CNF. On the other hand, because
the equations work for simple gates only, timing analysis of
circuits with complex gates cannot be handled directly in [9].
In fact, as proposed back in [13], a general formulation for

1Equation (2) looks different from the one in [18] as it was previously
expressed by both exact and viable TCFs.
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complex gates had been obtained with the following equations

χf=1,<t =
∨
c∈P1

∧
lit(gi)∈c

χgi=pol(lit(gi)),<t−dri and

χf=0,<t =
∨
c∈P0

∧
lit(gi)∈c

χgi=pol(lit(gi)),<t−dfi , (6)

where recall that P1 and P0 are the sets of all prime im-
plicants of f and ¬f , respectively, and pol(lit(gi)) = 0 if
lit(gi) = ¬gi and pol(lit(gi)) = 1 if lit(gi) = gi. When
Equation (6) is translated to CNF by Tseitin’s transformation,
the corresponding TCF circuit has (2|Pv| + 1 +

∑
c∈Pv

|c|)
clauses and |Pv| extra variables for χf=v,<t, v ∈ {0, 1}. (In
this paper, the cardinality of a set S is denoted as |S|; a cube
is treated as a set of literals.) Note that when AND and OR
gates are concerned, Equation (6) reduces to Equation (5) with
some proper circuit simplification.

Note that, although in the worst case the number of prime
implicants of a Boolean function can be exponential in the
number of variables, TCFs can still be effectively constructed
because a primitive gate in a standard cell library cannot have
many inputs (typically less than six).

2) Our Formulation: For TCF formulation without 0/1-
specificity, a close examination of Equations (2) and (3)
reveals that they are essentially equivalent in circuit delay
computation. In fact, as shown back in [14], Equation (3)
yields exact (rather than approximative, as interpreted in [18])
analysis when path tracing is not performed.

Building upon Equation (3), we propose a no-earlier TCF
formula general for arbitrary complex gates and compact for
CNF translation. By using implication, the formula below only
requires linear time CNF conversion without building TCF
circuits or introducing any extra variable.

Proposition 1: Consider the satisfiability of the no-earlier
TCF of some node f in a circuit with respect to some timing
requirement t. Let C be the set of controlling cubes of f . The
no-earlier TCF of f without 0/1-specificity can be expressed
as

χf,≥t →
∨

gi∈FI (f)

χgi,≥t−di∧
∧
c∈C

∨
lit(gi)∈c

(χgi,≥t−di∨¬lit(gi)),

(7)
and be directly translated into the CNF formula

(¬χf,≥t ∨
∨

gi∈FI (f)

χgi,≥t−di)∧

∧
c∈C

(¬χf,≥t ∨
∨

lit(gi)∈c

(χgi,≥t−di ∨ ¬lit(gi)) (8)

with |C|+1 clauses by the Plaisted-Greenbaum encoding [15].
Proof: There are exactly two possible cases for the value

of f being determined before time t. First, the value of every
gi ∈ FI (f) is determined before time (t− di). Second, every
constituent input gi of some controlling cube c is determined
to its corresponding value lit(gi) ∈ c before time (t − di).
Since any of the above cases makes χf,≥t false, the condition

can be formally translated to

¬χf,≥t =
∧

gi∈FI (f)

¬χgi,≥t−di ∨

∨
c∈C

∧
lit(gi)∈c

(¬χgi,≥t−di ∧ lit(gi))),

whose negation equals

χf,≥t =
∨

gi∈FI (f)

χgi,≥t−di ∧

∧
c∈C

∨
lit(gi)∈c

(χgi,≥t−di ∨ ¬lit(gi))),

which reduces to Equation (3) for simple gates (with control-
ling values, in other words, with one-literal controlling cubes).

With the key observation that χf,≥t is recursively defined
in the above equation with the appearance only in the positive
phase without any negation, implication suffices to express
the TCF constraints and the above equation reduces to For-
mula (7). The validity can be shown as follows. Observe
that the implication based translation is logically implied
by the equation based translation. If the implication based
translation yields no satisfying solution, then the equation
based translation must yield no satisfying solution, either.
Hence we only need to consider the satisfiable case.

We claim that any satisfying solution (in terms of PI
assignments) to the recursive implication based translation of
χf,≥t must be an satisfying solution to the recursive equation
based translation. Notice that, to verify the satisfiability of
χf,≥t, a clause with a single literal (χf,≥t), i.e., a unit
clause, will be added to the final CNF formula for SAT
solving. Suppose a SAT solver returns a satisfying solution
to the entire recursively constructed CNF formula. Consider
this satisfying assignment restricted to the recursive trans-
lation of some node g′ in the transitive fanin cone of f .
Essentially there are three cases to analyze based on the
valuation of the left-hand side (LHS) and right-hand side
(RHS) of the equation χg′,≥t′ =

∨
gi∈FI (g′) χ

gi,≥t′−di ∧∧
c∈C′

∨
lit(gi)∈c(χ

gi,≥t′−di ∨ ¬lit(gi))), where C ′ is the set
of controlling cubes of g′ and di is the pin-to-pin delay from
gi to g′. For the first case, when the LHS and RHS are both
valuated to true, both equation and implication based trans-
lations agree and no discrepancy occurs between implication
and equation based translations. For the second case, if the
LHS were valuated to true and the RHS valuated to false, this
valuation would be forbidden by both translations and thus
is impossible. For the third case, when the LHS is valuated
to false and RHS valuated to true, this valuation is allowed
by the implication based translation, but disallowed by the
equation based translation. However, since the RHS definition
of χg′,≥t′ is valuated to true under both translations, this
valuation imposes the same logical constraints towards PIs.
As all TCF variables in the recursive TCF definition appear in
the same positive phase, the above argument holds recursively
for any TCF variables assigned to true. As a consequence,
any PI assignment satisfying the recursive implication based
translation of χf,≥t should also satisfy the recursive equation
based translation. The proposition follows.
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The advantage of using implication, instead of equation, is
that we can apply Plaisted-Greenbaum encoding [15], instead
of Tseitin encoding, in converting TCFs to CNF formulas.
Specifically, Formula (7) can be directly translated into the
CNF Formula (8). Hence, unlike prior methods, building TCF
circuits is not necessary.

Note that, in converting the entire recursive definition of
χf,≥t, Tseitin encoding is still needed for parts of the original
circuit that are relevant to the literals lit(gi) in individual TCFs
(since these literals may appear in both positive and negative
phases). Nevertheless the conversion with Tseitin encoding
is applied once on the original circuit and is shared by all
individual TCFs.

a

b
d

P1

P2

e

Fig. 2. Circuit under Timing Analysis

An example of TCF construction using Formula (7) is given
below for illustration.

Example 2: Consider the circuit of Figure 2 with PIs a and
b, and POs P1 and P2. Assume every gate has a unit delay and
PIs have zero arrival time. For maximum delay computation,
initially let T = 4 (the maximum topological delay) and check
the satisfiability of (χP1,≥T ∨ χP2,≥T ) by constructing TCFs
using Formula (7). By the recursive construction, we derive
the following implications.

