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Abstract

Henkin quantifiers, when applied on Boolean formulae, yielding the so-called de-

pendency quantified Boolean formulae (DQBFs), offer succinct descriptive power

specifying variable dependencies. Despite their natural applications to games

with incomplete information, logic synthesis with constrained input dependen-

cies, etc., DQBFs remain a relatively unexplored subject however. This paper

investigates their basic properties, including formula negation and complement,

formula expansion, prenex and non-prenex form conversions, and resolution.

In particular, the proposed DQBF formulation is established from a synthe-

sis perspective concerned with Skolem-function models and Herbrand-function

countermodels. Also a generalized resolution rule is shown to be sound, but

incomplete, for DQBF evaluation.

Keywords: Henkin quantifier, quantified Boolean formula, Herbrand function,

Skolem function, resolution, consensus

1. Introduction

Henkin quantifiers [16], also known as branching quantifiers among other

names, generalize the standard quantification by admitting explicit specifica-
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tion, for an existentially quantified variable, about its dependence on univer-

sally quantified variables. In addition to mathematical logic, Henkin quantifiers

appear not uncommonly in various contexts, such as natural languages [19],

computation [3], game theory [18], and even system design as to be shown in

Section 5. They permit the expression of (in)dependence in language, logic and

computation, the modelling of incomplete information in noncooperative games,

and the specification of partial dependencies among components in system de-

sign, which is the main motivation of this work.

When Henkin quantifiers are imposed on first-order logic (FOL) formulae,

it results in the formulation of independence-friendly (IF) logic [17], which was

shown to be more expressive than first-order logic and exhibit expressive power

same as existential second-order logic. However one notable limitation among

others of IF logic under the game-theoretical semantics is the violation of the

law of the excluded middle, which states either a proposition or its negation is

true. Therefore negating a formula can be problematic in terms of truth and fal-

sity. From a game-theoretical viewpoint, it corresponds to undetermined games,

where there are cases under which no player has a winning strategy. Moreover,

in synthesis applications, the winning strategies of the semantic games do not

exactly correspond to Skolem and Herbrand functions, which form the model

and countermodel, respectively, of an underlying formula, although syntactic

rules for negating IF logic formulae were suggested in [9, 11].

When Henkin quantifiers are imposed on Boolean formulae, it results in the

so-called dependency quantified Boolean formulae (DQBFs), whose validity lies

in the complexity class of NEXPTIME-complete as was shown in [18] through

the formulation of multiplayer noncooperative games. In contrast to quantified

Boolean formulae (QBFs) [22], whose evaluation is PSPACE-complete, DQBFs

offer more succinct descriptive power than QBFs provided that NEXPTIME is

not in PSPACE. By expansion on universally quantified variables, a DQBF can

be converted to a QBF with the cost of exponential blow up in formula size

[7, 8].

This paper studies DQBFs from a synthesis perspective. There are applica-
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tions (such as topologically constrained logic synthesis to be discussed in Sec-

tion 5), where the Skolem or Herbrand functions of an encoding DQBF di-

rectly correspond to desired synthesis targets. For these applications, DQBF

certification plays an essential role. Motivated by the conversion of syntactic

(Q-consensus/Q-resolution) proofs to semantic (Skolem/Herbrand) certificates

in QBFs [5, 6], we investigate DQBF certification. By distinguishing formula

negation and complement to account for the duality of variable dependencies

arising from the winning strategies of different players, the connection between

Skolem and Herbrand functions is established. While the law of the excluded

middle holds for negation, it does not hold for complement. The special sub-

set of DQBFs whose truth and falsity coincide with the existence of Skolem

and Herbrand functions, respectively, is characterized. Our formulation pro-

vides a unified view on DQBF models and countermodels, which encompasses

QBFs as a special case. Some fundamental properties of DQBFs are studied in

Section 3. In Section 4, the Q-resolution (Q-consensus) rule of QBFs [15] is ex-

tended to DQBFs and the resultant resolution (consensus), called DQ-resolution

(DQ-consensus), is shown to be sound but incomplete. Application of DQBFs

on Boolean relation determinization for input constrained function extraction

is discussed in Section 5. Section 6 compares our results with prior work, and

finally Section 7 concludes this work.

2. Preliminaries

As conventional notation, a set is denoted with an upper-case letter, e.g.,

V ; its elements are in lower-case letters, e.g., vi ∈ V . The ordered version (i.e.,

vector) of V = {v1, . . . , vn} is denoted as v⃗ = (v1, . . . , vn).

A literal l in a Boolean formula is either a variable (in this case l is in a

positive phase) or the negation of a variable (l in a negative phase). In the

sequel, the corresponding variable of a literal l is denoted as var(l). A clause

(respectively cube) is a Boolean formula consisting of a disjunction (respectively

conjunction) of a set of literals. In the sequel, we may alternatively specify a

clause/cube as a set of literals. A formula in the conjunctive normal form (CNF)



2 PRELIMINARIES 4

is a conjunction of a set of clauses; a formula in the disjunctive normal form

(DNF) is a disjunction of a set of cubes.

Substituting a term t (respectively a vector of terms t⃗ = (t1, . . . , tn)) for

some variable v (respectively a vector of variables v⃗ = (v1, . . . , vn)) in a formula

ϕ is denoted as ϕ[v/t] (respectively ϕ[v⃗/t⃗] or ϕ[v1/t1, . . . , vn/tn]). A formula ϕ

under some truth assignment α to its variables is denoted as ϕ|α.

2.1. Quantified Boolean Formulae

A quantified Boolean formula (QBF) Φ over variables V = {v1, . . . , vk} in

the prenex form is expressed as

Q1v1 · · ·Qkvk.ϕ,

where Q1v1 · · ·Qkvk, with Qi ∈ {∃,∀}, is called the prefix, denoted Φp ,and ϕ, a

quantifier-free formula over variables V , is called the matrix, denoted Φm, of Φ.

A QBF is in the prenex conjunctive normal form (PCNF) and prenex disjunctive

normal form (PDNF) if it is in the prenex form and in addition its matrix is

in CNF and DNF, respectively. We call variable vi in a QBF an existential

variable if Qi = ∃, or a universal variable if Qi = ∀. Similarly, we call literal l

an existential literal (respectively a universal literal) if var(l) is an existential

variable (respectively a universal variable). A QBF is of non-prenex form if its

quantifiers are scattered around the formula without a clean separation between

the prefix and the matrix. Unless otherwise said, we shall assume that a QBF

is in the prenex form and is totally quantified, i.e., with no free variables. As a

notational convention, unless otherwise specified we shall let X = {x1, . . . , xn}

be the set of universal variables and Y = {y1, . . . , ym} existential variables.

Given a QBF Φ over variables V , the quantification level ℓ : V → N of

variable vi ∈ V is defined to be the number of quantifier alternations between ∃

and ∀ from the outermost variable to variable vi in Φp, e.g., ℓ(v1) = ℓ(v2) = 0,

ℓ(v3) = 1, and ℓ(v4) = 2 for QBF ∃v1∃v2∀v3∃v4.ϕ.

Any QBF Φ over variables X ∪ Y can be converted into the well-known

Skolem normal form [20]. In the conversion, every appearance of yi ∈ Y in Φm
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is replaced by its respective newly introduced function symbol Fyi
corresponding

to the Skolem function of yi, which refers only to the universal variables xj ∈ X

with ℓ(xj) < ℓ(yi). These function symbols are then existentially quantified

before (on the left of) other universal quantifiers in Φp. This conversion, called

Skolemization, is satisfiability preserving. Essentially a QBF Φ is true if and

only if its Skolem functions exist such that substituting Fyi for every appearance

of yi in Φm makes the new formula true (i.e., a tautology).

