
SETS: Stochastic Execution Time Scheduling for Multicore Systems by 
Joint State Space and Monte Carlo  

 
Nabeel Iqbal, Jörg Henkel 

Karlsruhe Institute of Technology (KIT), Chair for Embedded Systems, Germany 
{nabeel.iqbal, henkel} @kit.edu 

 
Abstract— The advent of multicore platforms has renewed the 
interest in scheduling techniques for real-time systems. 
Historically, ‘scheduling decisions’ are implemented considering 
fixed task execution times, as for the case of Worst Case 
Execution Time (WCET). The limitations of scheduling 
considering WCET manifest in terms of under-utilization of 
resources for large application classes. In the realm of multicore 
systems, the notion of WCET is hardly meaningful due to the 
large set of factors influencing it. Within soft real-time systems, a 
more realistic modeling approach would be to consider tasks 
featuring varying execution times (i.e. stochastic). This paper 
addresses the problem of stochastic task execution time 
scheduling that is agnostic to statistical properties of the 
execution time. Our proposed method is orthogonal to any 
number of linear acyclic task graphs and their underlying 
architecture. The joint estimation of execution time and the 
associated parameters, relying on the interdependence of parallel 
tasks, help build a ‘nonlinear Non-Gaussian state space’ model. 
To obtain nearly Bayesian estimates, irrespective of the execution 
time characteristics, a recursive solution of the state space model 
is found by means of the Monte Carlo method. The recursive 
solution reduces the computational and memory overhead and 
adapts statistical properties of execution times at run time. 
Finally, the variable laxity EDF scheduler schedules the tasks 
considering the predicted execution times. We show that variable 
execution time scheduling improves the utilization of resources 
and ensures the quality of service. 
Our proposed new solution does not require any a priori know-
ledge of any kind and eliminates the fundamental constraints as-
sociated with the estimation of execution times. Results clearly 
show the advantage of the proposed method as it achieves 76% 
better task utilization, 68% more task scheduling and deadline 
miss reduction by 53% compared to current state-of-the-art me-
thods.  

Keywords: Scheduling, stochastic execution time, parallel tasks, 
state space modeling, joint estimation, Monte Carlo, task utilization 

I. INTRODUCTION 
A paradigm shift in computing has appeared with the emergence 
of multicore systems, driven by an easy availability of 
inexpensive, high-performance processors, while at the same time 
offering a prospective solution for overcoming the power 
constraints and the thermal issues associated with the processors. 
The concerns of programming these platforms are urgent as no 
automatic solution is likely [2]. This tends to draw greater 
research efforts toward parallel computing methods, run-time 
management of parallelism and related research fields. In the 
realm of real-time systems, the programming of such 
multiprocessor systems presents a rather formidable problem. In 
particular, time-critical tasks must be serviced within certain pre-
determined deadlines, dictated by the required quality of service. 
The most important attribute of real-time systems is that the 
correctness of such systems depends not only on the computed 
results but also on the time at which the results are produced 
(timing guarantee). Scheduling and schedulability analysis is a 
mechanism to provide these guarantees. The multicore systems 

pose new challenges while opening up new design opportunities 
for scheduling. Therefore, it is essential to examine the problem 
of scheduling in the context of multicore environment to devise 
efficient methods and tools for the scheduling of tasks. 
In general, a task can be characterized by an integer tuple (St, Ct, 
Dt), where St is the start-time of the task, Ct is the execution time 
and Dt is the deadline. The most non-trivial entity in the context 
of scheduling is Ct as remaining variables can be known exactly 
for the given scheduling interval. Ct , by and large,  is the property 
of the run-time and depends on a large number of factors, ranging 
from the task program structure to the run-time state of the 
underlying hardware platform. Most of the mapping and 
scheduling algorithms assume that task execution times or their 
bounds are known quantities. Because of the several factors 
affecting it, it is rather unfair to consider it a known quantity. The 
execution time is unknown before the task is mapped on the 
architecture, but even afterwards, the execution time remains 
stochastic due to application-dependent, platform-dependent, and 
environment-dependent factors. The variation in the amount and 
type of data input to the application, the micro-architecture of the 
processing units (which influences caching, queuing etc.), 
interaction with the environment, database accesses, 
communication links etc. introduce uncertainty in the execution 
time of the task. The multicore/multithreaded systems give rise to 
additional scenarios such as the interdependence of threads 
mapped on different cores (Software pipelining). In the scenario 
of real-time systems where timelines are essential, the advances 
in multicore system become part of the problem rather than the 
solution. Futuristic computer architectures and software have 
made it difficult or impossible to estimate the execution time of 
the task at design time [1]. 
In simple words, if tuple (St, Ct, Dt), is known, then scheduling 
boils down to the decision by classical scheduling algorithms 
such as Earliest Dead Line First (EDF). Because of the influence 
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Figure 1: WCET and stochastic task execution time 

978-1-4244-8192-7/10/$26.00 ©2010 IEEE 123



‐1.8

‐1.6

‐1.4

‐1.2

‐1

‐0.8

‐0.6

‐0.4

‐0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

2000

4000

6000

8000

10000

12000

14000

1 26 51 76 101 126

E
xe

cu
tio

n 
T

im
e

Macro Block Number [ Sequential  run ]