χP1,≥4 → (χa,≥3 ∨ χd,≥3) = (0 ∨ χd,≥3) = (χd,≥3)

χd,≥3 → (χb,≥2) = 0

That is, for P1 to have its delay ≥ 4, some of its fanins
must have delay ≥ 3. Moreover, since a has arrival time
0, χa,≥3 must be false. Note that, since PIs steady at time
0, the no-earlier TCF of a PI with timing requirement larger
than 0 (smaller than or equal to 0) equals constant 0 (constant
1). Hence the above two-literal clause is simplified to a unit
clause, which contains only one literal χd,≥3. By recursive
TCF construction, for χd,≥3 to be true, it implies χb,≥2 must
be true. However χb,≥2 must be false because b has arrival
time 0. So we can conclude P1 cannot have delay ≥ 4. We
proceed checking if P2 can have delay ≥ 4, and the following
implications can be derived.

χP2,≥4 → (χb,≥3 ∨ χe,≥3)(χb,≥3 ∨ b)(χe,≥3 ∨ e) =

(0 ∨ χe,≥3)(0 ∨ b)(χe,≥3 ∨ e) = (χe,≥3)(b)

χe,≥3 → (χd,≥2 ∨ χP1,≥2)(χd,≥2 ∨ d)(χP1,≥2 ∨ P1)

χd,≥2 → (χb,≥1) = 0

χP1,≥2 → (χa,≥1 ∨ χd,≥1) = (χd,≥1)

χd,≥1 → (χb,≥0) = 1

Thereby the implication of χe,≥3 can be simplified as follows.

χe,≥3 → (χd,≥2 ∨ χP1,≥2)(χd,≥2 ∨ d)(χP1,≥2 ∨ P1) =

(0 ∨ 1)(0 ∨ d)(1 ∨ P1) = (d)

So the implication of χP2,≥4 can be further simplified as
follows.

χP2,≥4 → (d)(b)

Because χP2,≥4 is unsatisfiable due to the fact that b and d
cannot be both true, we conclude that the circuit delay must
be smaller than 4. Similar analysis can be conducted with
respect to a smaller T until the target TCF formula becomes
satisfiable.

For TCF formulation with 0/1-specificity, observe that all
earlier TCFs in Equation (4) have negative polarities whereas
those in Equation (6) have positive ones. Therefore the
Plaisted-Greenbaum encoding cannot be directly applied for
CNF conversion. Fortunately, by negating Equation (6) its
earlier TCFs are in negative polarities uniformly. Hence the
Plaisted-Greenbaum encoding can be applied again as follows.

Proposition 2: Consider the satisfiabilities of ¬χf=1,<t and
¬χf=0,<t of some node f in a circuit with respect to some
timing requirement t. Let P1 and P0 be the set of all prime
implicants of f and ¬f , respectively. The earlier TCF with
0/1-specificity of f can be expressed as

¬χf=1,<t →
∧
c∈P1

∨
lit(gi)∈c

¬χgi=pol(lit(gi)),<t−dri and

¬χf=0,<t →
∧
c∈P0

∨
lit(gi)∈c

¬χgi=pol(lit(gi)),<t−dfi , (9)

and be directly translated into the CNF formulas

∧
c∈P1

(χf=1,<t ∨
∨

lit(gi)∈c

¬χgi=pol(lit(gi)),<t−dri ) and

∧
c∈P0

(χf=0,<t ∨
∨

lit(gi)∈c

¬χgi=pol(lit(gi)),<t−dfi ), (10)

respectively, with |P1| and |P0| clauses each.
Proof: Formula (9) is simply the implication version of

the negated form of Equation (6). The reason why implication
suffices can be shown by an argument similar to the proof of
Proposition 1.

Although the implication-based Formula (9) simplifies CNF
translation, Equation (4) requires conversion from earlier TCFs
to a non-earlier TCF. We exploit an alternative formulation that
requires no TCF type change as follows.

Proposition 3: Consider the satisfiabilities of χf=1,≥t and
χf=0,≥t of some node f in a circuit with respect to some
timing requirement t. Let P1 and P0 be the set of all prime
implicants of f and ¬f , respectively. The no-earlier TCF of
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f with 0/1-specificity can be expressed as

χf=1,≥t → f ∧∧
c∈P1

∨
lit(gi)∈c

(χgi=pol(lit(gi)),≥t−dri ∨ ¬lit(gi))

χf=0,≥t → ¬f ∧∧
c∈P0

∨
lit(gi)∈c

(χgi=pol(lit(gi)),≥t−dfi ∨ ¬lit(gi)),

(11)

and be directly translated into the CNF formulas

(¬χf=1,≥t ∨ f)∧∧
c∈P1

∨
lit(gi)∈c

(¬χf=1,≥t ∨ χgi=pol(lit(gi)),≥t−dri ∨ ¬lit(gi))

(¬χf=0,≥t ∨ ¬f)∧∧
c∈P0

∨
lit(gi)∈c

(¬χf=0,≥t ∨ χgi=pol(lit(gi)),≥t−dfi ∨ ¬lit(gi)).

(12)

Proof: The validity of Formula (11) can be established
by Equation (4) and a similar reasoning of Proposition 1.
Since χf,≥t can be replaced by χf=1,≥t∨χf=0,≥t, Formula (1)
can be expressed recursively using Formula (11). The Plaisted-
Greenbaum encoding can again be applied here.

B. Minimum Delay for Signal Steadiness

By duality, under the floating mode operation the minimum
delay for signals starting to get ready can be formulated. The
formulation may be useful in applications such as variable
latency design [2], where the fraction of PI assignments that
obey some required timing constraint is of concern. The
minimum and maximum delays of signal steadiness provide a
range in searching an optimal operating frequency in variable
latency design. (Note however that such minimum delay
cannot be used to determine the hold-time constraint since
signal transition may happen before the computed minimum
delay for signal steadiness.)

The minimum delay of signal steadiness can be obtained by
computing the maximum T that makes the formula∧

p∈PO

χp,≥T (13)

remain a tautology. (The formula is a tautology if and only if
the circuit has no PI assignment under which the value of some
PO remains unknown at time T .) Equivalently, it corresponds
to computing the maximum T that makes the formula∨

p∈PO

χp,<T =
∨

p∈PO

¬χp,≥T (14)

remain unsatisfiable. By the recursive TCF construction of
Formula (8), we know that Formulas (13) and (14) are in
CNF and DNF, respectively. Because tautology checking on
CNF and satsifiability checking on DNF are computationally
tractable, determining the minimum delay of a circuit’s signal
steadiness can be done in polynomial time.