Example 1. Skolemizing the QBF

∀x1∃y1∀x2∃y2.(x1 ∨ y1 ∨ ¬y2) ∧ (¬x1 ∨ ¬x2 ∨ y2)

yields

∃Fy1∃Fy2∀x1∀x2.(x1 ∨ Fy1 ∨ ¬Fy2) ∧ (¬x1 ∨ ¬x2 ∨ Fy2)

where Fy1 is a 1-ary function symbol referring to x1, and Fy2 is a 2-ary function

symbol referring to x1 and x2. Since the QBF is true, Skolem functions exist,

for instance, Fy1
= ¬x1 and Fy2

= x1 ∧ x2.

The notion of Skolem function has its dual form, known as the Herbrand

function. For a QBF Φ, the Herbrand function Fxi of variable xi ∈ X refers

only to the existential variables yj ∈ Y with ℓ(yj) < ℓ(xi). Essentially a QBF

Φ is false if and only if Herbrand functions exist such that substituting Fxi for

every appearance of xi in Φm makes the new formula false (i.e., unsatisfiable)

[5, 6].

In addition to the above semantic forms of QBF certificates, there are also

syntactic forms of certificates based on resolution. For a (quantifier-free) CNF

formula, a resolution step can be defined on two clauses C1 = C ′
1 ∨ l and C2 =

C ′
2 ∨ ¬l, where C ′

i is a sub-clause of Ci, as the process of yielding the clause

C ′
1 ∨ C ′

2, where the variable var(l) of literal l is called the pivot variable and

the resultant clause is called the resolvent of the resolution. (We assume that

a resolvent clause, as well as any original clause, is non-tautological, namely, it

does not contain both positive and negative phase literals of the same variable.)

Resolution is a sound and complete approach to test whether or not a CNF
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formula is satisfiable. Essentially a CNF formula is unsatisfiable if and only if

the empty clause can be generated from repeated applications of resolution. For

a QBF in PCNF, Q-resolution [15] can be similarly defined with the following

two modifications. First, only existential variables can be the pivot variables

for Q-resolution. Second, a clause is simplified by ∀-reduction, defined as the

process of removing from C a literal l ∈ C whenever ℓ(l) = maxli∈C{ℓ(li)} and

var(l) ∈ X. Essentially Q-resolution is a sound and complete approach to QBF

evaluation.

Theorem 1 ([15]). A QBF is false (unsatisfiable) if and only if there exists a

clause resolution sequence leading to an empty clause.

By duality, for a DNF formula, a consensus step can be defined on two cubes

C1 = C ′
1 ∧ l and C2 = C ′

2 ∧ ¬l, where C ′
i is a sub-cube of Ci, as the process

of yielding the (non-false) cube C ′
1 ∧ C ′

2, where the variable var(l) of literal l

is called the pivot variable and the resultant cube is called the consensus cube

of the consensus. (We assume that a consensus cube, as well as any original

cube, is non-false, namely, it does not contain both positive and negative phase

literals of the same variable.) Consensus is a sound and complete approach to

test whether or not a DNF formula is a tautology. That is, a DNF formula

is a tautology if and only if the empty cube can be generated from repeated

applications of consensus. For a QBF in PDNF, Q-consensus can be defined in a

way similar to Q-resolution. First, only universal variables can be pivot variables

for Q-consensus. Second, a cube is simplified by ∃-reduction, defined as the

process of removing from C a literal l ∈ C whenever ℓ(l) = maxli∈C{ℓ(li)} and

var(l) ∈ Y . Essentially Q-consensus is a sound and complete approach to QBF

evaluation. The connection between Q-resolution (respectively Q-consensus)

proofs and Herbrand (respectively Skolem) functions was established in [5, 6].

Theorem 2 ([5, 6]). Given a Q-resolution (respectively Q-consensus) proof of

a false (respectively true) QBF, there exists an algorithm that converts the proof

to a Herbrand-function countermodel (respectively Skolem-function model) in

time linear with respect to the proof size.



2 PRELIMINARIES 7

2.2. Dependency Quantified Boolean Formulae

A dependency quantified Boolean formula (DQBF) generalizes a QBF in

its allowance for explicit specification of variable dependencies. Syntactically,

a DQBF Φ is the same as a QBF except that in Φp an existential variable

yi is annotated with the set Si ⊆ X of universal variables referred to by its

Skolem function, denoted as ∃yi(Si), or a universal variable xj is annotated

with the set Hj ⊆ Y of existential variables referred to by its Herbrand function,

denoted as ∀xj(Hj)
, where Si and Hj are called the support sets of yi and xj ,

respectively. However, either the dependencies for the existential variables or

the dependencies for the universal variables (but not both) shall be specified.

That is, a prenex DQBF is in either of the two forms:

S-form: ∀x1 · · · ∀xn∃y1(S1) · · · ∃ym(Sm).ϕ, and (1)

H-form: ∀x1(H1) · · · ∀xn(Hn)∃y1 · · · ∃ym.ϕ, (2)

where ϕ is some quantifier-free formula. Note that the syntactic quantification

order in the prefix of a DQBF is immaterial and can be arbitrary because the

variable dependencies are explicitly specified by the support sets. Such quan-

tification with dependency specification corresponds to the Henkin quantifier

[16].1

By the above syntactic extension of DQBFs, the inputs of the Skolem (re-

spectively Herbrand) function of an existential (respectively universal) variable

can be explicitly specified, rather than inferred from the syntactic quantifica-

tion order. That is, an existential variable yi (respectively universal variable xj)

can be specified to be semantically independent of a universal variable (respec-

tively an existential variable) whose syntactic scope covers yi (respectively xj).

Unlike the totally ordered set formed by those of a QBF, the support sets of

the existential or universal variables of a DQBF form a partially ordered set in

general. This extension makes DQBFs potentially more succinct in expressive

1Henkin quantifiers in their original proposal [16] specify dependencies for existential vari-
ables only. The dependencies are extended in this paper to universal variables.
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power than QBFs [18].

For the semantics, the truth and falsity of a DQBF can be interpreted by the

existence of Skolem and Herbrand functions. Precisely an S-form (respectively

H-form) DQBF is true (respectively false) if and only if its Skolem (respectively

Herbrand) functions exist for the existential (respectively universal) variables

while the specified variable dependencies are satisfied. Consequently, Skolem

functions serve as the model to a true S-form DQBF whereas Herbrand functions

serve as the countermodel to a false H-form DQBF.

Alternatively, the truth and falsity of a DQBF can be understood from a

game-theoretic viewpoint. Essentially an S-form DQBF can be interpreted as

a game played by one ∀-player and m noncooperative ∃-players [18]. An S-

form DQBF is true if and only if the ∃-players have winning strategies, which

correspond to the Skolem functions. Similarly an H-form DQBF can be inter-

preted as a game played by one ∃-player and n noncooperative ∀-players. An

H-form DQBF is false if and only if the ∀-players have winning strategies, which

correspond to the Herbrand functions.

Example 2. The S-form DQBF Φ = ∀x∃y(x).(y ∨ x) ∧ (¬x ∨ ¬y) is true since

its matrix Φm becomes a tautology by substituting variable y in Φm with its

Skolem function Fy = ¬x. That is, the existential player has a winning strategy

by choosing y = ¬x. On the other hand, the H-form DQBF Φ = ∀x(y)∃y.(y ∨

x)∧ (¬x∨¬y) is false since its matrix Φm becomes unsatisfiable by substituting

variable x with its Herbrand function Fx = y. That is, the universal player has

a winning strategy by choosing x = y.