MC/Inloop, T3

Entropy, T2

NAL Decoder, T1

Correlation T1‐T2

Correlation T2‐T3 C
or

re
la

tio
n

Figure 2: Correlation among execution times of tasks in software pipeline

of a large number of factors at run-time, it is essential to treat the 
problem of task execution time estimation in stochastic terms [4]. 
Historically, the Worst Case Execution Time (WCET) estimation 
has been investigated in depth by researchers. WCET defines the 
upper bound. It leads to severe underutilization of the resources. 
Moreover, in the realm of multicore, where a large number of 
external factors influence the execution, guaranteed calculation of 
WCET may not be viable. Figure 1 shows the different 
probability distribution functions of the task and shows that 
WCET lies at the far upper bound. An expensive system would be 
required to meet the WCET imposed deadline as it is only 
considering the worst-case scenario. However, during the lifespan 
of the system, the WCET situation will occur with a very small 
probability. Depending on the required quality of service and 
nature of application, and if some deadline misses are tolerable, 
then scheduling based on variable execution time of tasks can be 
considered to offer a cheaper solution. In such a scenario, the 
estimator monitors the task execution times in previous 
scheduling intervals and predicts the execution times for the next 
interval. The underlying assumption of the estimator is that, to 
some extent, it is possible that the future execution times can be 
predicted from the past observations (i.e temporal correlation of 
execution times). The scheduler tries to find the schedule for the 
predicted execution times while respecting the task deadlines. The 
primary focus of this work is the design of the estimator for 
scheduling in soft real-time systems with a stochastic treatment of 
execution times of parallel tasks. 
A. Motivation 

As discussed earlier, the stochastic behavior of execution time 
of task stems from several factors and is the function of run-time 
parameters. To make our point clear, consider the execution time 
of a Macro Block (MB, 16x16 pixel block) decoding task in 
H.264 video decoding process. Figure 1 shows the distributions of 
execution times of MB for 4 different Quantization Parameters 
(QP). A change in QP causes a change in amount of data to be 
decoded. For each case, all sets of conditions were kept the same 
except that the QP was changed at the encoding time. Figure 1 
makes it clear that MB decoding time is purely stochastic in 
nature. It is very important to note that MB decoding task has 
different distributions because of different QP. This makes it clear 
that no a priori knowledge can be assumed for the execution time 
and it’s statistical properties. 

   As software pipelining will prevail in future for the 
programming of multicore systems, it gives rise to a very 
important and new design opportunity to improve the execution 
time estimation of the task. Consider two tasks (T1 and T2) 
running in a software pipeline such that the data output of T1 
drives the input of T2 and are mapped to different cores. Both 
tasks are working on the same data set such that the execution 
time of T1 will influence the execution time of T2. A theoretical 
study of such dependencies and derivation of bounds can be 
found in [5]. The detailed analysis of such dependencies on 
processes in the scenario of power consumption is outlined in [7]. 
This generates the motivation to investigate task execution time in 
space (spatial correlation of execution times). Figure 2 shows the 
execution time profile of three tasks in a software pipelined H.264 
video decoder. The three tasks of the software pipeline are (i) 
Network Abstraction Layer (NAL) decoder, T1 (ii) entropy 
decoding, inverse scanning dequatization and inverse discrete 
cosine transform, T2 (iii) motion compensation and in-loop 
filtering, T3. Each of them is a part of the decoding process of a 
MB. They are executed one after the other. The horizontal axis 
represents the successive MBs, and the execution times of each 
task are given on the vertical left axis (scaled arbitrarily for ease 
of plotting and understanding). The correlation coefficients were 

computed (windowed correlation with two lags) and are shown on 
right vertical axis. The correlation axis shows that there exists a 
strong correlation between the execution times of the tasks in the 
software pipeline and most of the time hover around 1 (strong 
correlation). However, just like the temporal correlation, the 
extent of spatial correlation cannot be known a priori and must be 
adapted at run-time, because at some instance in time there could 
be a strong spatial correlation while at another instance there 
could be no correlation. 

In lieu of the above discussion, it is clear that no a priori 
knowledge can be assumed for the task execution time estimation. 
Therefore, it is essential to derive a new general solution 
orthogonal to underlying architecture, task graph and the 
statistical properties of execution time. As a step toward this 
vision, this paper proposes a new framework for estimator design 
based on nonlinear non Gaussian joint state space modeling and 
also considers the spatial correlation factors among parallel tasks. 
To solve the nonlinear state space model recursively, we 
formulate the online Monte Carlo based solution. The recursive 
solution solves the state space model agnostic to execution time 
distributions and adapts the statistical properties at run time. The 
predicted execution times are used to schedule the tasks by 
variable laxity EDF scheduler. The results shows the advantage of 
proposed method as it achieves 76% better task utilization, 68% 
more task scheduling and reduction in deadline misses by 53% in 
comparison to state-of-the-art. 

The rest of this paper is organized as follows: Section II gives 
an overview of the related work, Section III describes our novel 
methodology, followed by Section IV for experimental se-
tup/results and Section V concludes the paper. 
B. Our Novel Contributions 

  Within the scope of this paper, to the best of our knowledge, 
our novel contributions are,   
• We are the first to propose the use of spatial correlation 

among parallel tasks to improve the execution time esti-
mates at run-time. 

• We are the first to model the parallel task execution time 
prediction problem in a non-linear non-Gaussian multiva-
riate joint state space. 

• We are the first to propose the solution of joint estimation of 
execution times and its parameters by Monte Carlo method. 

II. RELATED WORK AND MOTIVATION 
A significant amount of work has been carried out for scheduling 
and schedulability analysis in conjunction to Worst Case Execu-
tion Time (WCET) estimation for hard real-time systems [8, 9, 
10, 11]. The WCET will remain the matter of interest for a very 
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special class of application where timeliness is the only concern 
and cost of the system does not matter. 

   Fewer publications address the analysis of applications with 
stochastic task execution times. Moreover, most of them consider 
relatively restricted application classes, and also limit their focus 
to the mono-processor systems. In case of a stochastic treatment, 
they consider a particular class of probability distribution function 
(e.g an exponential distribution). The task execution time 
estimation for independent sporadic tasks with statistical 
dependencies is addressed in [3]. Stochastic task execution times 
are considered in [13] with admittance controller for 
schedulability. Stochastic execution time estimation with 
approximations and fixed scheduling policies is discussed in [14, 
15, 6]. A heuristic based solution is proposed in [16] where only 
the upper bounds of the missed deadline are computed.  