Example 3: Consider the circuit of Figure 2 under the unit
delay model. Assume all PIs have zero arrival time. Since the
minimum topological delay is 1, (χP1,≥T ∧χP2,≥T ) is surely
a tautology for T = 1. For T = 2,

χP1,≥2 → (χa,≥1 ∨ χd,≥1) = (χd,≥1)

χd,≥1 → (χb,≥0) = 1

χP2,≥2 → (χb,≥1 ∨ χe,≥1)(χb,≥1 ∨ b)(χe,≥1 ∨ e) =

(χe,≥1)(b)

χe,≥1 → (χd,≥0 ∨ χP1,≥0)(χd,≥0 ∨ d)(χP1,≥0 ∨ P1) = 1

From constructing χP2,≥2, we know under b = 0 the formula
cannot be a tautology. Since χP2,≥2 is not a tautology, the
minimum topological delay for signal steadiness is 1 instead
of 2.

In fact, some of the recursive calls in Examples 2 and 3 are
redundant due to the equivalence of TCFs, and can be reduced
by the techniques to be introduced in Section IV.

C. Cyclic Circuit Delay Computation

The TCF formulation can be naturally extended for timing
analysis of combinational cyclic circuits [17].

Proposition 4: A cyclic circuit C is combinational if and
only if ∨

p∈PO

χp,>maxD (15)

is unsatisfiable, where maxD is the delay of the longest path
(without gate recurrence) of C and TCF χp,>maxD can be
expressed by Formula (7) with “≥” replaced by “>.”

Proof: (=⇒) If a cyclic circuit C is combinational, then
Formula (15) must be unsatisfiable. Otherwise there must be
some sensitizable path containing a loop making the delay
value larger than maxD . That is, there must be some PI
assignment that makes a PO sensitizable to the loop nodes,
whose values are not readily determined by the PI assign-
ment. However, in floating mode sensitization, all signals are
assumed to be of the unknown initial value. If the value of
a node on the loop cannot not be purely determined by other
side fanin signals (not on the loop), the output of the node
will remain unknown since the valuation of every loop node
awaits the valuations of other loop nodes. Therefore, the cyclic
circuit is not combinational because some PO cannot always
steady to a final value within any finite time bound.

(⇐=) If Formula (15) is unsatisfiable, then all POs steady
to their deterministic final values within maxD under every PI
assignment. So any sensitized path in the circuit never form a
cycle, and the circuit behaves combinationally.

Moreover, the TCF formulation of timing analysis for com-
binational cyclic circuits is the same as that for acyclic circuits,
except that the computation of arrival times is different as to
be detailed in Section IV-B.

D. Comparison on TCF Formulas

Table I compares our formulations with those of [18], [9],
and [13] for maximum delay computation. For a k-input AND
or OR gate, the number of extra variables and the number of
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TABLE I
TCF COMPARISON

TCF PO Generality
Eq #Var #Clause Eq CG 0/1

[18] (2) k + 1 5k + 3 (1) No No
(3) 4k + 1 k2 + 13k + 2 (1) No No

[9] (5) 0 2k + 2 (4) No Yes
[13] (6) k + 1 4k + 4 (4) Yes Yes

Ours

(7) 0 k + 1 (1) Yes No
(9) 0 k + 1 (4) Yes Yes
(11) 0 k + 3 (1) Yes Yes

clauses corresponding to the TCF formulas in Column 2 are
shown in Columns 3 and 4, respectively. The corresponding
PO equations are showed in Column 5. Among the PO
equations, only Equation (4) needs extra 2|PO| variables and
9|PO| clauses to convert the TCF type. The generality for each
formulation in supporting complex gate types (denoted CG)
and supporting rise/fall delays (denoted 0/1) are summarized
in Columns 6 and 7, respectively.

IV. REDUCTION TECHNIQUES

A. Equivalence Reduction

Given a circuit with a node f , its TCFs χf,�t for all time t
can be partitioned into equivalence classes. This equivalence
relation can be exploited to simplify the recursive TCF con-
struction.

In [13], [9], TCF equivalence based on arrival-time informa-
tion is introduced. Assume that the possible arrival times A(f)
of node f are sorted in an ascending order as {a1, a2, . . . , am}
with ai−1 < ai. It was shown that χf=v,<t = χf=v,<ai if
ai−1 < t ≤ ai. That is, two temporal conditions t1 and t2
of f are equivalent if they have the same next larger-or-equal
arrival time in A(f).

This paper further extends equivalence reduction for 12
types of TCFs as shown in Table II. Assume the TCFs of f ,
f = 1, and f = 0 have sorted arrival times {a1, . . . , am},
{a11, . . . , a1p}, and {a01, . . . , a0n}, respectively, (in ascending
orders). For each type of TCF in the table, three equivalence
time intervals are shown, including the first, ith, and last
intervals. For example, TCFs χf,≥t1 and χf,≥t2 belong to the
same equivalence class as χf,≥ai if ai−1 < t1, t2 ≤ ai, i.e.,
both t1 and t2 are in the interval (ai−1, ai]. In this case, they
can be expressed by the same representative TCF χf,≥ai .

A table look-up approach is adopted for practical imple-
mentation. By consulting Table II, a representative TCF of the
equivalence class corresponding to a given t can be retrieved to
simplify the recursive construction. Our equivalence reduction
method has several improvements over prior approaches [13],
[9] in the following ways.

1) Distinguished Arrival Times: For TCFs with 0/1-
specificity, the set of arrival times of a node f is further
distinguished into two sets A1(f) = {a11, a12, ..., a1p} and
A0(f) = {a01, a02, ..., a0n} for those resulting in f = 1 and
f = 0, respectively. This distinction reduces the number of
arrival times and thus TCF equivalence classes.

TABLE II
TCF EQUIVALENCE CLASSES

[0, a1] (ai−1, ai] (am,∞)

χf,≥t 1 χf,≥ai 0
χf,<t 0 χf,<ai 1

[0, a11] (a1i−1, a
1
i ] (a1p,∞)

χf=1,≥t f χf=1,≥a1
i 0

χf=1,<t 0 χf=1,<a1
i f

[0, a01] (a0i−1, a
0
i ] (a0n,∞)

χf=0,≥t ¬f χf=0,≥a0
i 0

χf=0,<t 0 χf=0,<a0
i ¬f

[0, a1) [ai−1, ai) [am,∞)

χf,>t 1 χf,>ai−1 0
χf,≤t 0 χf,≤ai−1 1

[0, a11) [a1i−1, a
1
i ) [a1p,∞)

χf=1,>t f χf=1,>a1
i−1 0

χf=1,≤t 0 χf=1,≤a1
i−1 f

[0, a01) [a0i−1, a
0
i ) [a0n,∞)

χf=0,>t ¬f χf=0,>a0
i−1 0

χf=0,≤t 0 χf=0,≤a0
i−1 ¬f

2) Simplified Boundary Conditions: Under boundary condi-
tions, the TCF of a node f is substituted with a constant 0, con-
stant 1, literal f , or literal ¬f for further reduction as shown in
Table II. For example, if t is larger than the maximum arrival
time am of a node f , then χf,≥t is unsatisfiable since f always
stabilizes before t. In this case, χf,≥t, χf=1,≥t and χf=0,≥t

all equal Boolean constant 0. On the contrary, if t is not larger
than the minimum arrival time a1, then χf,≥t is a tautology
(but χf=1,≥t and χf=0,≥t are not necessarily tautologies).
That is, χf,≥t equals constant 1, and furthermore χf=v,≥t can
be simplified to f ⊕ ¬v by χf=v,≥t = (f ⊕ ¬v) ∧ χf,≥t for
v ∈ {0, 1}.