As was shown in [7, 8], an S-form DQBF Φ can be converted to a logically

equivalent2 QBF Φ′ by formula expansion on the universal variables. Assume

that universal variable x1 is to be expanded in Formula (1) and x1 ̸∈ S1 ∪ · · · ∪

2That is, Φ and Φ′ characterize the same set of Skolem-function models (by properly
relating the existential variables of Φ′ to those of Φ).
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Sk−1 and x1 ∈ Sk ∩ · · · ∩ Sm. Then Formula (1) can be expanded to

∀x2 · · · ∀xn∃y1(S1) · · · ∃yk−1(Sk−1)

∃yk(Sk[x1/0])∃yk(Sk[x1/1]) · · · ∃ym(Sm[x1/0])∃ym(Sm[x1/1]).ϕ|x1=0 ∧ ϕ|x1=1,

where Si[x1/v] denotes x1 in Si is substituted with logic value v ∈ {0, 1}, and

ϕ|x1=v denotes all appearances of x1 in ϕ are substituted with v including those

in the support sets of variables yi(Si) for i = k, . . . ,m. (The subscript of the

support set of an existential variable is helpful for tracing expansion paths. Dif-

ferent expansion paths of an existential variable result in distinct existential

variables.) Such expansion can be repeatedly applied for every universal vari-

ables. The resultant formula after expanding all universal variables is a QBF,

whose variables are all existentially quantified. As to be shown in Section 3.2,

expansion can be applied also to H-form DQBFs.

3. DQBF Properties

3.1. Negation vs. Complement

In the light of QBF certification, where there always exists either a Skolem-

function model or a Herbrand-function countermodel to a QBF, one intriguing

question is whether or not the same property carries to DQBFs as well. To

answer this question, we distinguish two operators, negation (symbolized by

“¬”) and complement (by “∼”), for DQBFs. Let ΦS and ΦH be Formulae (1)

and (2), respectively. By negation, we define

¬ΦS = ∃x1 · · · ∃xn∀y1(S1) · · · ∀ym(Sm).¬ϕ and (3)

¬ΦH = ∃x1(H1) · · · ∃xn(Hn)∀y1 · · · ∀ym.¬ϕ. (4)

By complement, we define

∼ΦS = ∃x1(H′
1)
· · · ∃xn(H′

n)
∀y1 · · · ∀ym.¬ϕ and (5)

∼ΦH = ∃x1 · · · ∃xn∀y1(S′
1)
· · · ∀ym(S′

m).¬ϕ, (6)

where H ′
i = {yj ∈ Y | xi ̸∈ Sj} and S′

k = {xl ∈ X | yk ̸∈ Hl}, which follow what

we call the complementary principle of the Skolem and Herbrand support sets.
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By the above definitions, one verifies that ¬¬Φ = Φ, ∼∼Φ = Φ, and ¬∼Φ =

∼¬Φ. Moreover, because the Skolem functions of ΦS , if they exist, are exactly

the Herbrand functions of ¬ΦS , and the Herbrand functions of ΦH , if they exist,

are exactly the Skolem functions of ¬ΦH , the following proposition holds.

Proposition 1. DQBFs under the negation operation obey the law of the ex-

cluded middle. That is, a DQBF is true if and only if its negation is false.

Since any DQBF can be converted to a logically equivalent QBF by formula

expansion, it also explains that the law of the excluded middle should hold

under negation for DQBFs as it holds for QBFs.

A remaining question is whether or not the complement of DQBFs obeys the

law of the excluded middle. The answer to this question is in general negative

as we show below. Based on the existence of Skolem and Herbrand functions,

we classify DQBFs into four categories:

CS = {Φ | Φ is true and ∼Φ is false},

CH = {Φ | Φ is false and ∼Φ is true},

CSH = {Φ | Φ and ∼Φ are true for S-form Φ, or false for H-form Φ}, and

C∅ = {Φ | Φ and ∼Φ are false for S-form Φ, or true for H-form Φ}.

Note that if Φ ∈ CS , then ∼Φ ∈ CH ; if Φ ∈ CH , then ∼Φ ∈ CS ; if Φ ∈ CSH , then

∼Φ ∈ CSH ; if Φ ∈ C∅, then ∼Φ ∈ C∅.

Under the above DQBF partition, observe that the complement of DQBFs

obeys the law of the excluded middle if and only if CSH and C∅ are empty.

In fact, as to be shown, for any QBF Φ, Φ ̸∈ CSH ∪ C∅. As a consequence,

the complement and negation operations for any QBF Φ coincide, and thus

¬∼Φ = Φ. However, for general DQBFs, CSH and C∅ are not empty as the

following two examples show.

Example 3. Consider the DQBF

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).((y1 ⊕ x1) ∧ (y2⊕x2)) ∨ ((y2 ⊕ x2) ∧ (y1⊕x1)),
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where symbols “⊕” and “⊕” stand for Boolean xor and xnor operators, respec-

tively. Φ has Skolem functions, e.g., x1 and ¬x2 for existential variables y1 and

y2, respectively, and ¬∼Φ has Herbrand functions, e.g., y2 and y1 for universal

variables x1 for x2, respectively. That is, Φ ∈ CSH .

Example 4. Consider the DQBF

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).(y1∨¬x1∨x2)∧(y2∨x1∨¬x2)∧(¬y1∨¬y2∨¬x1∨¬x2).

It can be verified that Φ has no Skolem functions, and ¬∼Φ has no Herbrand

functions. That is, Φ ∈ C∅. In fact, the absence of Skolem functions in this

example can also be established by DQ-resolution to be shown in Example 10 of

Section 4.

By these two examples, the following proposition can be concluded.

Proposition 2. DQBFs under the complement operation do not obey the law of

the excluded middle. That is, the truth (respectively falsity) of a DQBF cannot

be decided from the falsity (respectively truth) of its complement.

Nevertheless, if a DQBF Φ ̸∈ CSH ∪ C∅, then its truth and falsity can surely be

certified by a Skolem-function model and a Herbrand-function countermodel,

respectively.3 That is, excluding those in CSH ∪ C∅, a DQBF under the comple-

ment operation obeys the law of the excluded middle.

A sufficient condition for a DQBF not in CSH (equivalently, a necessary

condition for a DQBF in CSH) is presented in Theorem 3.

Theorem 3. Let ϕ be a quantifier-free formula over variables X ∪ Y , let Φ1 =

∀x1 · · · ∀xn∃y1(S1) · · · ∃ym(Sm).ϕ and Φ2 = ∀x1(H1) · · · ∀xn(Hn)∃y1 · · · ∃ym.ϕ with

Si ⊆ X and Hi = {yj ∈ Y | xi ̸∈ Sj} (namely Φ2 = ¬∼Φ1). Then there

exist Skolem functions f⃗ = (f1, . . . , fm) for Φ1 and Herbrand functions g⃗ =

3In general a false S-form DQBF has no Herbrand-function countermodel, and a true H-
form DQBF has no Skolem-function model.
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(g1, . . . , gn) for Φ2 only if the composite function vector g⃗ ◦ f⃗ admits no fixed-

point, that is, there exists no truth assignment α to variables x⃗ = (x1, . . . , xn)

such that α = g⃗(f⃗(α)).

Proof. Since Φ1 is true and has Skolem functions f⃗ , formula ϕ[y⃗/f⃗ ] must be

a tautology. On the other hand, since Φ2 is false and has Herbrand functions

g⃗, formula ϕ[x⃗/g⃗] must be unsatisfiable. Suppose that the fixed-point condition

α = g⃗(f⃗(α)) holds under some truth assignment α to x⃗. Then ϕ[y⃗/f⃗ ]|α =

ϕ[x⃗/g⃗]|β for β = f⃗(α) being the truth assignment to y⃗. It contradicts with the

fact that ϕ[y⃗/f⃗ ] must be a tautology and ϕ[x⃗/g⃗] must be unsatisfiable.

