
SETS: Stochastic Execution Time Scheduling for Multicore Systems by
Joint State Space and Monte Carlo

Nabeel Iqbal, Jörg Henkel

Karlsruhe Institute of Technology (KIT), Chair for Embedded Systems, Germany
{nabeel.iqbal, henkel} @kit.edu

Abstract— The advent of multicore platforms has renewed the
interest in scheduling techniques for real-time systems.
Historically, ‘scheduling decisions’ are implemented considering
fixed task execution times, as for the case of Worst Case
Execution Time (WCET). The limitations of scheduling
considering WCET manifest in terms of under-utilization of
resources for large application classes. In the realm of multicore
systems, the notion of WCET is hardly meaningful due to the
large set of factors influencing it. Within soft real-time systems, a
more realistic modeling approach would be to consider tasks
featuring varying execution times (i.e. stochastic). This paper
addresses the problem of stochastic task execution time
scheduling that is agnostic to statistical properties of the
execution time. Our proposed method is orthogonal to any
number of linear acyclic task graphs and their underlying
architecture. The joint estimation of execution time and the
associated parameters, relying on the interdependence of parallel
tasks, help build a ‘nonlinear Non-Gaussian state space’ model.
To obtain nearly Bayesian estimates, irrespective of the execution
time characteristics, a recursive solution of the state space model
is found by means of the Monte Carlo method. The recursive
solution reduces the computational and memory overhead and
adapts statistical properties of execution times at run time.
Finally, the variable laxity EDF scheduler schedules the tasks
considering the predicted execution times. We show that variable
execution time scheduling improves the utilization of resources
and ensures the quality of service.
Our proposed new solution does not require any a priori know-
ledge of any kind and eliminates the fundamental constraints as-
sociated with the estimation of execution times. Results clearly
show the advantage of the proposed method as it achieves 76%
better task utilization, 68% more task scheduling and deadline
miss reduction by 53% compared to current state-of-the-art me-
thods.

Keywords: Scheduling, stochastic execution time, parallel tasks,
state space modeling, joint estimation, Monte Carlo, task utilization

I. INTRODUCTION
A paradigm shift in computing has appeared with the emergence
of multicore systems, driven by an easy availability of
inexpensive, high-performance processors, while at the same time
offering a prospective solution for overcoming the power
constraints and the thermal issues associated with the processors.
The concerns of programming these platforms are urgent as no
automatic solution is likely [2]. This tends to draw greater
research efforts toward parallel computing methods, run-time
management of parallelism and related research fields. In the
realm of real-time systems, the programming of such
multiprocessor systems presents a rather formidable problem. In
particular, time-critical tasks must be serviced within certain pre-
determined deadlines, dictated by the required quality of service.
The most important attribute of real-time systems is that the
correctness of such systems depends not only on the computed
results but also on the time at which the results are produced
(timing guarantee). Scheduling and schedulability analysis is a
mechanism to provide these guarantees. The multicore systems

pose new challenges while opening up new design opportunities
for scheduling. Therefore, it is essential to examine the problem
of scheduling in the context of multicore environment to devise
efficient methods and tools for the scheduling of tasks.
In general, a task can be characterized by an integer tuple (St, Ct,
Dt), where St is the start-time of the task, Ct is the execution time
and Dt is the deadline. The most non-trivial entity in the context
of scheduling is Ct as remaining variables can be known exactly
for the given scheduling interval. Ct , by and large, is the property
of the run-time and depends on a large number of factors, ranging
from the task program structure to the run-time state of the
underlying hardware platform. Most of the mapping and
scheduling algorithms assume that task execution times or their
bounds are known quantities. Because of the several factors
affecting it, it is rather unfair to consider it a known quantity. The
execution time is unknown before the task is mapped on the
architecture, but even afterwards, the execution time remains
stochastic due to application-dependent, platform-dependent, and
environment-dependent factors. The variation in the amount and
type of data input to the application, the micro-architecture of the
processing units (which influences caching, queuing etc.),
interaction with the environment, database accesses,
communication links etc. introduce uncertainty in the execution
time of the task. The multicore/multithreaded systems give rise to
additional scenarios such as the interdependence of threads
mapped on different cores (Software pipelining). In the scenario
of real-time systems where timelines are essential, the advances
in multicore system become part of the problem rather than the
solution. Futuristic computer architectures and software have
made it difficult or impossible to estimate the execution time of
the task at design time [1].
In simple words, if tuple (St, Ct, Dt), is known, then scheduling
boils down to the decision by classical scheduling algorithms
such as Earliest Dead Line First (EDF). Because of the influence

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000

Probability Distribution of Execution Times for different
Quantization Parameter (QP)

QP 16
QP 20
QP 24
QP 28

Task Execution Time

WCET, defines the
far upper bound

Execution time below th
can ensure the quality of
service

Severe under utilization of
resources

Pr
ob

ab
ili

ty
 D

en
sit

y

Figure 1: WCET and stochastic task execution time

978-1-4244-8192-7/10/$26.00 ©2010 IEEE 123

‐1.8

‐1.6

‐1.4

‐1.2

‐1

‐0.8

‐0.6

‐0.4

‐0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

2000

4000

6000

8000

10000

12000

14000

1 26 51 76 101 126

E
xe

cu
tio

n
T

im
e

Macro Block Number [Sequential run]

MC/Inloop, T3

Entropy, T2

NAL Decoder, T1

Correlation T1‐T2

Correlation T2‐T3 C
or

re
la

tio
n

Figure 2: Correlation among execution times of tasks in software pipeline

of a large number of factors at run-time, it is essential to treat the
problem of task execution time estimation in stochastic terms [4].
Historically, the Worst Case Execution Time (WCET) estimation
has been investigated in depth by researchers. WCET defines the
upper bound. It leads to severe underutilization of the resources.
Moreover, in the realm of multicore, where a large number of
external factors influence the execution, guaranteed calculation of
WCET may not be viable. Figure 1 shows the different
probability distribution functions of the task and shows that
WCET lies at the far upper bound. An expensive system would be
required to meet the WCET imposed deadline as it is only
considering the worst-case scenario. However, during the lifespan
of the system, the WCET situation will occur with a very small
probability. Depending on the required quality of service and
nature of application, and if some deadline misses are tolerable,
then scheduling based on variable execution time of tasks can be
considered to offer a cheaper solution. In such a scenario, the
estimator monitors the task execution times in previous
scheduling intervals and predicts the execution times for the next
interval. The underlying assumption of the estimator is that, to
some extent, it is possible that the future execution times can be
predicted from the past observations (i.e temporal correlation of
execution times). The scheduler tries to find the schedule for the
predicted execution times while respecting the task deadlines. The
primary focus of this work is the design of the estimator for
scheduling in soft real-time systems with a stochastic treatment of
execution times of parallel tasks.
A. Motivation