Observe that, in Formula (11), let v = pol(lit(gi)),
χgi=v,≥t−di and ¬lit(gi) are always present together in a
clause with ¬lit(gi) = gi ⊕ v. When χgi,≥t−di = 1, since
χgi=v,≥t−di = gi ⊕ ¬v, this clause must be satisfied due
to (χgi=v,≥t−di ∨ ¬lit(gi)) = ((gi ⊕ ¬v) ∨ (gi ⊕ v)) = 1.
Therefore, whenever χgi,≥t−di = 1, substituting constant
1 for χgi=1,≥t−di and χgi=0,≥t−di is safe without altering
the satisfiability of χf,≥t. (That is, the literals f and ¬f
in the second column of Table II can be replaced by 1 in
constructing Formula (11).) As a result, our no-earlier TCFs
without and with 0/1-specificity can be simplified with such
constant substitution.

3) Reduced PI and PO TCFs: Our TCF equivalence reduc-
tion is applied to all nodes including PIs and POs. According
to Table II, any TCF of a PI f is either a constant 0, constant
1, literal f , or literal ¬f because any PI has only one arrival
time. On the other hand, since the arrival times at POs are
the only candidate circuit delays, this information is exploited
to save unnecessary checking. More precisely, only PO arrival
times are checked for circuit delay by Formula (1); once some
candidate delay is falsified, this delay and other larger (or
smaller) delays are removed from the arrival-time lists of all
POs. For example, assume two POs p1 and p2 have arrival-time
lists {4, 5, 7} and {6, 7}, respectively. If (χp1,≥7 ∨ χp2,≥7) is



8

unsatisfiable, we remove 7 from the two lists. Then we check
(χp1,≥6 ∨ χp2,≥6) = (0 ∨ χp2,≥6). Note that this removal is
crucial. If 7 were not removed from the list of p1, then χp1,≥6

would equal χp1,≥7 instead of 0 and χp1,≥7 would be built
again.

B. Arrival Time List Computation
For implementation allowing effective table look-up, an

equivalence table is built based on Table II for a given circuit
under timing analysis. To make table look-up more efficient,
spurious candidate arrival times can be reduced as follows.

1) Lower Bound Tightening: Arrival times are commonly
computed based on circuit topology from PIs to POs. In
particular, the arrival time lists A(f) for a 0/1 unspecified TCF,
A1(f) for a 1-specified TCF, and A0(f) for a 0-specified TCF
of node f are computed from fanin arrival times by

A(f) =
∪

gi∈FI (f)

∪
aj∈A(gi)

aj + di, (16)

A1(f) =
∪
c∈P1

∪
lit(gi)∈c

∪
aj∈Apol(lit(gi))(gi)

aj + dri , and

A0(f) =
∪
c∈P0

∪
lit(gi)∈c

∪
aj∈Apol(lit(gi))(gi)

aj + dfi , (17)

respectively.
The above equations, however, may include some redundant

arrival times. For example, the value of an XOR gate must
be determined by its latest arriving input signal. If a fanin
arrival time is smaller than the minimum arrival time of some
other fanin, it cannot be the latest arriving input. Therefore,
this fanin arrival time should not be propagated to the gate
output. To remove such spurious arrival times, we propose the
following computation.

Proposition 5: The arrival time lists of node f can be
computed by

A(f) =
∪

c∈P1∪P0

∪
lit(gi)∈c

∪
(aj∈A(gi))∧(aj≥Mc)

aj + di (18)

A1(f) =
∪
c∈P1

∪
lit(gi)∈c

∪
(aj∈Apol(lit(gi))(gi))∧(aj≥Mc)

aj + dri

A0(f) =
∪
c∈P0

∪
lit(gi)∈c

∪
(aj∈Apol(lit(gi))(gi))∧(aj≥Mc)

aj + dfi

(19)

where Mc = maxlit(gi)∈c{minA(gi)} for Equation (18) and
Mc = maxlit(gi)∈c{minApol(lit(gi))(gi)} for Equation (19).

Example 4: Continuing Example 2, assume that the inverter
is of dr = 1 and df = 2, and all other gates are of dr = 5
and df = 7. The arrival time lists A1 and A0 computed by
Equation (19) are as follows.

A1(a) = {0} A0(a) = {0}
A1(b) = {0} A0(b) = {0}
A1(d) = {1} A0(d) = {2}

A1(P1) = {6, 7} A0(P1) = {8, 9}
A1(e) = {11, 12} A0(e) = {9, 15, 16}

A1(P2) = {16, 17} A0(P2) = {7, 16, 22, 23}

In comparison, the arrival time lists of P1 derived by Equa-
tion (17) are A1(P1) = {5, 6, 7} and A0(P1) = {7, 8, 9}.
As noted earlier, since the XOR gate P1 must steady only
after its two fanins are steady, the arrival times of a do not
propagate and contribute to the arrival times of P1 because
they are smaller than those of d. On the other hand, A1(e) =
{6, 11, 12} by Equation (17), but the AND gate e must steady
to value 1 only after its two fanins are steady to value 1. So
A1(d) does not propagate and contribute to A1(e).

For computing the arrival time lists of a cyclic circuit, the
nodes not on loops are first visited without considering the
delays from nodes on loops. (Effectively, we may treat a side
fanin signal to a node on a loop and a side fanout signal from
a node on a loop as a pseudo PO and PI, respectively, with
empty arrival time lists.) After calculating the possible arrival
times for nodes not on loops, we then iterate the arrival time
list computation throughout the entire circuit until the iteration
number reaches the length of the longest path without node
recurrence.

f
3

i
2

f
2

f
1

i
1

Fig. 3. Circuit under Timing Analysis

Example 5: Consider the cyclic circuit of Figure 3. Assume
the arrival time lists for inputs are A0(i1) = {1, 2}, A1(i1) =
{3, 4}, A0(i2) = {0, 1}, and A1(i2) = {1, 5}, and all gates are
of dr = df = 1. Based on Equation (19), the related arrival
times are iteratively computed as follows.

Iteration 1:

A0(f1) = {2, 3} A1(f1) = {4, 5}
A0(f2) = {1, 2} A1(f2) = {2, 6}
Iteration 2:

A0(f1) = {2, 3} A1(f1) = {4, 5, 7}
A0(f2) = {1, 2} A1(f2) = {2, 6}
A0(f3) = {5, 6} A1(f3) = {3, 4}
Iteration 3:

A0(f1) = {2, 3} A1(f1) = {4, 5, 7}
A0(f2) = {1, 2, 6, 7} A1(f2) = {4, 5, 6}
A0(f3) = {5, 6, 8} A1(f3) = {3, 4}

Since for a cyclic circuit to be combinational, any loop should
not be sensitized. For the circuit of Figure 3, three iterations
suffice to derive candidate arrival times for checking whether
or not the loop can be sensitized.