The following two corollaries are immediate from Theorem 3.

Corollary 1. Following the definitions of Φ1 and Φ2 in Theorem 3, let f⃗ =

(f1, . . . , fm) be a Skolem-function model to Φ1. If g⃗ = (g1, . . . , gn) satisfies

α = g⃗(f⃗(α)) for some truth assignment α to variables x⃗ = (x1, . . . , xn), then g⃗

cannot be Herbrand functions for Φ2.

Corollary 2. Following the definitions of Φ1 and Φ2 in Theorem 3, let g⃗ =

(g1, . . . , gn) be a Herbrand-function countermodel to Φ2. If f⃗ = (f1, . . . , fm)

satisfies α = g⃗(f⃗(α)) for some truth assignment α to variables x⃗ = (x1, . . . , xn),

then f⃗ cannot be Skolem functions for Φ1.

A brute-force way to show a DQBF formula Φ is in CS (respectively CH) re-

quires pruning all potential Herbrand (respectively Skolem) functions to ¬∼Φ.

However since the number of potential Herbrand (respectively Skolem) functions

is doubly exponential in the number N of existential (respectively universal)

variables, the complexity of such brute-force pruning is O(22
N

). Fortunately, for

some special cases, Corollary 1 (respectively Corollary 2) and DQ-consensus (re-

spectively DQ-resolution) to be discussed in Section 4 can be helpful to demon-

strate the absence of Herbrand (respectively Skolem) functions. Below are two

DQBF examples, one in CS and the other in CH .

Example 5. Consider the DQBF

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).(y1⊕x1) ∨ (y2⊕x2).
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It can be verified that Φ has Skolem functions f1(x1) = x1 and f2(x2) = 0 for

existential variables y1 and y2, respectively. On the other hand, by Corollary 1

we verify that ¬∼Φ admits no Herbrand functions. Assume ¬∼Φ has Herbrand

functions g1(y2) and g2(y1) for universal variables x1 and x2, respectively. Then

we deduce g1(f2) = g1(0) and g2(f1) = g2(x1). By the fixed-point condition, we

have the system of Boolean equations:

x1 = g1(0), and

x2 = g2(x1),

which always has a fixed-point solution x1 = g1(0) and x2 = g2(g1(0)) indepen-

dent of the choices of functions g1 and g2. It follows that no Herbrand functions

can exist for ¬∼Φ. Therefore, Φ ∈ CS.

Example 6. Consider the DQBF

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).(¬y1 ∨ ¬x2) ∧ (¬y2 ∨ ¬x1) ∧ (y1 ∨ y2 ∨ x1 ∨ x2).

It can be verified that Φ has no Skolem functions, and ¬∼Φ has Herbrand

functions y2 and y1 for universal variables x1 and x2, respectively. That is,

Φ ∈ CH . Notice that the absence of Skolem functions can also be established by

DQ-resolution to be discussed in Section 4.

The following corollary shows that Φ ̸∈ CSH for any QBF Φ.

Corollary 3. For any QBF Φ, the Skolem-function model and Herbrand-function

countermodel cannot co-exist.

Proof. If a QBF is false, its Skolem-function model does not exist and the

corollary trivially holds. Without loss of generality, assume a true QBF is of

the form Φ = ∃y⃗1∀x⃗1 · · · ∃y⃗n∀x⃗n.ϕ. Let {y⃗1 = f⃗1(), . . . , y⃗n = f⃗n(x⃗1, . . . , ⃗xn−1)}

be a model for Φ. Further by contradiction assume there exist a countermodel

{x⃗1 = g⃗1(y⃗1), . . . , x⃗n = g⃗n(y⃗1, . . . , y⃗n)}. So the fixed-point condition is {x⃗1 =

g⃗1(f⃗1()), . . . , x⃗n = g⃗n(f⃗1(), . . . , f⃗n(x⃗1, . . . , ⃗xn−1))}. Since no cyclic dependency

presents in the fixed-point equations, the set of equations always has a solution.
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HerbrandConstruct
input: a false S-form DQBF Φ = ∀x1 · · · ∀xn∃y1(S1)

· · · ∃ym(Sm).ϕ, and
the number n of universal variables

output: Herbrand-functions (g1, · · · , gn) of ¬∼Φ
01 Hn := {yi ∈ Y | xn ̸∈ Si}
02 if (n > 1)
03 Φexp := FormulaExpand(Φ, xn);
04 g⃗† := HerbrandConstruct(Φexp, n− 1);
05 if (g⃗† = ∅) return ∅;
06 g⃗ := VariableMerge(g⃗†);
07 for each assignment α to Hn

08 if (ϕ[x1/g1, . . . , xn−1/gn−1]|α,xn=0 is unsatisfiable)
09 gn(α) = 0;
10 if (ϕ[x1/g1, . . . , xn−1/gn−1]|α,xn=1 is unsatisfiable)
11 gn(α) = 1;
12 else return ∅;
13 else
14 for each assignment α to Hn

15 if (ϕ|α,xn=0 is unsatisfiable)
16 gn(α) = 0;
17 if (ϕ|α,xn=1 is unsatisfiable)
18 gn(α) = 1;
19 else return ∅;
20 return (g1, . . . , gn);
end

Figure 1: Algorithm: Herbrand-function Construction

In other words, due to the complete ordering of the prefix of a QBF, a fixed-

point exists. By Theorem 3, the Skolem-function model and Herbrand-function

countermodel cannot co-exist.

A sufficient condition for a DQBF not in C∅ can be characterized by proce-

dure HerbrandConstruct as shown in Figure 1. Note that although the algorithm

computes Herbrand functions of ¬∼ΦS for a false S-form DQBF ΦS , it can be

used to compute Skolem functions of ¬∼ΦH for a true H-form DQBF ΦH by

taking as input the negation of the formula.

Given a false S-form DQBF Φ with n ≥ 1 universal variables, procedure Her-

brandConstruct in line 1 collects the support set Hn for universal variable xn.

Let Hn = {ya1 , . . . , yak
} and the rest be {yak+1

, . . . , yam}. It then recursively

constructs the Herbrand functions of the formula expanded on xn until n = 1.
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By formula expansion on xn in line 3, variables {yak+1
, . . . , yam

}, which depend

on xn, are instantiated in Φexp into two copies, say, {y′ak+1
, y′′ak+1

, . . . , y′am
, y′′am

}.

Then the VariableMerge step in line 6 lets gi = g†i [y
′
ak+1

/yak+1
, y′′ak+1

/yak+1
, . . . ,

y′am
/yam , y′′am

/yam ]. In constructing the Herbrand function gn of xn, each as-

signment α to Hn is examined. Since Herbrand functions aim to falsify ϕ,

the value of gn(α) is set to the xn value that makes ϕ[x1/g1, . . . , xn−1/gn−1]|α
unsatisfiable.

The complexity of procedure HerbrandConstruct is dominated by formula

expansion in line 3, functional substitution in line 6, and function gn derivation

in lines 7-12 and 14-19. The computation is bounded within exponential space

and thus double exponential time. From a theoretical viewpoint, it might seem

unwise to solve an NEXPTIME problem with a double exponential time algo-

rithm. In practice the complexity bounds may not well reflect the actual perfor-

mance in real-life applications. For example, most modern satisfiability (SAT)

solvers deploy conflict driven clause learning (CDCL) algorithms [4], which may

potentially take exponential space resources, for solving an NP-complete prob-

lem. Apart from the complexity issue, the main purpose of HerbrandConstruct

is to theoretically demonstrate that all QBFs and some DQBFs do not belong

to C∅ as to be shown.