As discussed earlier, the stochastic behavior of execution time
of task stems from several factors and is the function of run-time
parameters. To make our point clear, consider the execution time
of a Macro Block (MB, 16x16 pixel block) decoding task in
H.264 video decoding process. Figure 1 shows the distributions of
execution times of MB for 4 different Quantization Parameters
(QP). A change in QP causes a change in amount of data to be
decoded. For each case, all sets of conditions were kept the same
except that the QP was changed at the encoding time. Figure 1
makes it clear that MB decoding time is purely stochastic in
nature. It is very important to note that MB decoding task has
different distributions because of different QP. This makes it clear
that no a priori knowledge can be assumed for the execution time
and it’s statistical properties.

 As software pipelining will prevail in future for the
programming of multicore systems, it gives rise to a very
important and new design opportunity to improve the execution
time estimation of the task. Consider two tasks (T1 and T2)
running in a software pipeline such that the data output of T1
drives the input of T2 and are mapped to different cores. Both
tasks are working on the same data set such that the execution
time of T1 will influence the execution time of T2. A theoretical
study of such dependencies and derivation of bounds can be
found in [5]. The detailed analysis of such dependencies on
processes in the scenario of power consumption is outlined in [7].
This generates the motivation to investigate task execution time in
space (spatial correlation of execution times). Figure 2 shows the
execution time profile of three tasks in a software pipelined H.264
video decoder. The three tasks of the software pipeline are (i)
Network Abstraction Layer (NAL) decoder, T1 (ii) entropy
decoding, inverse scanning dequatization and inverse discrete
cosine transform, T2 (iii) motion compensation and in-loop
filtering, T3. Each of them is a part of the decoding process of a
MB. They are executed one after the other. The horizontal axis
represents the successive MBs, and the execution times of each
task are given on the vertical left axis (scaled arbitrarily for ease
of plotting and understanding). The correlation coefficients were

computed (windowed correlation with two lags) and are shown on
right vertical axis. The correlation axis shows that there exists a
strong correlation between the execution times of the tasks in the
software pipeline and most of the time hover around 1 (strong
correlation). However, just like the temporal correlation, the
extent of spatial correlation cannot be known a priori and must be
adapted at run-time, because at some instance in time there could
be a strong spatial correlation while at another instance there
could be no correlation.

In lieu of the above discussion, it is clear that no a priori
knowledge can be assumed for the task execution time estimation.
Therefore, it is essential to derive a new general solution
orthogonal to underlying architecture, task graph and the
statistical properties of execution time. As a step toward this
vision, this paper proposes a new framework for estimator design
based on nonlinear non Gaussian joint state space modeling and
also considers the spatial correlation factors among parallel tasks.
To solve the nonlinear state space model recursively, we
formulate the online Monte Carlo based solution. The recursive
solution solves the state space model agnostic to execution time
distributions and adapts the statistical properties at run time. The
predicted execution times are used to schedule the tasks by
variable laxity EDF scheduler. The results shows the advantage of
proposed method as it achieves 76% better task utilization, 68%
more task scheduling and reduction in deadline misses by 53% in
comparison to state-of-the-art.

The rest of this paper is organized as follows: Section II gives
an overview of the related work, Section III describes our novel
methodology, followed by Section IV for experimental se-
tup/results and Section V concludes the paper.
B. Our Novel Contributions

 Within the scope of this paper, to the best of our knowledge,
our novel contributions are,
• We are the first to propose the use of spatial correlation

among parallel tasks to improve the execution time esti-
mates at run-time.

• We are the first to model the parallel task execution time
prediction problem in a non-linear non-Gaussian multiva-
riate joint state space.

• We are the first to propose the solution of joint estimation of
execution times and its parameters by Monte Carlo method.

II. RELATED WORK AND MOTIVATION
A significant amount of work has been carried out for scheduling
and schedulability analysis in conjunction to Worst Case Execu-
tion Time (WCET) estimation for hard real-time systems [8, 9,
10, 11]. The WCET will remain the matter of interest for a very

124

special class of application where timeliness is the only concern
and cost of the system does not matter.

 Fewer publications address the analysis of applications with
stochastic task execution times. Moreover, most of them consider
relatively restricted application classes, and also limit their focus
to the mono-processor systems. In case of a stochastic treatment,
they consider a particular class of probability distribution function
(e.g an exponential distribution). The task execution time
estimation for independent sporadic tasks with statistical
dependencies is addressed in [3]. Stochastic task execution times
are considered in [13] with admittance controller for
schedulability. Stochastic execution time estimation with
approximations and fixed scheduling policies is discussed in [14,
15, 6]. A heuristic based solution is proposed in [16] where only
the upper bounds of the missed deadline are computed.

 Continuous Markov chain for parallel executing tasks is pro-
posed in [4] for MPSoC scenario. The stationary Markov process
for independent tasks is derived in [17] where task execution time
can only assume the values from discrete sets. In [18], another
Markovian process is considered; the analysis is performed by
solving the system of linear equations and the execution time is
only allowed to assume the value from finite small sets.

 In most cases, WCET analysis limits the system performance,
as computational resources are underutilized. The upper and
lower bounds on execution time become less and less significant
and irrelevant to real scheduling, as execution time tends to be
more stochastic. Heuristic solutions tend to be non-optimal for the
general case. The Markov Chain solutions use approximations
and assume that the transition probabilities and the distributions
are known. We propose a method, which does not consider any a
priori knowledge and adapts at run-time and learns the statistical
properties to obtain nearly optimal predictions.