  Continuous Markov chain for parallel executing tasks is pro-
posed in [4] for MPSoC scenario. The stationary Markov process 
for independent tasks is derived in [17] where task execution time 
can only assume the values from discrete sets. In [18], another 
Markovian process is considered; the analysis is performed by 
solving the system of linear equations and the execution time is 
only allowed to assume the value from finite small sets.  

   In most cases, WCET analysis limits the system performance, 
as computational resources are underutilized. The upper and 
lower bounds on execution time become less and less significant 
and irrelevant to real scheduling, as execution time tends to be 
more stochastic. Heuristic solutions tend to be non-optimal for the 
general case. The Markov Chain solutions use approximations 
and assume that the transition probabilities and the distributions 
are known. We propose a method, which does not consider any a 
priori knowledge and adapts at run-time and learns the statistical 
properties to obtain nearly optimal predictions.  

III. SETS 
In the scenario of variable execution time, scheduling compris-

es of two components: estimator and scheduler. Figure 3. elabo-
rates the estimator/scheduler design flow. The estimator is in-
voked at the beginning of each scheduling interval and predicts 
the execution times; the scheduler then tries to schedule the tasks. 

 In SETS, at the beginning of each interval, the estimator takes 
the difference in the predicted cycles and actual cycles utilized by 
individual tasks in the elapsed interval, and predicts the cycles 
required to complete the job in the next interval. In real world 
scenarios, it is extremely difficult, if not impossible, to determine 
and model all the parameters. Only a limited parameter vector can 
be used to model the execution time because of the practical 
considerations. Thus, the estimator is modeled as a function of 
temporal and spatial correlation factors based on the cycles 
consumed by each task in the currently elapsed interval. The 
unmodeled factors will cause a certain amount of error to be 
present in a prediction. The unmodeled factors, which affect 
prediction, are unknown but does show dependence on the 
modeled parameters due to the fact that the modeled and 
unmodeled parameters belongs to the same process [19]. State 

space model introduces state variables to compensate for the 
unmodeled factors. The state space model is extended to estimate 
the parameters in conjunction to the execution time, resulting in 
time-varying non-linear joint state- space. The solution of joint 
state space is found by the recursive formulation of Monte Carlo 
method, which adapts the execution time statistics at run-time and 
gives near to Bayesian estimates. After obtaining the predicted 
execution times, the variable laxity EDF scheduler is invoked to 
schedule the task on multicore processor. Following subsections 
discuss in details about each component of the SETS. 
A. Application Model and Task Graph    
  To proceed forward, consider the task graph of Figure 4.a with 
four tasks. Task T1, is the predecessor (Producer) and the first 
task in the software pipeline. T1 processes the data and hands it 
over to task T2 and T3 (consumers) for further processing. The 
software pipelining of T2 and T3 as consumer of T1 constitute the 
parallel processing in time (forking). The task T4 has two 
predecessors namely T2 and T3, and act as the joining task for 
both, parallel processing in space (Joining). In the task graph of 
Figure 4.a, no task is consumer and producer at the same time for 
any task. It means that, we are only considering the acyclic linear 
task graphs. In theory, there is no restriction to model and 
formulate the solution for cyclic graphs but practical limitations 
prohibit it. This limitation stems from the formation of ill-posed 
first order difference equations in the model, which seriously 
hampers the estimation quality. To override the problem solution 
may incorporate the unscented transform in the solution of state 
space model and will be considered in the future work. The task 
graph of Figure 4 is comprehensive in its nature as it contains 
both forms of the parallelism (time and space parallelism). The 
task graph of Figure 4.a is considered for the understanding of the 
derivation of the state space model, and a general solution for any 
number of tasks is also developed subsequently. 
B. State Space Model for Parallel Tasks  

General  state space model is defined by the pair of time update

ൌ  
and measurement update equation of the following form 
                                     ܺሺ݇ ൅ 1ሻ ሺ݇ሻܺܣ ൅ .ሺ݇ሻ                     ሺ1ܷܤ  ܽሻ 
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Figure 3: Estimator and scheduler flow at the beginning of each sche-
duling interval 

       ෠ܻ
h
 : is the state vector, ෠ܻ : is the output vector 

w
 
 : is the input vector,  : is the system matrix 

 

ereas1 
ܺ
ܷ
 is the input matrix,  : is the output matrix : ܤ
                                                                         
1 From now onwards vectors and matrices will be represented in up-

per case and scalars in lower case letters. 
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 To model the execution time of tasks of Figure 4.a in a state 
space, we pose it as a multivariate problem in a time series. 
Figure 4.b depicts the prediction process in pictorial form. In 
Figure 4.b, ்ݕଵሺ݇ሻ, ,ଶሺ݇ሻ்ݕ  ସሺ݇ሻ are the execution்ݕ ଷሺ݇ሻ and்ݕ
times in  ݇th scheduling interval, of task T1, T2, T3 and T4 
respectively. The aim is to predict the execution times in the next 
interval, ݇ ൅ 1. To proceed forward consider task T1, it is the first 
task in the task graph and has no predecessor task. In the absence 
of predecessor task, prediction of execution time of T1 can only 
be carried out on the basis of temporal correlation. If ்ݓଵ,்ଵ is the 
temporal regression coefficient associated with the interval ݇ then 
t ion f  
t i
he predicted execut  time or the interval  ݇ ൅ 1 considering
he first o de sion is def ned as  
                ො்ଵሺ݇ ൅ 1ሻ ൌ .ଵሺ݇ሻ                        ሺ2்ݕଵ,்ଵ்ݓ  ܽሻ 

r r regres
ݕ                     

whereas ݕො்ଵሺ݇ ൅ 1ሻ is the predicted execution time in the next in-
terval. Now consider task T2 with predecessor T1, having tem-
poral and spatial correlation with itself and with T1. To form mul-
tivariate second order regression equation for T1, we define the 
temporal coefficient as ்ݓଶ,்ଶ and spatial correlation coefficient 
as ்ݓଵ,்ଶ. ்ݓଵ,்ଶ defines the extent of spatial correlation between  
T de r 
m