Note that the implementation of VariableMerge in line 6 of procedure Her-

brandConstruct is not unique. In theory, as long as no violation of variable

dependency is incurred, any substitution can be applied. In practice, however

the choice of substitution may affect the strength of the algorithm Herbrand-

Construct in returning (non-empty) Herbrand functions. Note also that the

procedure HerbrandConstruct is incomplete and may return an empty solution

even when Herbrand functions exist. It however can be turned into a com-

plete algorithm if all functional substitutions without variable dependency vio-

lation are considered in VariableMerge. This modification however may result

in formidable computation overhead in practice.

Theorem 4. Given a false S-form DQBF Φ, algorithm HerbrandConstruct re-
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turns either nothing or correct Herbrand functions, which falsify ¬∼Φ.

Proof. Observe first that the functions returned by the algorithm satisfy the

support-set dependencies for the universal variables. It remains to show that

ϕ[x1/g1, . . . , xn/gn] is unsatisfiable. By contradiction, suppose there exists an

assignment β to the existential variables Y such that ϕ[x1/g1, . . . , xn/gn]|β = 1.

Let v ∈ {0, 1} be the value of gn|α for α being the projection of β on Hn ⊆ Y .

Then ϕ[x1/g1, . . . , xn−1/gn−1, xn/v]|β = 1. However it contradicts with the way

how gn|α is constructed. Hence the returned Herbrand functions (g1, . . . , gn), if

they are not empty, are indeed correct Herbrand functions.

The following corollary shows that Φ ̸∈ C∅ for any QBF Φ.

Corollary 4. If Φ is a false QBF and its universal variables x1, . . . , xn follow

the QBF’s prefix order, algorithm HerbrandConstruct always returns non-empty

Herbrand functions.

Proof. We prove the statement by induction on the number of universal vari-

ables. For the base case, without loss of generality consider QBF Φ = ∃y1 · · · ∃yk
∀x∃yk+1 · · · ∃ym.ϕ. After line 1, HerbrandConstruct enters line 14. Since the

QBF is false and has only one universal variable x, expanding on x yields a purely

existentially quantified unsatisfiable formula: ∃y1 · · · ∃yk(∃y′k+1 · · · ∃y′m.ϕ|x=0 ∧

∃y′′k+1 · · · ∃y′′m.ϕ|x=1). By its unsatisfiability, for every assignment α to y1, · · · , yk,

formula ∃y′k+1 · · · ∃y′m.ϕ|α,x=0∧∃y′′k+1 · · · ∃y′′m.ϕ|α,x=1 must be unsatisfiable. Since

∃y′k+1 · · · ∃y′m.ϕ|α,x=0 and ∃y′′k+1 · · · ∃y′′m.ϕ|α,x=1 share no common variables, at

least one of them must be unsatisfiable. Hence the procedure returns a non-

empty Herbrand function.

For the inductive step, assume the previous recursive calls for k = 1, . . . , n−1

of HerbrandConstruct do not return ∅. We show that the current call for k = n

cannot return ∅. Expanding Φ on xn yields Φexp = ∀x1 · · · ∀xn−1∃y1(S1) · · · ∃yk(Sk)

(∃y′k+1(Sk+1)
· · · ∃y′m(Sm).ϕ|xn=0 ∧ ∃y′′k+1(Sk+1)

· · · ∃y′′m(Sm).ϕ|xn=1). By the in-

ductive hypothesis, functions g†1, · · · , g
†
n−1 are returned. Moreover, g†i for any

i = 1, . . . , n − 1 is independent of y′j and y′′j for j = k + 1, . . . ,m. So we
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construct gi = g†i . Since g1, . . . , gn−1 have been constructed in a way such that

∃y1 · · · ∃yk(∃y′k+1 · · · ∃y′m.ϕ[x1/g1, · · · , xn−1/gn−1]|xn=0∧∃y′′k+1 · · · ∃y′′m.ϕ[x1/g1,

· · · , xn−1/gn−1]|xn=1) is unsatisfiable, under every assignment α to y1, · · · , yk
formula (∃y′k+1 · · · ∃y′m.ϕ[x1/g1, · · · , xn−1/gn−1]|xn=0∧∃y′′k+1 · · · ∃y′′m.ϕ[x1/g1, · · · ,

xn−1/gn−1]|xn=1) is unsatisfiable. Moreover, since ∃y′k+1 · · · ∃y′m. ϕ[x1/g1, · · ·,

xn−1/gn−1]|xn=0 and ∃ y′′k+1 · · · ∃y′′m. ϕ[x1/g1, · · · , xn−1/gn−1]|xn=1 do not share

any variables, at least one of them must be unsatisfiable. So gn is returned.

Note that the above proof does not explicitly perform the substitution gi =

g†i [y
′
ak+1

/yak+1
, y′′ak+1

/yak+1
, . . . , y′am

/yam , y′′am
/yam ] in VariableMerge because all

gi in fact do not depend on primed or double-primed variables in the QBF case.

Procedure HerbrandConstruct is useful in deriving Herbrand functions not

only for QBFs but also for general DQBFs as the following example suggests.

Example 7. Consider the DQBF

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).ϕ

with

ϕ = (y1 ∨ x2) ∧ (y2 ∨ x1) ∧ (¬y1 ∨ ¬y2 ∨ ¬x1 ∨ ¬x2).

HerbrandConstruct(Φ, 2) computes Herbrand functions for ¬∼Φ with the follow-

ing steps. Expanding Φ on x2 yields Φexp = ∀x1∃y1(x1)∃y
′
2∃y′′2 .ϕ|x2=0 ∧ ϕ|x2=1

with ϕ|x2=0 = (y1) ∧ (y′2 ∨ x1) and ϕ|x2=1 = (y′′2 ∨ x1) ∧ (¬y1 ∨ ¬y′′2 ∨ ¬x1).

The recursive call to HerbrandConstruct(Φexp, 1) determines the value of func-

tion g†1(y
′
2, y

′′
2 ) under every assignment α to (y′2, y

′′
2 ). In particular, g†1(0, 0) = 0

due to ϕexp = (y1) ∧ (x1) ∧ (x1); g†1(0, 1) = 0 (or 1) due to ϕexp = (y1) ∧

(x1) ∧ (¬y1 ∨ ¬x1); g†1(1, 0) = 0 due to ϕexp = (y1) ∧ (x1); g†1(1, 1) = 1 due

to ϕexp = (y1) ∧ (¬y1 ∨ ¬x1). So g†1(y
′
2, y

′′
2 ) = y′2y

′′
2 (or y′′2 ), and g1(y2) =

g†1[y
′
2/y2, y

′′
2/y2] = y2.

Returning to HerbrandConstruct(Φ, 2), we have ϕ[x1/g1] = (y1∨x2)∧ (y2)∧

(¬y1 ∨¬y2 ∨¬x2). The value of function g2 for each assignment α to y1 can be

determined with g2(0) = 0 due to ϕ[x1/g1]|y1=0 = (x2)∧ (y2) and g2(1) = 1 due
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to ϕ[x1/g1]|y1=1 = (y2) ∧ (¬y2 ∨ ¬x2). That is, g2(y1) = y1. The computed g1

and g2 indeed make ϕ[x1/g1, x2/g2] = (y1) ∧ (y2) ∧ (¬y1 ∨ ¬y2) unsatisfiable.

Fixed-point condition Construction algorithm

C
S

C
∅

C
SH

C
H

Figure 2: Four DQBF categories and regions characterized by Theorems 3 and 4.

Since the DQBF subset CS ∪CH obeys the law of the excluded middle under

the complement operation, Theorems 3 and 4 provide a tool to test whether a

DQBF Φ can be equivalently expressed as ¬∼Φ, that is, whether a DQBF has

either a Skolem-function model or a Herbrand-function countermodel. Figure 2

shows the four DQBF categories and the regions characterized by Theorems 3

and 4.