III. SETS
In the scenario of variable execution time, scheduling compris-

es of two components: estimator and scheduler. Figure 3. elabo-
rates the estimator/scheduler design flow. The estimator is in-
voked at the beginning of each scheduling interval and predicts
the execution times; the scheduler then tries to schedule the tasks.

 In SETS, at the beginning of each interval, the estimator takes
the difference in the predicted cycles and actual cycles utilized by
individual tasks in the elapsed interval, and predicts the cycles
required to complete the job in the next interval. In real world
scenarios, it is extremely difficult, if not impossible, to determine
and model all the parameters. Only a limited parameter vector can
be used to model the execution time because of the practical
considerations. Thus, the estimator is modeled as a function of
temporal and spatial correlation factors based on the cycles
consumed by each task in the currently elapsed interval. The
unmodeled factors will cause a certain amount of error to be
present in a prediction. The unmodeled factors, which affect
prediction, are unknown but does show dependence on the
modeled parameters due to the fact that the modeled and
unmodeled parameters belongs to the same process [19]. State

space model introduces state variables to compensate for the
unmodeled factors. The state space model is extended to estimate
the parameters in conjunction to the execution time, resulting in
time-varying non-linear joint state- space. The solution of joint
state space is found by the recursive formulation of Monte Carlo
method, which adapts the execution time statistics at run-time and
gives near to Bayesian estimates. After obtaining the predicted
execution times, the variable laxity EDF scheduler is invoked to
schedule the task on multicore processor. Following subsections
discuss in details about each component of the SETS.
A. Application Model and Task Graph
 To proceed forward, consider the task graph of Figure 4.a with
four tasks. Task T1, is the predecessor (Producer) and the first
task in the software pipeline. T1 processes the data and hands it
over to task T2 and T3 (consumers) for further processing. The
software pipelining of T2 and T3 as consumer of T1 constitute the
parallel processing in time (forking). The task T4 has two
predecessors namely T2 and T3, and act as the joining task for
both, parallel processing in space (Joining). In the task graph of
Figure 4.a, no task is consumer and producer at the same time for
any task. It means that, we are only considering the acyclic linear
task graphs. In theory, there is no restriction to model and
formulate the solution for cyclic graphs but practical limitations
prohibit it. This limitation stems from the formation of ill-posed
first order difference equations in the model, which seriously
hampers the estimation quality. To override the problem solution
may incorporate the unscented transform in the solution of state
space model and will be considered in the future work. The task
graph of Figure 4 is comprehensive in its nature as it contains
both forms of the parallelism (time and space parallelism). The
task graph of Figure 4.a is considered for the understanding of the
derivation of the state space model, and a general solution for any
number of tasks is also developed subsequently.
B. State Space Model for Parallel Tasks

General state space model is defined by the pair of time update

ൌ
and measurement update equation of the following form
 ܺሺ݇ ൅ 1ሻ ሺ݇ሻܺܣ ൅ .ሺ݇ሻ ሺ1ܷܤ ܽሻ
 ሺ݇ሻ ൌ .ሺ݇ሻ ሺ1ܺܥ ܾሻ

yT1(K‐1) yT1(K) yT1(K+1)

yT2(K‐1) yT2(K) yT2(K+1)

yT3(K‐1) yT3(K) yT3(K+1)

yT4(K‐1) yT4(K) yT4(K+1)

T1

T4

T3

T2

WT1,T1

WT3,T3

WT2,T2

WT 1,T2

WT4,T4

WT 1,T3

WT 2,T4WT3,T4

Scheduling Interval

Time

T3

T4

T2

T1

(a) (b)
Figure 4: (a) Application task graph (b) Prediction process with tem-
poral and spatial correlation

Scheduling interval

K‐2 K‐1 K K+1

Estimator Scheduler

Figure 3: Estimator and scheduler flow at the beginning of each sche-
duling interval

 ෠ܻ
h
 : is the state vector, ෠ܻ : is the output vector

w

 : is the input vector, : is the system matrix

ereas1
ܺ
ܷ
 is the input matrix, : is the output matrix : ܤ

1 From now onwards vectors and matrices will be represented in up-

per case and scalars in lower case letters.

125

 To model the execution time of tasks of Figure 4.a in a state
space, we pose it as a multivariate problem in a time series.
Figure 4.b depicts the prediction process in pictorial form. In
Figure 4.b, ்ݕଵሺ݇ሻ, ,ଶሺ݇ሻ்ݕ ସሺ݇ሻ are the execution்ݕ ଷሺ݇ሻ and்ݕ
times in ݇th scheduling interval, of task T1, T2, T3 and T4
respectively. The aim is to predict the execution times in the next
interval, ݇ ൅ 1. To proceed forward consider task T1, it is the first
task in the task graph and has no predecessor task. In the absence
of predecessor task, prediction of execution time of T1 can only
be carried out on the basis of temporal correlation. If ்ݓଵ,்ଵ is the
temporal regression coefficient associated with the interval ݇ then
t ion f
t i
he predicted execut time or the interval ݇ ൅ 1 considering
he first o de sion is def ned as
 ො்ଵሺ݇ ൅ 1ሻ ൌ .ଵሺ݇ሻ ሺ2்ݕଵ,்ଵ்ݓ ܽሻ

r r regres
ݕ

whereas ݕො்ଵሺ݇ ൅ 1ሻ is the predicted execution time in the next in-
terval. Now consider task T2 with predecessor T1, having tem-
poral and spatial correlation with itself and with T1. To form mul-
tivariate second order regression equation for T1, we define the
temporal coefficient as ்ݓଶ,்ଶ and spatial correlation coefficient
as ்ݓଵ,்ଶ. ்ݓଵ,்ଶ defines the extent of spatial correlation between
T de r
m

1, the pre cessor, and T2, the successor. Then the second orde
ultivariate regression equation for T2 is defined by
ො்ଶሺ݇ݕ ൅ 1ሻ ൌ ଵሺ݇ሻ்ݕଵ,்ଶ்ݓ ൅ .ଶሺ݇ሻ ሺ2்ݕଶ,்ଶ்ݓ ܾሻ