We proceed to verify whether or not the cyclic circuit is
combinational by justifying the satisfiability of χf1,>7. (Note
that the 0/1-specified TCF is inappropriate for checking the
combinationality of a cyclic circuit because any logical incon-
sistency due to the cyclic structures can make 0/1-specified
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TCF unsatisfiable even under the presence of sensitizable
paths.) We obtain the following implications.

χf1,>7 → (χf2,>6 ∨ χi1,>6)(χf2,>6 ∨ f2)(χ
i1,>6 ∨ i1) =

(χf2,>6 ∨ 0)(χf2,>6 ∨ f2)(0 ∨ i1) = (χf2,>6)(i1)

χf2,>6 → (χf3,>5 ∨ χi2,>5)(χf3,>5 ∨ f3)(χ
i2,>5 ∨ i2)

= (χf3,>5 ∨ 0)(χf3,>5 ∨ f3)(0 ∨ i2) =

(χf3,>5)(i2)

χf3,>5 → (χf1,>4)

We further derive the following implications.

χf1,>4 → (χf2,>3 ∨ χi1,>3)(χf2,>3 ∨ f2)(χ
i1,>3 ∨ i1) =

(χf2,>3 ∨ 0)(χf2,>3 ∨ f2)(0 ∨ i1) = (χf2,>3)(i1)

χf2,>3 → (χf3,>2 ∨ χi2,>2)(χf3,>2 ∨ f3)(χ
i2,>2 ∨ i2)

= (1 ∨ 0)(1 ∨ f3)(0 ∨ i2) = (i2)

(In the above derivation, we assume i1 and i2 are PIs. Recall
that, for a PI i, its χi,>t = 1 for t < a1 and χi,>t = 0 for
t ≥ a1, where a1 is the smallest arrival time of i.) Because
χf1,>7 is satisfiable under i1 = i2 = 1, we conclude that the
circuit is not combinational.

2) Subcircuit Timing Analysis: Timing analysis can be
performed at an early stage by treating a (preferably timing-
critical) intermediate node as a PO and computing its true
delays. The spurious critical arrival times can then be detected
and removed. This removal action may potentially propagate
and make impossible some arrival times of nodes at the
transitive fanout cone of this node. The reduction on the
number of possible arrival times makes TCFs easier to solve.

C. CNF Variable Indexing

To convert TCF timing constraints into CNF formulas,
variable index (VID) assignment is an important factor de-
termining SAT solving speed since it affects the number of
variables appearing in a CNF formula. To achieve effective
VID assignment, the TCF variables (i.e., the variables rep-
resenting TCFs) and the variables of the original circuit are
assigned separately. For the former, after looking up the TCF
equivalence table, some TCFs of a node may be equal if they
are mapped to the same timing requirement. In addition, for
a single-fanin node, such as the inverter and buffer, its fanout
TCF is equal to its fanin TCF, which has a smaller timing
requirement. In our algorithm, equivalent TCFs share one VID
and are built only once. For the latter, Tseitin encoding is
applied only for parts of the original circuit that are relevant
to the literals appearing in TCF construction. Only a multi-
fanin node in these parts will be given a distinct VID, while a
single-fanin node reuses the same VID as its fanin node (for
instance, the output of an inverter shares the same VID as
its fanin, and has a negated literal). The conversion of circuit
nodes is applied once and shared by all individual TCFs.

Example 6: Consider the circuit of Figure 2 under the unit
delay model. By Equation (18), the arrival time list A of every

gate is derived below.

A(a) = {0}
A(b) = {0}
A(d) = {1}

A(P1) = {2}
A(e) = {2, 3}

A(P2) = {1, 3, 4}

To check if 4 is indeed the maximum circuit delay, we
test whether (χP1,≥4 ∨ χP2,≥4) is satisfiable. By the TCF
equivalence table, formula (χP1,≥4 ∨ χP2,≥4) simplifies to
(0∨χP2,≥4). By Formula (7) and the shared VID assignment,
the following TCFs are constructed.

χP2,≥4 → (χb,≥3 ∨ χe,≥3)(χb,≥3 ∨ b)(χe,≥3 ∨ e) =

(χe,≥3)(b)

χe,≥3 → (χd,≥2 ∨ χP1,≥2)(χd,≥2 ∨ ¬b)(χP1,≥2 ∨ P1) =

(0 ∨ 1)(0 ∨ ¬b)(1 ∨ P1) = (¬b)

In the above derivation, by equivalence table lookup we know
χP1,≥2 = 1. Also (d) is replaced by (¬b) due to VID sharing.
The recursive construction is simpler than the previous one
in Example 2, and the resultant formula becomes earlier to
solve. Since the above formula is unsatisfiable, circuit delay
4 is unfeasible and will be removed from arrival time list of
P2.

V. ALGORITHM

A. Delay Computation

Figure 4 sketches a procedure for maximum delay com-
putation without rise/fall time separation. It can be easily
extended under a similar framework to the computation with
rise/fall time separation, which is omitted for brevity. To avoid
confusion between a TCF and its output variable, in the pseudo
code xf,t represents the output variable of TCF χf,≥t.

While the code is self-explanatory, it should be noted that
different delay search strategies can be applied depending on
how functions GetDelayList, GetNextDelay, and UpdateDe-
layList are implemented. For instance, linear or binary search
can be deployed with or without adaptive step-size adjustment.
Counterintuitively empirical experience suggests that linear
search in general works much better than binary search.
Investigation reveals that, although linear search requires more
SAT solving iterations than binary search, it allows the second
improvement technique of Section IV-A more applicable and
thus making the CNF formula at each iteration easier to solve.

Upon termination (line 14 of ComputeDelay), Formula (1)
must be satisfiable for D = lowerDelay. That is, there exists
a PI assignment to sensitize some true path achieving this
delay value. By applying the assignment values to PIs, we
can simulate and trace one true critical path based on the exact
sensitization criterion [3].
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ComputeDelay(C) //compute maximum true-path delay of circuit C
begin
01 L := GetDelayList(C);
02 (lowerDelay, upperDelay) := MinMaxTopologicalDelay(C);
03 do
04 D := GetNextDelay(L);
05 Φ := (

∨
p∈PO xp,D);

06 for every PO p
07 Φ := Φ ∧ BuildTcf (p, D);
08 if IsSat(Φ)
09 lowerDelay := D;
10 else
11 upperDelay := D;
12 UpdateDelayList(C, L, lowerDelay, upperDelay);
13 while L non-empty;
14 return lowerDelay and its corresponding true path;
end

BuildTcf(f ,t) //derive χf,t in CNF
begin
01 t := GetNextLargerOrEqualArrivalTime(f );
02 if χf,t has been built
03 return 1;
04 if t > f.am //largest arrival time of f

05 return (¬xf,t);
06 if t ≤ f.a1 //smallest arrival time of f

07 return (xf,t);
08 if f has only one fanin gi
09 return BuildTcf (gi, t − di) with xgi,t−di replaced by xf,t;
10 Φ := (¬xf,t ∨