3.2. Formula Expansion on Existential Variables

Formula expansion on existential variables for DQBFs can be achieved by

negation using De Morgan’s law and expansion on universal variables. It leads

to the following expansion rule, which is dual to expanding universal variables.

Proposition 3. Given a DQBF ∀x1(H1) · · · ∀xn(Hn)∃y1 · · · ∃ym.ϕ, assume with-

out loss of generality that y1 is to be expanded with y1 ̸∈ H1 ∪ · · · ∪ Hk−1 and

y1 ∈ Hk ∩ · · · ∩Hn. The formula can be expanded to

∀x1(H1) · · · ∀xk−1(Hk−1)
∀xk(Hk[y1/0])∀xk(Hk[y1/1]) · · · ∀xn(Hn[y1/0])∀xn(Hn[y1/1])

∃y2 · · · ∃ym.ϕ|y1=0 ∨ ϕ|y1=1,

where Hi[y1/v] denotes y1 in Hi is substituted with logic value v ∈ {0, 1}, and

ϕ|y1=v denotes all appearances of y1 in ϕ are substituted with v including those

in the support sets of variables xi(Hi) for i = k, . . . , n.
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Such expansion can be repeatedly applied for every existential variables. The

resultant formula after expanding all existential variables is a QBF. Note that,

when Skolem functions are concerned rather than Herbrand functions, the sup-

port sets of the existential variables should be listed and can be obtained from

Hi by the aforementioned complementary principle.

Example 8. Consider expanding variable y1 of DQBF

Φ = ∀x1(y1)∀x2(y2)∀x3(y3)∃y1∃y2∃y3.ϕ.

By De Morgan’s law and expansion on a universal variable, we obtain

¬¬Φ = ¬∃x1(y1)∃x2(y2)∃x3(y3)∀y1∀y2∀y3.¬ϕ

= ¬∃x1(0)∃x1(1)∃x2(y2)∃x3(y3)∀y2∀y3.¬ϕ|y1=0 ∧ ¬ϕ|y1=1

= ∀x1(0)∀x1(1)∀x2(y2)∀x3(y3)∃y2∃y3.ϕ|y1=0 ∨ ϕ|y1=1.

3.3. Prenex and Non-prenex Conversion

This section studies some syntactic rules that allow localization of quantifiers

to sub-formulae. We focus on the truth (namely the Skolem-function model),

while similar results can be concluded by duality for the falsity (namely the

Herbrand-function countermodel), of a formula.

The following proposition shows the localization of existential quantifiers to

the sub-formulas of a disjunction.

Proposition 4. The DQBF

∀x⃗∃y1(S1) · · · ∃ym(Sm).ϕA ∨ ϕB ,

where ∀x⃗ denotes ∀x1 · · · ∀xn, sub-formula ϕA (respectively ϕB) refers to vari-

ables XA ⊆ X and YA ⊆ Y (respectively XB ⊆ X and YB ⊆ Y ), is logically

equivalent to

∀x⃗c

(
∀x⃗a∃ya1 (Sa1∩XA) · · · ∃yap (Sap∩XA)

ϕA ∨ ∀x⃗b∃yb1 (Sb1
∩XB) · · · ∃ybq (Sbq∩XB)

ϕB

)
,

where variables x⃗c are in XA ∩ XB, variables x⃗a are in XA\XB, variables x⃗b

are in XB\XA, yai ∈ YA, and ybj ∈ YB.
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Proof. A model to the former expression consists of every truth assignment to

X and the induced Skolem function valuation to Y . Since every such combined

assignment to X ∪Y either satisfies ϕA or ϕB , by collecting those satisfying ϕA

(respectively ϕB) and projecting to variables XA ∪ YA (respectively XB ∪ YB)

the model (i.e., the Skolem functions for y⃗a and y⃗b) to the latter expression can

be constructed. (Note that, for a quantifier ∃yi splitting into two, one for ϕA

and the other for ϕB , in the latter expression, they are considered distinct and

have their own Skolem functions.)

In addition, the Skolem functions for ∀x⃗a∃ya1 (Sa1∩XA) · · · ∃yap (Sap∩XA)
ϕA|α

and those for ∀x⃗b∃yb1 (Sb1
∩XB) · · · ∃ybq (Sbq∩XB)

ϕB |α under every assignment α to

x⃗c can be collected and combined to form a model for the former expression. In

particular the respective Skolem functions faj
|α and fbk |α under α for yaj

and

ybk originating from the same quantifier yi in the former expression are merged

into one Skolem function fi =
∨

α

(
χα(faj |α ∨ fbk |α)

)
, where χα denotes the

characteristic function of α, e.g., χα = x1x2¬x3 for α = (x1 = 1, x2 = 1, x3 = 0).

Example 9. Consider the QBF

Φ = ∀x1∃y1∀x2∃y2∀x3∃y3.ϕA ∨ ϕB

with ϕA refers to variables x1, x2, y1, y2 and ϕB refers to x2, x3, y2, y3. It has

the following equivalent DQBF expressions.

Φ = ∀x1∀x2∀x3∃y1(x1)∃y2(x1,x2)∃y3(x1,x2,x3).ϕA ∨ ϕB

= ∀x1∀x2∀x3

(
∃y1(x1)∃y2(x1,x2)ϕA ∨ ∃y2(x2)∃y3(x2,x3)ϕB

)
= ∀x2

(
∀x1∃y1(x1)∃y2(x1,x2)ϕA ∨ ∀x3∃y2(x2)∃y3(x2,x3)ϕB

)
In contrast, conventionally the quantifiers of the QBF can only be localized to

∀x1∃y1∀x2 (∃y2ϕA ∨ ∃y2∀x3∃y3ϕB) .

The following proposition shows the localization of existential quantifiers to

a sub-formula of a conjunction.
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Proposition 5. The DQBF

∀x⃗∃y1(S1) · · · ∃yk(Sk)
.ϕA ∧ ϕB ,

where ∀x⃗ denotes ∀x1 · · · ∀xn, sub-formula ϕA (respectively ϕB) refers to vari-

ables XA ⊆ X and YA ⊆ Y (respectively XB ⊆ X and YB ⊆ Y ), is logically

equivalent to

∀x⃗∃y2(S2) · · · ∃yk(Sk)
.
(
∃y1(S1∩XA)ϕA

)
∧ ϕB,

for y1 ̸∈ YB.

Proof. The proposition follows from the fact that the Skolem function of y1 is

purely constrained by ϕA only, and is the same for both expressions. Note that

the former formula is equivalent to ∀x⃗∃y1(S1∩XA) · · · ∃yk(Sk)
.ϕA ∧ ϕB .

Essentially DQBFs allow tighter localization of quantifier scopes than QBFs.

On the other hand, converting a non-prenex QBF to the prenex form may incur

the size increase of support sets of existential variables due to the linear (or

complete order) structure of the prefix. With DQBFs, such spurious increase

can be eliminated.