1, the pre cessor, and T2, the successor. Then the second orde
ultivariate regression equation for T2 is defined by  
ො்ଶሺ݇ݕ                 ൅ 1ሻ ൌ ଵሺ݇ሻ்ݕଵ,்ଶ்ݓ  ൅ .ଶሺ݇ሻ             ሺ2்ݕଶ,்ଶ்ݓ ܾሻ 

Similarly, second and third order multivariate regression equa-
tive  can be obtain d  tions for T3 and T4 respec ly e as shown below,

b).  
்  

(for elaboration refer to Figure 4.
ො்ଷሺ݇ݕ                  ൅ 1ሻ ൌ ଵሺ݇ሻ்ݕଵ,்ଷ்ݓ  ൅ ,ଶ்ݓ ଷ்ݕଷሺ݇ሻ               ሺ2. ܿሻ
ො்ସሺ݇ݕ ൅ 1ሻ ൌ ଶሺ݇ሻ்ݕଶ,்ସ்ݓ  ൅ ଷሺ݇ሻ்ݕଷ,்ସ்ݓ ൅ .ସሺ݇ሻ ሺ2்ݕସ,்ସ்ݓ ݀ሻ 
Arrang ng nd 
writin orm  

i  Eq. (2.a,b,c,d) as the system of linear equations a
g in matrix f  yields
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Naturally, prediction will accompany with an error between 
m ; it is re
vation’, and for 

easured and predicted execution time ferred to as ‘inno-
any task Ti is defined as 

                                   ε்௜ሺ݇ሻ ൌ ௜ሺ݇ሻ்ݕ െ  ො்௜ሺ݇ሻ                                    ሺ3ሻݕ
The above given system of linear equations and the definition of 
error imply the direct formulation of state space model of Eq. 
(1.a,b) [20]. The components of the state space model for the 
problem f Figure 5 nging o  can be obtained by rearra   
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Replacing Eq. (4) into Eq. (1.a,b) yields the state space model. 
The system matrix A defines the model of parallel tasks and 
encapsulates all dependencies and associated coefficients. In the 
derivation of state space model, we define the regression 
c ts, ௝ for each depende cy. Let’s define the regression 
p
oefficien ,௜ݓ n
arameter vector as  
ܹ ൌ ସ,்ସ൧்ݓ ଷ,்ସ்ݓ ଶ,்ସ்ݓ ଷ,்ଷ்ݓ ଵ,்ଷ்ݓ ଶ,்ଶ்ݓ ଵ,்ଶ்ݓଵ,்ଵ்ݓൣ

் ሺ5ሻ 
The primary goal of the solution of state space model is to minim-
iz -
fi

e prediction error and hence the objective function can be de
ned as  
௠௜௡ܬ                                          ൌ  ሺε்௜ሺ݇ሻሻ                                     ሺ6ሻ݊݅ܯ

C. Joint State Space Model     
In general, for a given state space model, the parameters vector of 
Eq. (5) is assumed to be known. To obtain the parameters, system 
identification process is carried out at design time and 
recalibration runs are performed from time to time to adapt the 
vector according to the changing scenarios [19]. Model 
parameters obtained by calibration runs cannot adapt to rapidly 
changing scenarios at run-time and are always valid under certain 
assumptions. No assumption can be made on execution time or its 
characteristics and hence it is essential to derive the solution 
independent of the prior knowledge of system dynamics. Within 
the framework of state space, literature widely refers maximum 
likelihood method for the estimation of parameters at run-time. 
During the course of this work, it is observed that the 
computational cost and sampling errors in W due to 
approximations render maximum likelihood impractical. In that 
case, we considered the parameter estimation by Bayesian 
estimation. To obtain such a solution, the key idea is to estimate 
the model parameters like the states in a state space model. The 
estimation of model parameters in conjunction to the states of the 
model is achieved by augmenting the state vector with model 
para ent  
in the state vect

meters. The new augm ed state vector by augmenting Eq. 5
or of Eq. (4) is defined as 

                                         ௃ܺሺ݇ሻ ൌ ሾܺሺ݇ሻ ܹሺ݇ሻሿ்                                   ሺ7ሻ 
It is important to note that in the augmented state vector model 
parameters are also time-varying and are updated at the beginning 
of each interval, like states. As a result, the state space of Eq. 
(1.a,b) with parameters in state vector become time-varying and 

q i E  the time update and measurement e uat on of q. (1.a,b) takes the

 
following form 
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The components of the state space models are augmented with 
identity (ܫ௜,௜) and null ( ௜ܱ,௜) matrices to satisfy the system of equa-
tions (number of equations must be equal to the number of un-
knowns). The state ve ugm omponents 
of Eq. (4) efi  ace co r given as 

ctor of Eq. (7) and a ented c
 d ne the joint state sp mponents and a e 
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ܱ8,4 ܱ8,8