∨
gi∈FI(f) x

gi,t−di );
11 for each controlling cube c of f
12 Φ := Φ ∧ (¬xf,t ∨

∨
lit(gi)∈c(x

gi,t−di ∨ ¬lit(gi)));
13 for each gi ∈ FI (f)
14 Φ := Φ ∧ BuildTcf (gi, t − di);
15 if gi’s circuit CNF has not been built
16 Φ := Φ ∧ BuildCktCnf (gi);
17 return Φ;
end

Fig. 4. Algorithm: Delay Computation

B. Critical Region Identification

Our delay computation algorithm can be applied to identify
true timing critical regions for delay optimization. Given a
target required time of a circuit, topological timing critical
regions (with small slacks) can be identified by conventional
static timing analysis. Topological timing critical regions can
be treated as an over-approximation of functional true criti-
cal regions. The approximation however can be very crude,
and potentially many false critical gates and paths can be
trimmed away. The true critical regions can be pinpointed by
removing false arrival times with the improvement technique
of Section IV-B2. In other words, a gate is not truly timing
critical if and only if all of its possible arrival times greater
than or equal to the required time are spurious. Note that
the TCF of a non-critical gate equals constant 0 due to the
boundary condition (the required time is greater than the
largest possible arrival time) of TCF equivalence reduction.
Effectively the computation considers only the timing critical
sub-circuit, which can be much smaller than the entire circuit.

VI. EXPERIMENTAL RESULTS

Our functional timing analysis tool SWIFT was implemented
in the C++ language using MiniSat version 2.20 [7] as the
underlying SAT solver. All experiments were conducted on
a Linux machine with a Xeon 3.4 GHz CPU and 32 GB
RAM. Large ISCAS, ITC, and other industrial benchmark
circuits, whose profiles are shown in Table III, were selected

for experiments. For the sake of comparison with prior work
[9], which handles only simple gate types, all circuits are
technology mapped using only buffers, inverters, AND-gates,
OR-gates, NAND-gates, and NOR-gates. It should be noted,
however, that our computation is not restricted to these simple
gate types and is applicable to general complex gates.

TABLE III
PROFILES OF BENCHMARK CIRCUITS

Circuit #Gate #PI #PO
b05 1022 35 60
b18 117941 3357 3343
b19 237959 6666 6669

c6288 2480 32 32
leon2 1119384 149507 149577
leon3 1272597 185134 185196

leon3mp 824294 109016 109089
netcard 983683 97899 97888

ray 235526 17443 23648
s35932 19876 1763 2048

uoft raytracer 218671 17443 17112

A. Circuit Delay Computation

The results of circuit delay computation are reported in Ta-
bles IV and V. Four delay computation methods are compared
under four delay models. The four studied delay models, in
order, include the unit gate delay model, fanout delay model
(by calculating a gate delay as 1 + 0.2 × fanout number),
TSMC 0.18µm library model with combined rise/fall times
(by calculating a gate delay as max{rise delay, fall delay}),
and TSMC 0.18µm library model with separate rise/fall
times. Under the first three timing models, the four compared
methods include our re-implementation of prior work [9]
(referred to in the tables as [9]), our re-implementation of
[9] with the new reduction techniques of Section IV (referred
to as [9]*), our proposed method with Formula (10) for TCF
construction (referred to as SWIFT-01), and our method with
Formula (8) for TCF construction (referred to as SWIFT-c).
For the last timing model, the four methods compared include
[9], [9]*, SWIFT-01, and our method with Formula (12) for
TCF construction (referred to as SWIFT-01*).2 Note that [9]
and [9]* were re-implemented under the same delay search
strategy as ours for fair comparison. Also since prior approach
[18] was shown not as efficient as [9], we did not compare
with it.

In Table IV, Column 1 lists the circuits, Column 2 lists
the delays (including the longest topological delay and the
computed longest true-path delay), Column 3 lists the numbers
of satisfiability testings on attempted target delays, Columns 4,
6, 8, and 10 list the total numbers of TCF variables introduced
for all SAT solving iterations, and Columns 5, 7, 9, and 11
list the total numbers of TCF clauses constructed for all SAT
solving iterations.

2SWIFT-c is only applicable to the first three timing models (without
separating rise and fall delays), and instead SWIFT-01* is applied in the fourth
timing model for comparison.
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Table IV reveals that topological delay may be far pes-
simistic compared to true circuit delay, e.g., circuits b05
and b19 under the unit and fanout delay models. It suggests
the importance of accurate functional timing analysis and
its application on identifying true critical region for timing
optimization. Also, comparing [9] and [9]* in Table IV, we
see that the reduction techniques of Section IV achieved (on
average for each timing model) about 1% to 5% reduction
on the numbers of variables and clauses. Comparing [9] and
SWIFT-01, the formula sizes are reduced by about 3% to 10%
in terms of variables, and about 49% to 53% in terms of
clauses. Comparing [9] and SWIFT-c for the first three timing
models, the formula sizes are reduced by about 52% to 58% in
terms of variables, and about 53% to 58% in terms of clauses.
On the other hand, for the fourth timing model, comparing [9]
and SWIFT-01*, the formula sizes are reduced by about 14%
in terms of variables, and about 29% in terms of clauses. The
benefit of formula size reduction is to be further justified in
term of SAT solving time in Table V.

Table V, under the same experiment as Table IV, compares
mainly the CPU times in SAT solving. Column 1 lists the
circuits, Column 2 lists the CPU times for STA, Columns 3, 5,
7, and 9 list the CPU times for SAT solving using the MiniSat
core solver, denoted “CoreSlvr,” and Columns 4, 6, 8, and 10
list the CPU times for SAT solving using the MiniSat extended
solver, denoted “SimpSlvr,” with simplification capabilities.3

Several observations can be made from Table V. Firstly, the
runtimes of STA are negligible. Secondly, SSolver is effective
in reducing the runtimes for the testcases that took CSolver
more than hundreds of seconds to solve. It, however, incurred
noticeable overheads especially for the formulas constructed
by SWIFT-c, which were very effectively solved by CSolver.
Thirdly, when [9] and [9]* are compared, the benefit of apply-
ing the reduction techniques of Section IV on [9] is not clear.
[9]* sometimes improves [9] and sometimes not. Fourthly,
SWIFT-c, SWIFT-01, and SWIFT-01* are clearly superior to
[9] and [9]*. Fifthly, whenever SWIFT-c is applicable (for
the first three timing models), it certainly outperforms all
other methods. Finally, when SWIFT-01 and SWIFT-01* are
compared (in the fourth timing model), they yielded similar
performance gains over [9] and [9]*.

Notice that the reported CPU times of STA in Table V
are the runtime for basic topological circuit traversal. For
STA in an industrial setting, several extensions are necessary.
Among them, one of the major complications arises due to
the handling of user-specified path exceptions [8]. It incurs
sophisticated arrival time information to propagate, and im-
poses substantial computation overhead. In fact, FTA may
support path exceptions more naturally. For example, for path
exceptions arising due to different operation modes (e.g., for
testing, normal operation, and other modes) of a circuit, FTA
can be easily constrained (through cofactoring) to the desired
operation mode. FTA has potential as a practical alternative to
STA and applicable to industrial designs, especially because

3The reported runtime excludes the preprocessing time for arrival time list
computation as both prior and our methods were preprocessed in a similar
way. The prior method may take slightly longer time because of converting
circuits to CNF formulas.

whose logic depths cannot be large and TCF formulas are
relatively easy to solve (as the TCF for each PO can be
solved separately and the cone of influence reduction can be
significant).