4. DQ-Resolution and DQ-Consensus

The rule of Q-resolution for QBFs can be naturally extended to DQBFs as

follows. For an S-form DQBF Φ = ∀x1 · · · ∀xn∃y1(S1) · · · ∃ym(Sm).ϕ in PCNF, a

clause C ∈ ϕ is called minimal if, for every literal l ∈ C with var(l) = xi ∈ X,

there exists some l′ ∈ C with var(l′) = yj ∈ Y such that xi ∈ Sj . Otherwise,

C is non-minimal. A non-minimal clause C can be reduced to a minimal clause

C† by removing from C its universal literals

L∀ = {l ∈ C | var(l) = xi ∈ X and xi ̸∈ Sj for all var(l′) = yj ∈ Y with l′ ∈ C},

i.e., C† = C\L∀. This reduction process is called the ∀D-reduction. Similarly,

by duality in an H-form DQBF Φ = ∀x1(H1) · · · ∀xn(Hn)∃y1 · · · ∃ym.ϕ in PDNF,

a cube C ∈ ϕ is called minimal if, for every literal l ∈ C with var(l) = yi ∈ Y ,
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there exists some l′ ∈ C with var(l′) = xj ∈ X such that yi ∈ Hj . Otherwise,

C is non-minimal. A non-minimal cube C can be reduced to a minimal cube

C† by removing from C its existential literals

L∃ = {l ∈ C | var(l) = yi ∈ Y and yi ̸∈ Hj for all var(l′) = xj ∈ X with l′ ∈ C},

i.e., C† = C\L∃. This reduction process is called the ∃D-reduction.

DQ-resolution and DQ-consensus of DQBFs are the same as Q-resolution

and Q-consensus of QBFs, respectively, except that the ∀-reduction and ∃-

reduction are replaced by ∀D-reduction (for S-form DQBFs) and ∃D-reduction

(for H-form DQBFs). The following theorem states the soundness of DQ-

resolution.

Theorem 5. Given an S-form DQBF Φ in PCNF, Φ is false if there exists a

DQ-resolution sequence leading to an empty clause.

Proof. Let ϕ be the matrix of Φ in CNF. Assume ϕ = ϕ′ ∧ C for some non-

minimal clause C = (l1∨· · ·∨ ln∨ l∗) with var(l∗) being a universal variable not

in Sj for all existential variables yj = var(li), i = 1, . . . , n. Let Ψ be a DQBF

same as Φ expect for the clause C being replaced by (l1 ∨ · · · ∨ ln). The logical

equivalence between Φ and Ψ can be easily established by expanding Φ and Ψ on

the universal variable var(l∗). Notice that we only need to expand on universal

variables since S-form DQBFs are of concern. By the aforementioned expansion

rule, it is easily seen that Φ and Ψ after expansion converge to the same formula.

Consequently ∀D-reduction is sound. That is, reducing a non-minimal clause of

a DQBF to its minimal form preserves logical equivalence. On the other hand,

resolution is sound regardless of the quantification prefix. Since both resolution

and ∀D-reduction of DQ-resolution are sound, the derived resolvents and their

reduced clauses are logically implied by the original formula. Therefore, as long

as an empty clause can be obtained through DQ-resolution, the DQBF must be

false.
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Figure 3: DQ-resolution proof of a false DQBF

Example 10. Consider the DQBF of Example 4

∀x1∀x2∃y1(x1)∃y2(x2).(y1∨¬x1∨x2)∧ (y2∨x1∨¬x2)∧ (¬y1∨¬y2∨¬x1∨¬x2),

whose falsity is established by the DQ-resolution proof shown in Figure 3, where

a clause with a single incoming edge is obtained through ∀D-reduction from its

antecedent clause, and a clause with two incoming edges is obtained through

resolution from its two antecedent clauses.

Similar to Theorem 5, one can establish by duality the soundness of DQ-

consensus.

Theorem 6. Given an H-form DQBF Φ in PDNF, Φ is true if there exists a

DQ-consensus sequence leading to an empty cube.

Proof. The proof is similar to that of Theorem 5, and is omitted.

Note that the proofs of Theorems 5 and 6 do not carry to H-form DQBFs in

PCNF and S-form DQBFs in PDNF, respectively, because expansions on the

universal variables of an H-form DQBF and on the existential variables of an

S-form DQBF are illy defined.
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Figure 4: DQ-consensus proof for ∼¬Φ

On the other hand, let DQ-resolution be similarly defined on H-form DQBFs

in PCNF with the following modified rule, denoted ∀D̃-reduction, by removing

from a clause C under the complementary principle its universal literals

{l ∈ C | var(l) = xi ∈ X and yj ∈ Hi for all var(l′) = yj ∈ Y with l′ ∈ C}

and DQ-consensus be defined on S-form DQBFs in PDNF with the following

modified rule, denoted ∃D̃-reduction, by removing from a cube C under the

complementary principle its existential literals

{l ∈ C | var(l) = yi ∈ Y and xj ∈ Si for all var(l′) = xj ∈ X with l′ ∈ C}.

Then DQ-resolution and DQ-consensus under these modified reduction rules are

unsound in general as the following example shows.

Example 11. Consider the S-form DQBF

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).(¬x2∧y1∧¬y2)∨(¬x1∧¬y1∧y2)∨(x1∧x2∧y1∧y2).

As can be verified, it is false due to the absence of Skolem function models.

However, ∃D̃-reduction may lead to a DQ-consensus proof of an empty cube as
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shown in Figure 4, where a cube with a single incoming edge is obtained through

∃D̃-reduction from its antecedent cube, and a cube with two incoming edges is

obtained through consensus from its two antecedent cubes. The consensus proof

in turn asserts that the H-form ∼¬Φ is true. Therefore ∃D̃-reduction is unsound

for S-form DQBFs. (Similarly ∀D̃-reduction is unsound for H-form DQBFs.)

Although ∀D̃ and ∃D̃ reductions are unsound for general DQBFs, they are

sound for DQBFs in the category of CS ∪ CH as shown in the following proposi-

tions.

Proposition 6. The ∃D̃-reduction rule is sound for DQ-consensus on an S-

form DQBF Φ in PDNF provided that Φ ∈ CS ∪ CH .

Proof. Given an S-form DQBF Φ ∈ CS∪CH in PDNF, let Π be a DQ-consensus

proof with the extended ∃D̃-reduction leading to an empty cube. Suppose Π′ be

the same as Π except that every cube of Π is negated to a clause by De Morgan’s

laws. Then it can be verified that, for the (S-form) DQBF ∼Φ (in PCNF), Π′

corresponds to a DQ-resolution proof with the standard ∀D-reduction leading

to an empty clause. By Theorem 5, since ∼Φ is an S-form DQBF with a

DQ-resolution proof leading to an empty clause, ∼Φ is false. Finally, since

Φ ∈ CS ∪ CH , we conclude Φ must be true.

By duality, one can similarly establish the following proposition.

Proposition 7. The ∀D̃-reduction rule is sound for DQ-resolution on an H-

form DQBF Φ in PCNF provided that Φ ∈ CS ∪ CH .

By Theorem 5, Theorem 6, Proposition 6, and Proposition 7, we know that all

the reduction rules ∀D, ∀D̃, ∃D, and ∃D̃ can be safely applied for DQBFs in

CS ∪ CH , as in the special case of QBFs.

Although DQ-resolution and DQ-consensus are sound as shown in Theo-

rems 5 and 6, they are unfortunately incomplete in proving the truth and falsity

of DQBFs as we show below.

Theorem 7. DQ-resolution is incomplete in proving the truth and falsity of

S-form DQBFs.
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Proof. The theorem can be established by the following DQBF.

Φ = ∀x1∀x2∃y1(x1)∃y2(x2).(y1 ∨ y2 ∨ x1) ∧ (¬y1 ∨ ¬y2 ∨ x1) ∧

(y1 ∨ y2 ∨ ¬x1 ∨ ¬x2) ∧ (¬y1 ∨ y2 ∨ ¬x1 ∨ x2) ∧

(y1 ∨ ¬y2 ∨ ¬x1 ∨ x2) ∧ (¬y1 ∨ ¬y2 ∨ ¬x1 ∨ ¬x2).

It can be verified that Φ is false (i.e., no Skolem function models), and yet no

DQ-resolution steps can be made.