൨ۙ
ۖ
ۘ

ۖ
ۗ

        ሺ9ሻ 

 
Pu (9) int y t e tting Eq. o Eq. (8) ields the complete join state spac
model 

ܺሺ݇ ൅ 1ሻ ܣ ସܱ,଼ ,଼     ൤ܹሺ݇ ൅ 1ሻ൨ ൌ ൤଼ܱ,ସ ܫ଼ ,଼
൨ ൤ ܺሺ݇ሻܹሺ݇ሻ൨ ൅ ൤

ܤ ସܱ
଼ܱ,ସ ଼ܱ,଼

൨ .ሺ݇ሻ   ሺ10ܬܷ ܽሻ

                       ෠ܻሺ݇ሻ ൌ ௃ܥ ൌ   ൤
ܥ ସܱ,଼
଼ܱ,ସ ଼ܱ,଼

൨ ൤ ܺሺ݇ ൅ 1ሻ
ܹሺ݇ ൅ 1ሻ൨                  ሺ10. ܾሻ 

It is worthwhile to mention that the resultant matrices of the joint 
state space model are sparse and are shown in their full form for 
the sake of understanding and compliance with the theory. The 
sparse property and regularity of the model significantly reduces 
the computation cost at run time. Consider the measurement 
update equation Eq. (10.b); at first it appears that it involves the 
multiplication of matrix of dimension 12×12 with vector of 
dimension 12×1. But in actual implementation there is no 
multiplication involved and the first four states of vector ௃ܺሺ݇ሻ 
are copied to ෠ܻሺ݇ሻ. Similar patterns can also be observed in time 
update equation e.g. the multiplication of observations and input 
matrix. Therefore, in actual implementation, the solution of state 
space requires only a handful of computations. The optimal 
solution of the joint state space model can be found by numerical 
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integration, but the computational cost of numerical integration 
prohibits its use at run-time [21]. The recursive solution of 
derived state space can also be found by Extended Kalamn Filter 
(EKF), but it require the derivation of linear state space at design 
time and involves linearization step at run-time. Moreover, EKF 
leads to the approximation of nonlinear state space by making the 
piecewise linear estimation, inherent error, and can only be 
applicable in the case of Gaussian distributions. As elaborated in 
the ‘motivation’ sub-section, distributions of the execution time 
cannot be assumed a priori and hence it is required to formulate 
the solution independent of it.  
D. Generalization  
The regularity in the derived state space model of Eq. (10.a,b) 
allows the direct derivation of the model by algorithm for any 
number of tasks in a task graph. The task graph may contain the 
isolated task(s) and can comprise of collection of arbitrary sub 
graphs. Algorithm 1 outlines a systematic procedure for the 
derivation of joint state space model. It is important to note that 
the labeling of tasks should be carried out in a way such that the 
predecessor task must be labeled before all of its successors. 
However, defined labeling rule is not a constraint but has the 
implications for the implementation. If tasks are labeled 
according to the rule then the system matrix will always be a 
lower diagonal matrix (practical limitations for considering the 
acyclic linear task graphs only are discussed in Section III.A). 
The lower diagonal matrix means, half of the operations of major 
computational part are not required at all (multiplication by 
zeros). 

 
Algorithm 1: 
Ev t st e

: Sy atrix : Input matrix, tput matrix 

ent: Derive join ate space mod l for Ω number of tasks 
D

Ou:ܥ
: Input vector, ෠ܻሺ݇ሻ: Output vector 

efinition: 
ܣ stem m ܤ ,
ܺ: State vector,     ܷ
,௝ܣ ,௝ܤ ,௝ܥ ௝ܺand ௝ܷ are the joint state space counterparts of 
,ܣ ,ܤ ,ܥ ܺand ܷ respectively 
1: label the tasks in ascending order such that predecessor task in  
    ftw i line should be label before any of its successors   so a
ܥ =  :2 f dimension ΩxΩ, 

re p pe
 = identity matrix o

       ܺ 2  …  Ωሿܶݔ
ܤ
       ൌ ሾݔ 1ݔ

3: ൌ εܶ1 ; ܺ ൌ y  ܶ1
4:    for ( i=2 ; i <=  i++ ) Ω

ε்௜ ܷ
6: Augment y்௜ as a last row in ܺ  

,
5: Augment  as a last row in   

7:    end 
8: A = null matrix of dimension ΩxΩ, cnt = 0 
9:      for ( i=1 ; i<=Ω ; i++ )  //for rows 
10:        for ( k=1 ; k< Ω ; k++ ) //for columns =

 ) 
13:          insert ்ݓ௜,்௜ in ܣ at ith row, ith column 
12:      if ( i==k

14:     end  
15:      if ( k < i ) 
16:          if ( Ti Pre sor of Tk ) deces
17:              insert ்ݓ௜,்௞ in A at ith row, kth column 
18:          end 
19:      end 
20: Augment ்ݓ௜,்௞as a last row in ܹ, cnt++ 
20: end 
21:      end 

22: ௃
ܣ ܱ
ୡ୬୲

ܷ
1,ݐ݊ܿ

൨ ܺ ൌ ሾܺ  ܹሿ் , ܣ௃ ൌ ൤ Ω,ୡ୬୲
ܱ ,Ω ୡ୬୲,ୡ୬୲ܫ

൨,  ௃ܷ ൌ ൤ܱ

௃ܤ :23 ൌ ൤
ܤ ܱΩ,ୡ୬୲

ܱୡ୬୲,Ω ܱୡ୬୲,ୡ୬୲
൨, ܥ௃ ൌ ൤

ܥ ܱΩ,ୡ୬୲
ܱୡ୬୲,Ω ܱୡ୬୲,ୡ୬୲

൨ 

 

E. Monte Carlo Recursive Solution  
 To develop the solution of joint state space model independently 
of the distribution, we formulated the recursive solution based on  
online Sequential Monte Carlo method. Contrary to conventional 
solutions, sequential Monte Carlo method builds the underlying 
distributions at run-time and learns the execution time statistics at 
the beginning of each interval. At the start of estimation process, 
‘s’ numbers of randomly initialized samples are generated to 
simulate the underlying distributions. After initialization, at the 
beginning of the interval, it is not needed to regenerate the 
population of samples from scratch. Rather distribution weights 
are adjusted according to the error of new observation vector. 
Here new observation vector corresponds to the last prediction 
and the objective is to minimize the error and obtain the new state 
vector, the prediction. To achieve this goal, state space model 
with N states is solved to compute N weights, one appropriately 
defined weight for each state. The reader is referred to [12] 
(particularly chapter 9 for this work) for the understanding of the 
formulation of online Monte Carlo method. 
 The recursive solution by Monte Carlo comprise of two steps: (i) 
Correct (measurement update) and (ii) Predict (time update). The 
recursive solution means that only the prediction from the 
previous interval and current measurement are needed to compute 
the predictions. Contrary to batch estimation techniques, no 
history of previous predictions and observation is required. The 
correction step is carried out on the arrival of the new observation 
vector, as observation vector comprises of errors between 
previously predicted and now available execution times. After the 
correction step, the new statistics and dynamics of execution 
times till the current time are known and the prediction step is 
performed to compute the estimates for the next interval. Figure 5 
shows the correction/prediction recursion steps computed at the 
beginning of each scheduling interval.  