Similarly, second and third order multivariate regression equa-
tive can be obtain d tions for T3 and T4 respec ly e as shown below,

b).
்

(for elaboration refer to Figure 4.
ො்ଷሺ݇ݕ ൅ 1ሻ ൌ ଵሺ݇ሻ்ݕଵ,்ଷ்ݓ ൅ ,ଶ்ݓ ଷ்ݕଷሺ݇ሻ ሺ2. ܿሻ
ො்ସሺ݇ݕ ൅ 1ሻ ൌ ଶሺ݇ሻ்ݕଶ,்ସ்ݓ ൅ ଷሺ݇ሻ்ݕଷ,்ସ்ݓ ൅ .ସሺ݇ሻ ሺ2்ݕସ,்ସ்ݓ ݀ሻ
Arrang ng nd
writin orm

i Eq. (2.a,b,c,d) as the system of linear equations a
g in matrix f yields

ۏ
ێ
ێ
ۍ
ො்ଵሺ݇ݕ ൅ 1ሻ
ො்ଶሺ݇ݕ ൅ 1ሻ
ො்ଷሺ݇ݕ ൅ 1ሻ
ො்ସሺ݇ݕ ൅ 1ሻے

ۑ
ۑ
ې
ൌ

ۏ
ێ
ێ
ۍ
ଵ,்ଵ்ݓ 0 0 0
ଵ,்ଶ்ݓ ଶ,்ଶ்ݓ 0 0
ଵ,்ଷ்ݓ 0 ଷ,்ଷ்ݓ 0
0 ଶ,்ସ்ݓ ଷ,்ସ்ݓ ےସ,்ସ்ݓ

ۑ
ۑ
ې

ۏ
ێ
ێ
ۍ
ଵሺ݇ሻ்ݕ
ଶሺ݇ሻ்ݕ
ଷሺ݇ሻ்ݕ
ےସሺ݇ሻ்ݕ

ۑ
ۑ
ې

Naturally, prediction will accompany with an error between
m ; it is re
vation’, and for

easured and predicted execution time ferred to as ‘inno-
any task Ti is defined as

 ε்௜ሺ݇ሻ ൌ ௜ሺ݇ሻ்ݕ െ ො்௜ሺ݇ሻ ሺ3ሻݕ
The above given system of linear equations and the definition of
error imply the direct formulation of state space model of Eq.
(1.a,b) [20]. The components of the state space model for the
problem f Figure 5 nging o can be obtained by rearra

ە

ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ
ܣ ൌ

ۏ
ێ
ێ
ۍ
1ܶ,1ܶݓ 0 0 0
2ܶ,1ܶݓ 2ܶ,2ܶݓ 0 0
3ܶ,1ܶݓ 0 3ܶ,3ܶݓ 0
0 4ܶ,2ܶݓ 4ܶ,3ܶݓ ے4ܶ,4ܶݓ

ۑ
ۑ
ې
, ܺሺ݇ሻ ൌ

ۏ
ێ
ێ
ێ
1ܶݕۍ

ሺ݇ሻ
2ሺ݇ሻܶݕ
3ሺ݇ሻܶݕ
ے4ሺ݇ሻܶݕ

ۑ
ۑ
ۑ
ې

ܷሺ݇ሻ ൌ

ۏ
ێ
ێ
ۍ
εܶ1ሺ݇ሻ
εܶ2ሺ݇ሻ
εܶ3ሺ݇ሻ
ܶ4ሺ݇ሻےε

ۑ
ۑ
ې
, ܤ ൌ , 4ܺ4ܫ ܥ ൌ 4ܺ4ܫ

ۙ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۗ

 ሺ4ሻ

Replacing Eq. (4) into Eq. (1.a,b) yields the state space model.
The system matrix A defines the model of parallel tasks and
encapsulates all dependencies and associated coefficients. In the
derivation of state space model, we define the regression
c ts, ௝ for each depende cy. Let’s define the regression
p
oefficien ,௜ݓ n
arameter vector as
ܹ ൌ ସ,்ସ൧்ݓ ଷ,்ସ்ݓ ଶ,்ସ்ݓ ଷ,்ଷ்ݓ ଵ,்ଷ்ݓ ଶ,்ଶ்ݓ ଵ,்ଶ்ݓଵ,்ଵ்ݓൣ

் ሺ5ሻ
The primary goal of the solution of state space model is to minim-
iz -
fi

e prediction error and hence the objective function can be de
ned as
௠௜௡ܬ ൌ ሺε்௜ሺ݇ሻሻ ሺ6ሻ݊݅ܯ

C. Joint State Space Model
In general, for a given state space model, the parameters vector of
Eq. (5) is assumed to be known. To obtain the parameters, system
identification process is carried out at design time and
recalibration runs are performed from time to time to adapt the
vector according to the changing scenarios [19]. Model
parameters obtained by calibration runs cannot adapt to rapidly
changing scenarios at run-time and are always valid under certain
assumptions. No assumption can be made on execution time or its
characteristics and hence it is essential to derive the solution
independent of the prior knowledge of system dynamics. Within
the framework of state space, literature widely refers maximum
likelihood method for the estimation of parameters at run-time.
During the course of this work, it is observed that the
computational cost and sampling errors in W due to
approximations render maximum likelihood impractical. In that
case, we considered the parameter estimation by Bayesian
estimation. To obtain such a solution, the key idea is to estimate
the model parameters like the states in a state space model. The
estimation of model parameters in conjunction to the states of the
model is achieved by augmenting the state vector with model
para ent
in the state vect

meters. The new augm ed state vector by augmenting Eq. 5
or of Eq. (4) is defined as