Similarly one can establish the following claim.

Theorem 8. DQ-consensus is incomplete in proving the truth and falsity of

H-form DQBFs.

Since the truth of an S-form (respectively H-form) DQBF is defined by the

existence of Skolem (respectively Herbrand) functions, the definition is not con-

sistent with the existence of DQ-consensus (respectively DQ-resolution) proofs.

For the QBF case, a Q-resolution (respectively Q-consensus) proof can be both

an evidence for the absence of Skolem (respectively Herbrand) functions and

an evidence for the existence of Herbrand (respectively Skolem) functions [5, 6].

For the DQBF case, unfortunately there is no such nice property. For an S-form

(respectively H-form) DQBF Φ, a DQ-resolution (respectively DQ-consensus)

proof can only certify the absence of Skolem (respectively Herbrand) functions,

thus soundly proving the formula is false (respectively true), but cannot guar-

antee the existence of Herbrand (respectively Skolem) functions for the H-form

(respectively S-form) DQBF ∼¬Φ.

Even though DQ-resolution and DQ-consensus are incomplete, they are use-

ful, due to their soundness, in DQBF evaluation since resolvent clauses and

consensus cubes can be used as learnt clauses for S-form DQBFs and learnt

cubes for H-form DQBFs, respectively. In fact, one important point to study

the complement operator, in contrast to the negation operator, is to see whether

the modified ∃D̃-reduction holds for cube learning in the evaluation of S-form

DQBFs in PCNF, similar to ∃-reduction for the cube learning in PCNF QBF
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evaluation [13], as affirmatively answered by Proposition 7 within the DQBF

category of CS ∪ CH .

Moreover, by Propositions 6 and 7, if for some true S-form (respectively

false H-form) DQBF Φ we can prove Φ = ∼¬Φ (namely if Φ ∈ CS or Φ ∈ CH),

then we can soundly use a DQ-consensus (respectively DQ-resolution) proof for

the H-form (respectively S-form) DQBF ∼¬Φ as the evidence of the existence

of Skolem (respectively Herbrand) functions for Φ.

On the other hand, in light of Theorem 2 of QBFs, one might hope that sim-

ilar algorithms exist for DQBFs in converting DQ-resolution proofs to Herbrand

functions and converting DQ-consensus proofs to Skolem functions. However it

is, in general, impossible due to the non-emptiness of CSH and C∅. Nevertheless,

the possibility that such algorithms exist for DQBFs in CS ∪CH is not ruled out,

and our result may provide insight for the development.

5. Applications

DQBF evaluation is a new field with potential broad applications. Its devel-

opment is underway. To date there is only one search based DQBF solver [12]

extended from the Q-DPLL algorithm [4, 10]. We note that the framework pro-

vided by the QBF solver sKizzo [2], which is based on Skolemization, can also

be naturally extended to DQBF solving. In addition to evaluation, certification

of DQBFs, the focus of this work, is equally important in enabling practical

applications.

One of the potential applications of DQBFs is topologically constrained logic

synthesis [21], where a set of unknown components in a given Boolean network

is to be synthesized such that the resultant network behavior conforms to a

system specification. Figure 5 depicts one such example, where the network

consists of four known and four unknown function components each with two

inputs. Given the fixed connection of the network topology and some Boolean

relation specifying the set of allowed input-output values, the Boolean functions

of the four unknown components are to be synthesized.
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Figure 5: A network of known and unknown logic components
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Figure 6: Function derivation from a Boolean relation

A special problem of topologically constrained logic synthesis is shown in

Figure 6, where m unknown functions f1, . . . , fm are to be synthesized from a

Boolean relation specification R(x⃗, y⃗) with x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , ym)

such that yi = fi(x⃗i) with x⃗i, a sub-vector of x⃗, being the pre-specified input

constraint of fi, for i = 1, . . . ,m. It can be naturally expressed by the S-form

DQBF

∀x1 · · · ∀xn∃y1(x⃗1) · · · ∃ym(x⃗m).R(x⃗, y⃗). (7)

Then the Skolem functions to the DQBF correspond to the desired synthesis

solution. This synthesis problem is trivially the same as deriving Herbrand
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functions to the H-form DQBF

∃x1 · · · ∃xn∀y1(x⃗1) · · · ∀ym(x⃗m).¬R(x⃗, y⃗). (8)

The above problem is an extension of the (input-unconstrained) Boolean re-

lation determinization problem considered in [5, 6, 14]. Notice that the QBF

equivalents to Formulae (7) and (8) may suffer from formula explosion due to the

enforcement of independencies among variables by the aforementioned formula

expansion.

6. Prior Work

IF logic [17] with the game-theoretical semantics is known to violate the law

of the excluded middle. A simple example is the IF logic formula ∀x∃y/x.(x = y)

for x, y ∈ {0, 1}, where y/x indicates the independence of y on x [11]. It assumes

that not only y is independent of x, but also is x independent of y. That is,

it is equivalent to ∀x()∃y().(x = y) in our dependency notation. In a game-

theoretic viewpoint, neither the ∃-player nor the ∀-player has a winning strategy.

Therefore this formula is neither true nor false, and has no equivalent DQBF

since any DQBF can always be expanded into a QBF, whose truth and falsity

can be fully determined.

On the other hand, the game-theoretical semantics of IF logic, when ex-

tended to DQBFs, does not provide a fully meaningful approach to synthesiz-

ing Skolem and Herbrand functions. Unlike the unimportance of the syntactic

quantification order in our formulation, the semantic game of IF logic should

be played with respect to the prefix order. Since different orders correspond to

different games, the semantics is not directly useful in our considered synthesis

application.

Henkin quantifiers in their original form [16] specified only the dependencies

of existential variables on universal variables. Such restricted dependencies were

assumed in early IF logic [17] research. As was argued in [11], the dependency of

universal variables on existential variables are necessary to accomplish a sym-

metric treatment on the falsity, in addition to truth, of an IF logic formula.
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With such extension, IF logic formulae can be closed under negation. However,

how the dependencies of existential variables and universal variables relate to

each other was not studied. The essential notion of Herbrand functions was

missing. In contrast, our formulation on DQBFs treats Skolem and Herbrand

functions on an equal footing. Unlike [11], we restrict a formula to be of ei-

ther S-form or H-form, rather than simultaneous specification of dependencies

for existential and universal variables. This restriction makes the synthesis of

Skolem and Herbrand functions for DQBFs more natural.

Prior work [18, 8] assumed DQBFs are of S-form only. In [18], a DQBF

was formulated as a game played by a ∀-player and multiple noncooperative ∃-

players. This game formulation is fundamentally different from that of IF-logic.

The winning strategies, if they exist, of the ∃-players correspond to the Skolem

functions of the DQBF. This game interpretation can be naturally extended to

H-form DQBFs.

The soundness of DQ-resolution was briefly mentioned in [12]. In contrast,

we formalized DQ-resolution and DQ-consensus for S-form and H-form DQBFs,

respectively, and studied their soundness and completeness issues.

7. Conclusion

The syntax and semantics of DQBFs presented in this paper made DQBFs a

natural extension of QBFs from a certification viewpoint. Basic DQBF proper-

ties, including formula negation, complement, expansion, prenex and non-prenex

form conversion, and resolution, were shown. Our formulation is adequate for

applications where Skolem/Herbrand functions are of concern.

It remains open whether there exists more elaborated resolution and con-

sensus rules that are both sound and complete for DQBF evaluation. Also the

precise characterization of DQBFs in CS ∪CH remains to be established, and al-

gorithms that convert resolution and consensus proofs to Herbrand and Skolem

functions, respectively, for DQBFs in CS ∪ CH remain to be obtained.
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