 To derive the solution for the state vector of size  ܰ under the 
influence of an arbitrary distribution, assume S independent 
identically distributed (i.i.d) variables denoted by  βଵ, βଶ ׸ βS . 
This sampling follows the probability distribution function (p.d.f.) 
for state vector  X  as pሺX ሻ i.e. βଵ  ~ pሺX ሻ. pሺX ሻ is not known 
but can be appr [22]  

Correct Predict

 

Figure 5: Correction and prediction recursion 

୨ ୨
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J J
oximated by the following function 

൫݌ ௃ܺ൯ ؄ ௌ൫݌ ௃ܺ൯ ൌ  
1
ܵ෍ ௜ሺߚߨ ௃ܺሻ

ௌ

௜ୀଵ
 

whereas, ߨ is a probability of the sample. In approximating ݌൫ ௃ܺ൯ 
it is assumed that all samples ߚ௜ contribute equally in the 
approximation of ݌ሺ ௃ܺሻ. To generalize the approach, assign the 
weight factors ߙ to the point ߚ௜. The weight factors also satisfy 
the normality condition ∑ ௜ௌߙ

௜ୀଵ ൌ 1. In that case 

൫݌                              ௃ܺ൯  ؄ ௌ൫݌  ௃ܺ൯ ൌ  ෍ ௜ሺܺ ሻ                 ሺ11ሻ ߙ௜ߚߨ ௃

ௌ

௜ୀଵ
If ݌ሺߚ௜ሻ is known then the probability ݌ሺ ௃ܺሻ can be approximated 
by using the discrete values of the p.d.f. ݌൫ߚ௜൯ ൌ  ௜.  If samplingߙ
over the p.d.f. ݌ሺ ௃ܺሻ is unavailable, then one can use a p.d.f. ݌ҧሺ ௃ܺሻ 
with a similar support set, i.e. ݌൫ ௃ܺ൯ ൌ 0 implies that ݌ҧ൫ ௃ܺ൯ ൌ  0. 
Then it holds that the expectation of the state vector is approx-
imated by 
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ܧ ௃ሻ൯ ൌ ൫ܺ݌ሺܺሻߔ׬ ߔ׬ ௃ሻ݌ҧ൫ܺ ൯ ௣ ಻ሻ൫ߔሺܺ ௃൯݀ݔ ൌ ሺܺ ௃
ሺ௑

௣ҧሺ௑಻ሻ
 ݔ݀

Where ߔ൫ ௃ܺ൯ is the solution of the state equation. If ܵ samples of 
ҧሺ݌ ௃ܺሻ are available at points ߚଵ෪:ߚଶ෪ ׷׸ ప෩ߚҧ൫݌ ௌ෪:  i.eߚ  ൯ ൌ ௜ሺߚߨ  ௃ܺሻ 
a ߙ ൌ ௣ሺ௑

௣
nd the weight coefficient ௜ ಻ሻ

ҧሺ௑಻ሻ
 then it can be shown that  

ሺߔ൫ܧ                                     ௝ܺሻ൯ ؄෍ α
ௌ

௜
ప൯                             ሺ12ሻ ௜ ෩ߚ൫ߔ

Eq. (12) assumes that the p.d.f. ݌ሺ ௃ܺሻ is unknown (target 
distribution), however the p.d.f. ݌ҧሺ ௃ܺሻ (importance law) the 
unknown instrumental distribution is available. Then, it is 
sufficient to sample on ݌ҧሺ ௃ܺሻ and find the associated weight 
coeff .  icients ߙ௜ to compute ൫ߔሺ ௃ܺሻ൯ 

re iction step: 
Let ܻି ൌ ሾܻሺ1ሻ, ܻሺ2ሻ, …  ܻሺ݇ െ 1ሻሿ and ܻ ൌ ሾܻି ܻሺ݇ሻሿ then to 
compute the ݌൫ܺ ሺ݇ሻหܻି ൯, according to Eq. (11) it holds that the 
a priori 

The p d

௃
probabilities can be found as 

൫݌ ௃ܺሺ݇ െ 1ሻ|ܻି൯ ൌ  ෍  α௞௜ ିଵ ߨఉ೔ ሺ ௃ܺሺ݇ െ 1ሻሻ
ௌ

ଵ
  

ೖషభ௜ୀ
he posteriori probabilities can  ob in d b  using Bayes law 

          ଵ
௜ ఉೖ೔ߨ ሺ ௃ܺሺ݇ሻሻ

ଵ
                  ሺ13ሻ 

 T be ta e y

൫݌             ௃ܺሺ݇ሻ|ܻି൯ ൌ  ෍ α௞ି
ௌ

௜ୀ
ith ߚ௞௜~ ݌൫ ௃ܺሺ݇ሻ|  ௃ܺሺ݇ െ 1 ൯ ൌ ௞ିଵ௜ߚ   W ሻ

The Eq. (13) means that the state equation of the system executes 
ܰ  t  f the s tors 
௃ܺሺ݇

imes, starting from the ܰ  previous values o tate vec
െ 1ሻ ൌ ௞ିଵ௜ߚ   
            ෠ܺ௃ሺ݇ ൅ 1ሻ ൌ ௃ܣ ௃ܺሺ݇ሻ ൅ ௃ܤ ௃ܷ ሾ ௞

௜
ିଵሿ௜ୀଵ

ே                ሺ݇ሻ ൅  ߙ 
   Thus new state vector is obtained, ෠ܺ௃ሺ݇ ൅ 1ሻ, and consequently 
the mean value of the state vector will be given from Eq. (13).  
The correction step: 
A posteriori probability density is found using Eq. (13) and now a 
new measurement vector ܻሺ݇ሻ  is available and the objective is to 
compute the corrected p  ሺ ௃ܺሺ݇ሻ | ܻሻ; riori probability density ݌
from Bayes law it holds that  