 ௃ܺሺ݇ሻ ൌ ሾܺሺ݇ሻ ܹሺ݇ሻሿ் ሺ7ሻ
It is important to note that in the augmented state vector model
parameters are also time-varying and are updated at the beginning
of each interval, like states. As a result, the state space of Eq.
(1.a,b) with parameters in state vector become time-varying and

q i E the time update and measurement e uat on of q. (1.a,b) takes the

following form
 ௃ܺሺ݇ ൅ 1ሻ ൌ ,௃ሺܹሺ݇ሻܣ ݇ሻ ௃ܺሺ݇ሻ ൅ ௃ܤ ௃ܷሺ݇ሻ ሺ8. ܽሻ
 ෠ܻሺ݇ሻ ൌ ௃ܥ ௃ܺሺ݇ሻ ሺ8. ܾሻ
The components of the state space models are augmented with
identity (ܫ௜,௜) and null (௜ܱ,௜) matrices to satisfy the system of equa-
tions (number of equations must be equal to the number of un-
knowns). The state ve ugm omponents
of Eq. (4) efi ace co r given as

ctor of Eq. (7) and a ented c
 d ne the joint state sp mponents and a e

ە
ۖ
۔

ۖ
ۓ ܬܣ ൌ ൤

ܣ ܱ4,8
ܱ8,4 8,8ܫ

൨ ሺ݇ሻܬܺ ൌ ൤ܺሺ݇ሻܹሺ݇ሻ൨

ሺ݇ܬܺ ൅ 1ሻ ൌ ൤ܺሺ݇ ൅ 1ሻ
ܹሺ݇ ൅ 1ሻ൨ ௃ܷሺ݇ሻ ൌ ൤

ܷሺ݇ሻ
ܱ8,1

൨

ܬܤ ൌ ൤
ܤ ܱ4,8
ܱ8,4 ܱ8,8

൨ ܬܥ ൌ ൤
ܥ ܱ4,8
ܱ8,4 ܱ8,8

൨ۙ
ۖ
ۘ

ۖ
ۗ

 ሺ9ሻ

Pu (9) int y t e tting Eq. o Eq. (8) ields the complete join state spac
model

ܺሺ݇ ൅ 1ሻ ܣ ସܱ,଼ ,଼ ൤ܹሺ݇ ൅ 1ሻ൨ ൌ ൤଼ܱ,ସ ܫ଼ ,଼
൨ ൤ ܺሺ݇ሻܹሺ݇ሻ൨ ൅ ൤

ܤ ସܱ
଼ܱ,ସ ଼ܱ,଼

൨ .ሺ݇ሻ ሺ10ܬܷ ܽሻ

 ෠ܻሺ݇ሻ ൌ ௃ܥ ൌ ൤
ܥ ସܱ,଼
଼ܱ,ସ ଼ܱ,଼

൨ ൤ ܺሺ݇ ൅ 1ሻ
ܹሺ݇ ൅ 1ሻ൨ ሺ10. ܾሻ

It is worthwhile to mention that the resultant matrices of the joint
state space model are sparse and are shown in their full form for
the sake of understanding and compliance with the theory. The
sparse property and regularity of the model significantly reduces
the computation cost at run time. Consider the measurement
update equation Eq. (10.b); at first it appears that it involves the
multiplication of matrix of dimension 12×12 with vector of
dimension 12×1. But in actual implementation there is no
multiplication involved and the first four states of vector ௃ܺሺ݇ሻ
are copied to ෠ܻሺ݇ሻ. Similar patterns can also be observed in time
update equation e.g. the multiplication of observations and input
matrix. Therefore, in actual implementation, the solution of state
space requires only a handful of computations. The optimal
solution of the joint state space model can be found by numerical

126

integration, but the computational cost of numerical integration
prohibits its use at run-time [21]. The recursive solution of
derived state space can also be found by Extended Kalamn Filter
(EKF), but it require the derivation of linear state space at design
time and involves linearization step at run-time. Moreover, EKF
leads to the approximation of nonlinear state space by making the
piecewise linear estimation, inherent error, and can only be
applicable in the case of Gaussian distributions. As elaborated in
the ‘motivation’ sub-section, distributions of the execution time
cannot be assumed a priori and hence it is required to formulate
the solution independent of it.
D. Generalization
The regularity in the derived state space model of Eq. (10.a,b)
allows the direct derivation of the model by algorithm for any
number of tasks in a task graph. The task graph may contain the
isolated task(s) and can comprise of collection of arbitrary sub
graphs. Algorithm 1 outlines a systematic procedure for the
derivation of joint state space model. It is important to note that
the labeling of tasks should be carried out in a way such that the
predecessor task must be labeled before all of its successors.
However, defined labeling rule is not a constraint but has the
implications for the implementation. If tasks are labeled
according to the rule then the system matrix will always be a
lower diagonal matrix (practical limitations for considering the
acyclic linear task graphs only are discussed in Section III.A).
The lower diagonal matrix means, half of the operations of major
computational part are not required at all (multiplication by
zeros).

Algorithm 1:
Ev t st e

: Sy atrix : Input matrix, tput matrix

ent: Derive join ate space mod l for Ω number of tasks
D

Ou:ܥ
: Input vector, ෠ܻሺ݇ሻ: Output vector

efinition:
ܣ stem m ܤ ,
ܺ: State vector, ܷ
,௝ܣ ,௝ܤ ,௝ܥ ௝ܺand ௝ܷ are the joint state space counterparts of
,ܣ ,ܤ ,ܥ ܺand ܷ respectively
1: label the tasks in ascending order such that predecessor task in
 ftw i line should be label before any of its successors so a
ܥ = :2 f dimension ΩxΩ,

re p pe
 = identity matrix o

 ܺ 2 … Ωሿܶݔ
ܤ
 ൌ ሾݔ 1ݔ

3: ൌ εܶ1 ; ܺ ൌ y ܶ1
4: for (i=2 ; i <= i++) Ω

ε்௜ ܷ
6: Augment y்௜ as a last row in ܺ

,
5: Augment as a last row in

7: end
8: A = null matrix of dimension ΩxΩ, cnt = 0
9: for (i=1 ; i<=Ω ; i++) //for rows
10: for (k=1 ; k< Ω ; k++) //for columns =

)
13: insert ்ݓ௜,்௜ in ܣ at ith row, ith column
12: if (i==k

14: end
15: if (k < i)
16: if (Ti Pre sor of Tk) deces
17: insert ்ݓ௜,்௞ in A at ith row, kth column
18: end
19: end
20: Augment ்ݓ௜,்௞as a last row in ܹ, cnt++
20: end
21: end