We did not experiment with the SAT-based two-vector
analysis proposed in [16] since our focus is on floating mode
analysis as discussed in Section II-C. However we would
expect that the excessive number of event and value variables,
which need to be created for every potential event propagation
time instant, in the formula of [16] might lead to inefficient
SAT solving.

B. Critical Region Identification

TABLE VI
CRITICAL REGION IDENTIFICATION

Circuit #G Topological Functional Time
#G #Path #G #Path (s)

b05 1022 322 7435427 186 8669 0.04
b17 33741 1637 5585965 79 232 0.61
b18 117941 1101 77585298 465 20839024 18.67

c3540 1741 270 1054 91 100 0.02
c5315 25585 213 832 76 60 0.02
c7552 3827 304 97 61 8 0.01

i10 2724 452 127483 338 3071 0.08
s15850 11067 408 73984 389 22016 0.16
s38417 2608 230 476 112 10 0.06

Table VI evaluates the applicability of SWIFT on identifying
timing critical regions under the unit delay model. For a
circuit, its true delay is set to be the required time at its POs,
and the gates and paths with non-positive slack values are
declared critical. Column 2 shows the total number of gates
of a circuit; Columns 3 and 4 (respectively Columns 5 and 6)
show the numbers of critical gates and paths, respectively, with
respect to topological arrival times (respectively functional true
arrival times); Column 7 shows the runtime in identifying true
critical regions.

The results suggest that SWIFT effectively removed spurious
critical gates and paths. As a matter of fact, true critical regions
can be much smaller than topological critical regions. By
taking circuit b17 as an example, SWIFT detected, in 0.61
seconds (the time spent in SAT solving), that only 79 out of
its 1637 topological critical gates are true critical gates, and at
least 5585733 out of its 5585965 topological critical paths are
false critical paths. Pinpointing true critical regions efficiently
can be beneficial to timing optimization. The computation al-
lows a logic synthesis tool to focus on the true critical regions
for timing optimization through, for example, gate/wire sizing,
buffer insertion, and other techniques.

One concern about FTA might be that temperature, aging,
or other changes can make false paths become true. However,
notice that FTA under the floating mode assumption is a
conservative analysis and satisfies the property that χf,≥t1 →
χf,≥t2 if t1 ≥ t2. Therefore, by increasing a delay in a circuit,
the true paths identified by FTA before this delay change will
remain true paths. As long as proper gate/wire delay margins
are maintained, FTA can be safely applied similar to STA. In
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contrast, a two-vector based functional timing analysis may be
unsafe due to delay uncertainties.

VII. CONCLUSIONS

This paper has shown that functional timing analysis can be
made fast and general compared with sate-of-the-art methods.
Based on implication relation and other technical improve-
ments, compact CNF encoding for TCFs without and with
0/1-specificity has been devised. Thereby the power of modern
SAT solvers can be fully utilized. Experiments on large designs
have demonstrated promising results on delay computation and
critical region identification. Practical applications of func-
tional timing analysis are anticipated. For future work, logic
synthesis for functional timing optimization awaits further
investigation.
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TABLE IV
CIRCUIT DELAY COMPUTATION: FORMULA SIZE COMPARISON

Unit Delay

Circuit Delay #SAT [9] [9]* SWIFT-01 SWIFT-c
#Var #Clause #Var #Clause #Var #Clause #Var #Clause

b05 54 → 42 8 15672 51104 14673 48048 14623 24054 7786 25030
b18 164 → 159 5 18746 58335 17881 55676 17729 27799 9221 28300
b19 168 → 158 7 84174 262549 80844 252329 80354 126061 41597 128850

c6288 124 → 123 3 4248 12747 4169 12465 4163 6209 2118 6279
leon2 42 → 42 1 514 1703 513 1700 506 844 250 829
leon3 44 → 44 1 354 1171 341 1132 337 566 173 560

leon3mp 40 → 38 3 433380 1408779 433363 1408726 374203 645212 157530 526881
netcard 29 → 29 1 144 503 120 425 118 218 70 226

ray 178 → 178 1 10338 35173 10319 35116 10201 17448 5051 17205
s35932 29 → 26 4 100608 301828 80736 242212 79584 121252 49152 138244

uoft raytracer 178 → 178 1 11476 39015 11446 38923 11326 19353 5618 19109
Fanout Delay

Circuit Delay #SAT [9] [9]* SWIFT-01 SWIFT-c
#Var #Clause #Var #Clause #Var #Clause #Var #Clause

b05 80.6→64.0 44 291364 945194 261188 851515 260910 425922 145404 469541
b18 242.8→238.0 12 20140 62692 19989 62235 19780 30969 9861 30677
b19 244.4→234.4 25 528358 1652131 520394 1627688 518621 812975 262406 820125

c6288 176.4→174.8 3 3222 9669 3184 9510 3179 4731 1606 4753
leon2 2070.0→2070.0 1 41544 149437 39598 139713 33454 65810 14628 55764
leon3 6854.4→6854.4 1 198674 599655 198673 599650 165905 267059 66569 201522

leon3mp 3093.2→3093.2 1 37263 112190 37263 112190 31119 49953 12488 37664
netcard 16390.2→16390.2 1 393228 1179685 393222 1179667 327686 524301 131078 393231

ray 383.6→383.6 1 796 2561 795 2558 731 1216 334 1087
s35932 42.8→39.0 4 86784 260356 83040 249124 81888 124420 42240 122692

uoft raytracer 383.6→383.6 1 796 2561 795 2558 731 1216 334 1087
TSMC 0.18µm Cell Library with Merged Rise/Fall Time

Circuit Delay #SAT [9] [9]* SWIFT-01 SWIFT-c
#Var #Clause #Var #Clause #Var #Clause #Var #Clause

b05 5.67→4.45 62 484714 1571927 448452 1459216 448054 729616 241959 782062
b18 13.49→13.43 3 2326 7415 2304 7346 2224 3607 1083 3457
b19 14.09→13.80 15 114446 352033 113504 349133 113024 174195 56743 174462

c6288 13.95→13.79 5 8358 25004 8358 25004 8349 12465 3450 10315
leon2 13.16→13.16 1 9356 28285 9354 28278 7818 12605 3142 9532
leon3 14.28→14.16 8 62946 190674 62873 190419 52917 85287 21517 65419

leon3mp 14.58→14.27 17 169690 511361 169655 511239 141943 227942 57133 172517
netcard 8.61→8.42 3 13180 39583 13176 39567 10990 17603 4404 13227

ray 31.84→31.75 5 10310 34683 10305 34668 10149 17183 4999 16866
s35932 2.83→2.64 5 85888 257669 82016 246053 80832 122885 41760 121125

uoft raytracer 31.98→31.98 1 804 2711 803 2708 787 1339 386 1306
TSMC 0.18µm Cell Library with Separate Rise/Fall Time