൫݌                ௃ܺሺ݇ሻหܻ൯ ൌ
݌ ቀܻሺ݇ሻቚ ௃ܺሺ݇ሻቁ ൫݌ ௃ܺሺ݇ሻหܻି൯

׬ ൫ܻሺ݇ሻห݌ ௃ܺሺ݇ሻ, ܻି൯݌൫ ௃ܺሺ݇ሻหܻି൯݀ݔ
      ሺ14ሻ 

Substituting Eq. (13) into Eq. (14) and after derivation it is finally 
obtained 

൫݌                               ௃ܺሺ݇ሻ|ܻ൯ ൌ  ෍ α௞௜ ߨ  ೔  ሺܺ ሺ݇ሻሻ
ௌ

                  ሺ15ሻ ఉೖ ௃
௜ୀଵ

                       α௞௜ ൌ  
α௞ିଵ௜ ݌ ቀܻሺ݇ሻቚ ௃ܺሺ݇ሻቁ

∑ α௞ିଵ
௝ ݌ ቀܻሺ݇ሻቚ ௝ܺሺ݇ሻቁௌ

௝ୀଵ

where  

                

Eq. (15) gives the corrections for the state vector in each iteration. 
The given Monte Carlo solution can be viewed as hidden Markov 
process, with the key difference that the state variables assume 
values from continuous space as opposed to the discrete state 
space for the hidden Markov model. Though to obtain the predic-
tion, only previous prediction and current available observations 
are considered, but due to the recursive solution, the prediction is 
the combination of all previous observations, which is a very im-
portant property of the online Monte Carlo sampling based solu-
tions. As time proceeds, the sampling of Monte Carlo learns the 
system dynamics by minimizing the error. Figure 6 illustrates this 
fact; prediction for the interval K+1 is based on the first interval 
till Kth interval. This is also the reason that at the start of the 
process the predictions for the first few intervals are not meaning-
full as the proposed solution is in learning phase (convergence). 
F.  Degeneration of Sample 
 The recursive solution described by Eq. (13) and (15) has a 
tendency of degeneracy of samples. After a certain number of 

iterations, almost all the weights α௞௜  tend to 0. That means the 
samples lose effectiveness as time proceeds. Ideally all the 
weights should converge to the value 1 ܵ⁄ , i.e. the samples should 
have the same significance. Therefore, it is necessary to include 
the re-sampling step to block the degeneration of samples. After 
the completion of recursion, samples of low weight factors are 
removed and replaced by the duplicates of the samples with high 
weight factors, as suggested in [23].  
G. Variable Laxity EDF Scheduler 
To schedule the task with variable execution time the requirement 
is to incorporate it in the scheduling decisions. Earliest Deadline 
First (EDF) is an optimal scheduler for uni-processor real time 
systems and is also widely used for multicore systems. EDF sche-
duler primarily works on laxity, the measure of the spare time 
permitted for the task before it misses its deadline. According to 
tuple defined in Section 1 (start time, St, execution time, Ct and 
deadline, Dt ), laxity at the start time St for each task can be com-
puted by: laxity = (Dt - Ct). In our case, Ct is variable and is ob-
tained at the beginning of each scheduling interval. Because of 
variable laxity and multicore scenario, we used the variable laxity 
based EDF scheduler for multicore platforms proposed in [24].  

IV. RESULTS 
 We carefully selected the H.264 video decoder application 
against generic task graphs or simple applications. The control 
dominant and computation-intensive properties of  H.264 decoder 
fit well for the benchmarking and evaluation of all points raised in 
the proposed method. We have used our in-house developed 
H.264 decoder, which offers time and space parallelization fea-
tures simultaneously. The space parallelization is achieved by 
enabling the decoding of multiple slices within a single frame and 
time parallelization is achieved by dividing the MB decoding 
process into the software pipeline.  Figure 7 shows the task graph 
of decoder and Table 1 defines the functionality of each task. It is  
 evident from Figure 7 that the decoder is able to decode two 

Table I: Tasks and their functionality 

Task Functionality 
T1 Network abstraction layer decoder

T2 Slice 1: Entropy decoder, Inverse Scaling/D-
Quantizatiion and Inverse discrete cosine transform

T3 Slice 2: Entropy decoder, Inverse Scaling/D-
Quantizatiion and Inverse discrete cosine transform

T4 Slice 1: Motion compensation and inloop filter
T5 Slice 2: Motion compensation and inloop filter
T6 Slice to frame merger (logical task)

1 . . . . K‐1 K K+1

Current prediction  is the 
statistical combination of 
history

Figure 6: Learning at each interval and prediction is the combination of 
whole history 

T1

T3 T5

T2

T6

T4

Figure 7: Slice parallel and pipelined parallel H.264 decoder 
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slices simultaneously, the numbers of slices in a frame are 
decided at the video encoding time. Multiple test sequences of 
diverse characteristics are used in evaluation and are derived from 
ITU-T test vectors, namely BBC, Rushhour and Container with 
4CIF resolution. First 50 frames of each data set are encoded by 
JM13 H.264 reference encoder for different QPs (16, 20, 24, 28) 
to vary the data characteristics and the execution time at 
decoding. Two slices per frame are encoded to enable the space 
parallelization at decoding. Formation of slices is static and the 
frame is divided equally between the slices by partitioning the 
frame into upper and lower parts.  
The experiments are conducted on quad core platform. The 
evaluation platform is based on Intel® Quadcore (Q9100) 
processor with 4GB of memory, 1.333 GHz bus interconnects and 
Windows® XP operating system. Threads are statically mapped 
on the cores and run time thread migration is disabled using 
thread affinity.  Intel® VTune performance analyzer is enabled to 
gather the data from hardware sampling units to obtain precise 
cycle count for each task. The scheduling evaluation is done on 
Cheddar [25], a real-time scheduling tool. 
We first evaluate the impact of the inclusion of spatial correlation 
in the estimation model. Figure 8 shows the estimation of the 
execution time of T4 (motion compensation and in-loop filtering 
for slice 1) in two different scenarios. The prediction of T4, as 
independent task and also as the consumer of T2. Results of 
Figure 8 clearly show that the predicted values lie closer to actual 
when we take into account the execution time of predecessor task, 
T2. The absolute error plots reveal that the inclusion of the 
execution time of the predecessor not only reduces the error but it 
stays below the error when the estimation is performed as an 
independent task. It is apparent that the inclusion of spatial 
correlation in the execution time model significantly improves the 
quality of the prediction.  Figure 9 shows the state variance, an 
indirect measure of convergence, of estimator from the beginning 
of the estimation process for task T4. Convergence curves make it 
clear that the pipelined estimate converges rapidly than 