22: ௃
ܣ ܱ
ୡ୬୲

ܷ
1,ݐ݊ܿ

൨ ܺ ൌ ሾܺ ܹሿ் , ܣ௃ ൌ ൤ Ω,ୡ୬୲
ܱ ,Ω ୡ୬୲,ୡ୬୲ܫ

൨, ௃ܷ ൌ ൤ܱ

௃ܤ :23 ൌ ൤
ܤ ܱΩ,ୡ୬୲

ܱୡ୬୲,Ω ܱୡ୬୲,ୡ୬୲
൨, ܥ௃ ൌ ൤

ܥ ܱΩ,ୡ୬୲
ܱୡ୬୲,Ω ܱୡ୬୲,ୡ୬୲

൨

E. Monte Carlo Recursive Solution
 To develop the solution of joint state space model independently
of the distribution, we formulated the recursive solution based on
online Sequential Monte Carlo method. Contrary to conventional
solutions, sequential Monte Carlo method builds the underlying
distributions at run-time and learns the execution time statistics at
the beginning of each interval. At the start of estimation process,
‘s’ numbers of randomly initialized samples are generated to
simulate the underlying distributions. After initialization, at the
beginning of the interval, it is not needed to regenerate the
population of samples from scratch. Rather distribution weights
are adjusted according to the error of new observation vector.
Here new observation vector corresponds to the last prediction
and the objective is to minimize the error and obtain the new state
vector, the prediction. To achieve this goal, state space model
with N states is solved to compute N weights, one appropriately
defined weight for each state. The reader is referred to [12]
(particularly chapter 9 for this work) for the understanding of the
formulation of online Monte Carlo method.
 The recursive solution by Monte Carlo comprise of two steps: (i)
Correct (measurement update) and (ii) Predict (time update). The
recursive solution means that only the prediction from the
previous interval and current measurement are needed to compute
the predictions. Contrary to batch estimation techniques, no
history of previous predictions and observation is required. The
correction step is carried out on the arrival of the new observation
vector, as observation vector comprises of errors between
previously predicted and now available execution times. After the
correction step, the new statistics and dynamics of execution
times till the current time are known and the prediction step is
performed to compute the estimates for the next interval. Figure 5
shows the correction/prediction recursion steps computed at the
beginning of each scheduling interval.

 To derive the solution for the state vector of size ܰ under the
influence of an arbitrary distribution, assume S independent
identically distributed (i.i.d) variables denoted by βଵ, βଶ ׸ βS .
This sampling follows the probability distribution function (p.d.f.)
for state vector X as pሺX ሻ i.e. βଵ ~ pሺX ሻ. pሺX ሻ is not known
but can be appr [22]

Correct Predict

Figure 5: Correction and prediction recursion

୨ ୨
:S

J J
oximated by the following function

൫݌ ௃ܺ൯ ؄ ௌ൫݌ ௃ܺ൯ ൌ
1
ܵ෍ ௜ሺߚߨ ௃ܺሻ

ௌ

௜ୀଵ

whereas, ߨ is a probability of the sample. In approximating ݌൫ ௃ܺ൯
it is assumed that all samples ߚ௜ contribute equally in the
approximation of ݌ሺ ௃ܺሻ. To generalize the approach, assign the
weight factors ߙ to the point ߚ௜. The weight factors also satisfy
the normality condition ∑ ௜ௌߙ

௜ୀଵ ൌ 1. In that case

൫݌ ௃ܺ൯ ؄ ௌ൫݌ ௃ܺ൯ ൌ ෍ ௜ሺܺ ሻ ሺ11ሻ ߙ௜ߚߨ ௃

ௌ

௜ୀଵ
If ݌ሺߚ௜ሻ is known then the probability ݌ሺ ௃ܺሻ can be approximated
by using the discrete values of the p.d.f. ݌൫ߚ௜൯ ൌ ௜. If samplingߙ
over the p.d.f. ݌ሺ ௃ܺሻ is unavailable, then one can use a p.d.f. ݌ҧሺ ௃ܺሻ
with a similar support set, i.e. ݌൫ ௃ܺ൯ ൌ 0 implies that ݌ҧ൫ ௃ܺ൯ ൌ 0.
Then it holds that the expectation of the state vector is approx-
imated by

127

ܧ ௃ሻ൯ ൌ ൫ܺ݌ሺܺሻߔ׬ ߔ׬ ௃ሻ݌ҧ൫ܺ ൯ ௣ ಻ሻ൫ߔሺܺ ௃൯݀ݔ ൌ ሺܺ ௃
ሺ௑

௣ҧሺ௑಻ሻ
 ݔ݀

Where ߔ൫ ௃ܺ൯ is the solution of the state equation. If ܵ samples of
ҧሺ݌ ௃ܺሻ are available at points ߚଵ෪:ߚଶ෪ ׷׸ ప෩ߚҧ൫݌ ௌ෪: i.eߚ ൯ ൌ ௜ሺߚߨ ௃ܺሻ
a ߙ ൌ ௣ሺ௑

௣
nd the weight coefficient ௜ ಻ሻ

ҧሺ௑಻ሻ
 then it can be shown that

ሺߔ൫ܧ ௝ܺሻ൯ ؄෍ α
ௌ

௜
ప൯ ሺ12ሻ ௜ ෩ߚ൫ߔ

Eq. (12) assumes that the p.d.f. ݌ሺ ௃ܺሻ is unknown (target
distribution), however the p.d.f. ݌ҧሺ ௃ܺሻ (importance law) the
unknown instrumental distribution is available. Then, it is
sufficient to sample on ݌ҧሺ ௃ܺሻ and find the associated weight
coeff . icients ߙ௜ to compute ൫ߔሺ ௃ܺሻ൯

re iction step:
Let ܻି ൌ ሾܻሺ1ሻ, ܻሺ2ሻ, … ܻሺ݇ െ 1ሻሿ and ܻ ൌ ሾܻି ܻሺ݇ሻሿ then to
compute the ݌൫ܺ ሺ݇ሻหܻି ൯, according to Eq. (11) it holds that the
a priori