Circuit Delay #SAT [9] [9]* SWIFT-01 SWIFT-01*
#Var #Clause #Var #Clause #Var #Clause #Var #Clause

b05 4.67→3.52 59 433885 1407065 395960 1288509 395599 644785 395223 1035824
b18 11.08→10.98 7 9278 28949 9212 28743 9212 14506 9068 23260
b19 11.67→11.42 14 135078 415139 131787 405016 131531 201863 131083 331954

c6288 10.13→10.02 5 4068 12206 4039 12044 4038 5981 4031 9978
leon2 11.07→11.07 1 4678 14143 4676 14136 4676 7916 3140 7983
leon3 12.81→12.68 9 26375 79963 23556 71440 23542 39931 16214 41433

leon3mp 12.39→12.03 4 95668 324471 95660 324443 93612 192986 64012 197794
netcard 7.67→6.87 27 2915186 9076031 2915111 9075731 2874407 4917606 2334791 6173065

ray 26.77→26.43 18 55045 183570 55000 183422 54672 87265 54141 140306
s35932 2.45→2.35 5 40768 122308 38528 115588 38528 60836 37376 92548

uoft raytracer 26.40→25.82 31 213908 743738 203693 708322 203693 339113 202964 540281
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TABLE V
CIRCUIT DELAY COMPUTATION: RUNTIME COMPARISON

Unit Delay

Circuit STA (s) [9] [9]* SWIFT-01 SWIFT-c
CSolver (s) SSolver (s) CSolver (s) SSolver (s) CSolver (s) SSolver (s) CSolver (s) SSolver (s)

b05 0.00 0.03 0.11 0.04 0.10 0.01 0.07 0.00 0.03
b18 0.01 1.72 1.44 1.82 1.38 1.13 1.04 0.18 0.53
b19 0.02 11.50 8.12 11.74 6.88 6.91 6.06 0.52 1.88

c6288 0.00 0.19 0.15 0.39 0.22 0.13 0.17 0.15 0.06
leon2 0.09 0.21 0.10 0.39 0.10 0.00 0.03 0.00 0.02
leon3 0.10 0.06 0.12 0.33 0.10 0.00 0.02 0.00 0.02

leon3mp 0.07 12229.60 259.94 21576.08 222.79 7232.13 51.49 0.38 19.07
netcard 0.08 0.09 0.05 0.04 0.05 0.00 0.00 0.00 0.00

ray 0.02 2.01 0.84 2.83 1.04 0.37 0.69 0.39 0.67
s35932 0.00 6.95 2.49 3.67 1.83 1.00 0.56 0.02 0.70

uoft raytracer 0.02 1.08 0.92 1.68 0.91 0.80 0.69 0.38 0.71
Fanout Delay

Circuit STA (s) [9] [9]* SWIFT-01 SWIFT-c
CSolver (s) SSolver (s) CSolver (s) SSolver (s) CSolver (s) SSolver (s) CSolver (s) SSolver (s)

b05 0.00 0.54 2.37 0.64 2.09 0.25 1.53 0.08 0.72
b18 0.01 1.23 1.07 0.98 0.88 0.77 0.75 0.14 0.50
b19 0.02 77.60 33.49 70.85 31.53 34.34 0.10 3.12 6.92

c6288 0.00 0.12 0.14 0.35 0.18 0.10 0.14 0.06 0.04
leon2 0.09 241.61 2.25 297.88 2.15 72.59 0.58 0.02 0.53
leon3 0.10 1172.05 54.23 1396.66 52.96 173.39 9.09 0.06 7.41

leon3mp 0.07 150.63 2.54 188.92 2.53 62.93 0.45 0.01 0.31
netcard 0.08 0.76 130.42 0.43 144.87 0.37 47.73 4.11 37.63

ray 0.02 0.13 0.19 0.39 0.23 0.08 0.17 0.03 0.18
s35932 0.00 8.92 2.32 5.76 1.83 1.13 0.63 0.03 0.66

uoft raytracer 0.02 0.06 0.19 0.28 0.23 0.11 0.18 0.04 0.18
TSMC 0.18µm Cell Library with Merged Rise/Fall Time

Circuit STA (s) [9] [9]* SWIFT-01 SWIFT-c
CSolver(s) SSolver (s) CSolver (s) SSolver (s) CSolver (s) SSolver (s) CSolver (s) SSolver (s)

b05 0.00 0.89 4.17 1.07 3.93 0.43 2.63 0.09 1.11
b18 0.01 0.16 0.21 0.08 0.16 0.08 0.13 0.02 0.09
b19 0.02 1.53 3.32 1.26 2.88 0.51 2.07 0.16 1.73

c6288 0.00 2.12 0.51 0.54 0.42 0.42 0.44 0.07 0.10
leon2 0.09 38.36 2.09 54.04 2.56 25.32 2.22 0.23 2.18
leon3 0.10 169.67 4.08 104.34 3.81 16.63 1.35 0.05 0.91

leon3mp 0.07 876.46 10.83 698.01 10.83 137.37 4.04 0.15 3.20
netcard 0.08 88.08 4.87 51.79 5.03 11.01 1.96 0.06 1.58

ray 0.02 0.82 0.77 0.70 0.79 0.19 0.47 0.05 0.25
s35932 0.00 6.06 2.87 4.28 2.06 1.53 0.61 0.01 0.64

uoft raytracer 0.02 0.11 0.16 0.31 0.13 0.06 0.10 0.06 0.10
TSMC 0.18µm Cell Library with Separate Rise/Fall Time

Circuit STA (s) [9] [9]* SWIFT-01 SWIFT-01*
CSolver (s) SSolver (s) CSolver (s) SSolver (s) CSolver (s) SSolver (s) CSolver (s) SSolver (s)

b05 0.00 0.83 3.24 0.93 3.45 0.36 2.37 0.55 3.23
b18 0.01 0.58 0.71 0.47 0.58 0.51 0.52 0.45 0.50
b19 0.03 1.24 3.41 1.31 2.84 0.58 2.07 0.72 3.27

c6288 0.00 0.59 0.21 0.38 0.28 0.55 0.13 0.39 0.10
leon2 0.11 35.55 2.99 47.09 2.30 1.86 1.40 6.82 1.38
leon3 0.12 130.69 3.01 81.84 2.41 11.18 1.50 16.71 1.45

leon3mp 0.08 603.09 8.11 503.58 8.38 106.86 6.35 35.19 7.10
netcard 0.10 92964.40 2643.65 83647.58 3135.06 99380.81 582.49 83803.08 700.78

ray 0.02 0.58 3.27 1.01 3.12 0.93 2.01 0.97 2.44
s35932 0.00 2.91 1.31 3.69 0.98 2.04 0.52 1.40 0.87

uoft raytracer 0.02 7.02 11.72 11.47 9.26 3.73 6.86 2.96 8.23