independent estimate. Moreover, state covariance of the pipelined 
estimate remains lower after the convergence and yields stable 
and better prediction. Figure 10 and 11 shows the probability 
distributions of error in the prediction of T1 and T4 respectively. 
In case of T1, the error distribution is widely distributed while for 
T4, error distribution has limited range. Properties of distributions 
also suggest that significant improvement has been achieved by 
considering the spatial correlation among tasks. Figure 12 shows 
the prediction error for five tasks of the application. In Figure 12, 
percentage residual error is computed for the comparison 
purposes and the estimates are clustered into the bins with width 
of 20% of error. The prediction error greater than 100% is 
combined into a single bin instead of showing the lengthy 
decaying tail of bins. The analysis of prediction process and task 
execution time characteristics reveals that the abrupt change in 
the task phase leads to the large prediction error, sometime this 
error is greater than the 100%. Results clearly show that the 
prediction error by SETS largely falls within 20% of the error. 
The computational overhead of the proposed task execution time 
prediction process for the experimental setup is 7.8% (on 
average). This overhead is relatively very small compared to the 
benefits obtained in term of task utilization. Furthermore, 
computational overhead also depends on the granularity of the 
tasks. In the experimental application of this paper tasks are of 
fine granularity and this overhead diminishes for the coarse 
grained tasks. Without any kind of a priori knowledge about the 
tasks or computing platform the quality of prediction can 
considered as sufficient for schedulability analysis.  
   To analyze the scheduling we used the actual execution time 
and predicted execution time traces and simulated the scheduling 
process on Cheddar. On Cheddar, 4 cores are assumed and 
variable laxity EDF scheduling scheme proposed in [24] is 
implemented.  We experimented with non-preemptive uniform 
priority attributes. We measured the results in terms of task 
utilization (=execution time/deadline), task schedulability 
(number of tasks that can be scheduled) and deadline misses. We 
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compared our results with state-of-the-art proposed in [6] as it 
also considered the stochastic execution time behavior of the 
tasks. The work done in [6] like this paper argues that the WCET 
seriously underutilizes the resources and an average case must be 
considered. Moreover, for scheduling, [6] also considers the EDF 
policy and establishes the fairness of the comparison. The prime 
difference in [6] and SETS is that [6] derives the prior tardiness 
bound for global EDF. However, the paper only considers the 
upper bounded deviation from the mean execution time of the 
task. The absence of lower bound results in the under-utilization 
of task when execution time falls below the mean execution time. 
The simulation on Cheddar shows that the SETS improves the 
task utilization to the factor of 0.37, an improvement of 87%. 
Figure 13 summarizes the results of the task utilization, task 
schedulability and the deadline misses. The results clearly show 
the advantage of SETS over Mills [6]. The improvement in task 
utilization achieved by SETS is 76% better than the Mills. The 
huge improvement in the task utilization is due to the lack of 
consideration of the execution time below the mean value. The 
SETS does not define upper or lower bounds on execution times, 
computes it at run time, and hence gives the better utilization. The 
same trend can be observed for the task schedulability. However, 
the percentage improvement of the SETS over the Mills is 68% 
because of some large over-prediction of execution times by the 
SETS. The large over-predictions benefit SETS in terms of the 
deadline misses. The task schedulability and deadline misses can 
be considered as a tradeoff.  Lastly, the task scheduled by the 
SETS framework are less susceptible to deadline misses. The 
Figure 13 shows that average deadline missed by the SETS are 
53% less compared to Mills. 
The results and their analysis make it clear that the spatial 
correlation has profound positive impact on the quality of 
prediction. Moreover, run time estimate of execution time 
alleviates the constraints of fixed time scenario and thus 
significantly improves the effective utilization of system 
resources. Therefore, SETS is the applicable solution for the 
scheduling of soft real-time systems. 
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Figure 13: Comparison of SETS with Mills for different metrics
 

V. CONCLUSION 
We propose scheduling techniques for soft real-time systems 
exhibiting stochastic task execution times. Our solution is 
estimating their execution times using a joint state space model. 
The solution of the proposed model is found by a Monte Carlo 
sampling based recursive technique to estimate the execution time 
of the task independent of distributions. Moreover, state space 
modeling opens the opportunity to take benefit of the large body 
of work that already exists for solving state space. Within this 
work, we formulated an online Monte Carlo method for the 
solution of state space. The recursive solution significantly 
reduces the memory and computational requirements compared to 

other sophisticated methods (i.e. Markov Chains) obtaining nearly 
a Bayesian estimate. We have shown that the inclusion of spatial 
correlations among execution time of tasks significantly improves 
the prediction quality.  The proposed method may not scale well 
in case of thousand of tasks in a task graph. A workaround can be 
found by investigating the distributed estimation by combining 
the most relevant tasks in a single cluster. Furthermore, the 
computational cost of Monte Carlo method can be reduced by 
generating the proposal distribution by RANdom Sample 
Consensus (RANSAC) for run time distributions, and will be 
considered in future work. The scheduling by variable laxity EDF 
on multicore systems for variable execution times shows a 76% 
improved task utilization.  
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