The p d

௃
probabilities can be found as

൫݌ ௃ܺሺ݇ െ 1ሻ|ܻି൯ ൌ ෍ α௞௜ ିଵ ߨఉ೔ ሺ ௃ܺሺ݇ െ 1ሻሻ
ௌ

ଵ

ೖషభ௜ୀ
he posteriori probabilities can ob in d b using Bayes law

 ଵ
௜ ఉೖ೔ߨ ሺ ௃ܺሺ݇ሻሻ

ଵ
 ሺ13ሻ

 T be ta e y

൫݌ ௃ܺሺ݇ሻ|ܻି൯ ൌ ෍ α௞ି
ௌ

௜ୀ
ith ߚ௞௜~ ݌൫ ௃ܺሺ݇ሻ| ௃ܺሺ݇ െ 1 ൯ ൌ ௞ିଵ௜ߚ W ሻ

The Eq. (13) means that the state equation of the system executes
ܰ t f the s tors
௃ܺሺ݇

imes, starting from the ܰ previous values o tate vec
െ 1ሻ ൌ ௞ିଵ௜ߚ
 ෠ܺ௃ሺ݇ ൅ 1ሻ ൌ ௃ܣ ௃ܺሺ݇ሻ ൅ ௃ܤ ௃ܷ ሾ ௞

௜
ିଵሿ௜ୀଵ

ே ሺ݇ሻ ൅ ߙ
 Thus new state vector is obtained, ෠ܺ௃ሺ݇ ൅ 1ሻ, and consequently
the mean value of the state vector will be given from Eq. (13).
The correction step:
A posteriori probability density is found using Eq. (13) and now a
new measurement vector ܻሺ݇ሻ is available and the objective is to
compute the corrected p ሺ ௃ܺሺ݇ሻ | ܻሻ; riori probability density ݌
from Bayes law it holds that

൫݌ ௃ܺሺ݇ሻหܻ൯ ൌ
݌ ቀܻሺ݇ሻቚ ௃ܺሺ݇ሻቁ ൫݌ ௃ܺሺ݇ሻหܻି൯

׬ ൫ܻሺ݇ሻห݌ ௃ܺሺ݇ሻ, ܻି൯݌൫ ௃ܺሺ݇ሻหܻି൯݀ݔ
 ሺ14ሻ

Substituting Eq. (13) into Eq. (14) and after derivation it is finally
obtained

൫݌ ௃ܺሺ݇ሻ|ܻ൯ ൌ ෍ α௞௜ ߨ ೔ ሺܺ ሺ݇ሻሻ
ௌ

 ሺ15ሻ ఉೖ ௃
௜ୀଵ

 α௞௜ ൌ
α௞ିଵ௜ ݌ ቀܻሺ݇ሻቚ ௃ܺሺ݇ሻቁ

∑ α௞ିଵ
௝ ݌ ቀܻሺ݇ሻቚ ௝ܺሺ݇ሻቁௌ

௝ୀଵ

where

Eq. (15) gives the corrections for the state vector in each iteration.
The given Monte Carlo solution can be viewed as hidden Markov
process, with the key difference that the state variables assume
values from continuous space as opposed to the discrete state
space for the hidden Markov model. Though to obtain the predic-
tion, only previous prediction and current available observations
are considered, but due to the recursive solution, the prediction is
the combination of all previous observations, which is a very im-
portant property of the online Monte Carlo sampling based solu-
tions. As time proceeds, the sampling of Monte Carlo learns the
system dynamics by minimizing the error. Figure 6 illustrates this
fact; prediction for the interval K+1 is based on the first interval
till Kth interval. This is also the reason that at the start of the
process the predictions for the first few intervals are not meaning-
full as the proposed solution is in learning phase (convergence).
F. Degeneration of Sample
 The recursive solution described by Eq. (13) and (15) has a
tendency of degeneracy of samples. After a certain number of

iterations, almost all the weights α௞௜ tend to 0. That means the
samples lose effectiveness as time proceeds. Ideally all the
weights should converge to the value 1 ܵ⁄ , i.e. the samples should
have the same significance. Therefore, it is necessary to include
the re-sampling step to block the degeneration of samples. After
the completion of recursion, samples of low weight factors are
removed and replaced by the duplicates of the samples with high
weight factors, as suggested in [23].
G. Variable Laxity EDF Scheduler
To schedule the task with variable execution time the requirement
is to incorporate it in the scheduling decisions. Earliest Deadline
First (EDF) is an optimal scheduler for uni-processor real time
systems and is also widely used for multicore systems. EDF sche-
duler primarily works on laxity, the measure of the spare time
permitted for the task before it misses its deadline. According to
tuple defined in Section 1 (start time, St, execution time, Ct and
deadline, Dt), laxity at the start time St for each task can be com-
puted by: laxity = (Dt - Ct). In our case, Ct is variable and is ob-
tained at the beginning of each scheduling interval. Because of
variable laxity and multicore scenario, we used the variable laxity
based EDF scheduler for multicore platforms proposed in [24].

IV. RESULTS
 We carefully selected the H.264 video decoder application
against generic task graphs or simple applications. The control
dominant and computation-intensive properties of H.264 decoder
fit well for the benchmarking and evaluation of all points raised in
the proposed method. We have used our in-house developed
H.264 decoder, which offers time and space parallelization fea-
tures simultaneously. The space parallelization is achieved by
enabling the decoding of multiple slices within a single frame and
time parallelization is achieved by dividing the MB decoding
process into the software pipeline. Figure 7 shows the task graph
of decoder and Table 1 defines the functionality of each task. It is
 evident from Figure 7 that the decoder is able to decode two

Table I: Tasks and their functionality

Task Functionality
T1 Network abstraction layer decoder

T2 Slice 1: Entropy decoder, Inverse Scaling/D-
Quantizatiion and Inverse discrete cosine transform

T3 Slice 2: Entropy decoder, Inverse Scaling/D-
Quantizatiion and Inverse discrete cosine transform

T4 Slice 1: Motion compensation and inloop filter
T5 Slice 2: Motion compensation and inloop filter
T6 Slice to frame merger (logical task)

1 K‐1 K K+1

Current prediction is the
statistical combination of
history

Figure 6: Learning at each interval and prediction is the combination of
whole history

T1

T3 T5

T2

T6

T4

Figure 7: Slice parallel and pipelined parallel H.264 decoder

128

slices simultaneously, the numbers of slices in a frame are
decided at the video encoding time. Multiple test sequences of
diverse characteristics are used in evaluation and are derived from
ITU-T test vectors, namely BBC, Rushhour and Container with
4CIF resolution. First 50 frames of each data set are encoded by
JM13 H.264 reference encoder for different QPs (16, 20, 24, 28)
to vary the data characteristics and the execution time at
decoding. Two slices per frame are encoded to enable the space
parallelization at decoding. Formation of slices is static and the
frame is divided equally between the slices by partitioning the
frame into upper and lower parts.
The experiments are conducted on quad core platform. The
evaluation platform is based on Intel® Quadcore (Q9100)
processor with 4GB of memory, 1.333 GHz bus interconnects and
Windows® XP operating system. Threads are statically mapped
on the cores and run time thread migration is disabled using
thread affinity. Intel® VTune performance analyzer is enabled to
gather the data from hardware sampling units to obtain precise
cycle count for each task. The scheduling evaluation is done on
Cheddar [25], a real-time scheduling tool.
We first evaluate the impact of the inclusion of spatial correlation
in the estimation model. Figure 8 shows the estimation of the
execution time of T4 (motion compensation and in-loop filtering
for slice 1) in two different scenarios. The prediction of T4, as
independent task and also as the consumer of T2. Results of
Figure 8 clearly show that the predicted values lie closer to actual
when we take into account the execution time of predecessor task,
T2. The absolute error plots reveal that the inclusion of the
execution time of the predecessor not only reduces the error but it
stays below the error when the estimation is performed as an
independent task. It is apparent that the inclusion of spatial
correlation in the execution time model significantly improves the
quality of the prediction. Figure 9 shows the state variance, an
indirect measure of convergence, of estimator from the beginning
of the estimation process for task T4. Convergence curves make it
clear that the pipelined estimate converges rapidly than

independent estimate. Moreover, state covariance of the pipelined
estimate remains lower after the convergence and yields stable
and better prediction. Figure 10 and 11 shows the probability
distributions of error in the prediction of T1 and T4 respectively.
In case of T1, the error distribution is widely distributed while for
T4, error distribution has limited range. Properties of distributions
also suggest that significant improvement has been achieved by
considering the spatial correlation among tasks. Figure 12 shows
the prediction error for five tasks of the application. In Figure 12,
percentage residual error is computed for the comparison
purposes and the estimates are clustered into the bins with width
of 20% of error. The prediction error greater than 100% is
combined into a single bin instead of showing the lengthy
decaying tail of bins. The analysis of prediction process and task
execution time characteristics reveals that the abrupt change in
the task phase leads to the large prediction error, sometime this
error is greater than the 100%. Results clearly show that the
prediction error by SETS largely falls within 20% of the error.
The computational overhead of the proposed task execution time
prediction process for the experimental setup is 7.8% (on
average). This overhead is relatively very small compared to the
benefits obtained in term of task utilization. Furthermore,
computational overhead also depends on the granularity of the
tasks. In the experimental application of this paper tasks are of
fine granularity and this overhead diminishes for the coarse
grained tasks. Without any kind of a priori knowledge about the
tasks or computing platform the quality of prediction can
considered as sufficient for schedulability analysis.
 To analyze the scheduling we used the actual execution time
and predicted execution time traces and simulated the scheduling
process on Cheddar. On Cheddar, 4 cores are assumed and
variable laxity EDF scheduling scheme proposed in [24] is
implemented. We experimented with non-preemptive uniform
priority attributes. We measured the results in terms of task
utilization (=execution time/deadline), task schedulability
(number of tasks that can be scheduled) and deadline misses. We

-2000 -1500 -1000 -500 0 500 1000
0

5

10

15

20

25

30

Error(x10)

Pr
ob

ab
ili

ty
 d

en
si

ty

Error(x10)

Pr
ob

ab
ilit

y
de

ns
ity

-800 -600 -400 -200 0 200 400 600
0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

80

0‐20 20‐40 40‐60 60‐80 80‐100 >100

T1 T2 T3 T4 T5

% Error

%
 N
um

be
r
of
 E
ss
tim

at
es

Figure 10: Probability density function of error in
the prediction of T1

 Figure 11: Probability density function of
 error in the prediction of T4

 Figure 12: Prediction error

0

100

200

300

400

500

600

700

800

900

1000

1 6 11 16 21 26 31 36

T4, Motion compensation and inloop filter T4 Independent Estimate
T4 Estimate with T2 as predecessor Error Independent
Error with Predecessor

Cy
cle

s (
x5

0)

Runs

0

1000

2000

3000

4000

5000

6000

5 30 55 80 105

State Varience Independent

State Varience Pipelined

Numberof itteration

St
at
e
ve
ct
or

va
ri
an

ce

 Figure 8: Prediction with and without predecessor Figure 9: Convergence

129

compared our results with state-of-the-art proposed in [6] as it
also considered the stochastic execution time behavior of the
tasks. The work done in [6] like this paper argues that the WCET
seriously underutilizes the resources and an average case must be
considered. Moreover, for scheduling, [6] also considers the EDF
policy and establishes the fairness of the comparison. The prime
difference in [6] and SETS is that [6] derives the prior tardiness
bound for global EDF. However, the paper only considers the
upper bounded deviation from the mean execution time of the
task. The absence of lower bound results in the under-utilization
of task when execution time falls below the mean execution time.
The simulation on Cheddar shows that the SETS improves the
task utilization to the factor of 0.37, an improvement of 87%.
Figure 13 summarizes the results of the task utilization, task
schedulability and the deadline misses. The results clearly show
the advantage of SETS over Mills [6]. The improvement in task
utilization achieved by SETS is 76% better than the Mills. The
huge improvement in the task utilization is due to the lack of
consideration of the execution time below the mean value. The
SETS does not define upper or lower bounds on execution times,
computes it at run time, and hence gives the better utilization. The
same trend can be observed for the task schedulability. However,
the percentage improvement of the SETS over the Mills is 68%
because of some large over-prediction of execution times by the
SETS. The large over-predictions benefit SETS in terms of the
deadline misses. The task schedulability and deadline misses can
be considered as a tradeoff. Lastly, the task scheduled by the
SETS framework are less susceptible to deadline misses. The
Figure 13 shows that average deadline missed by the SETS are
53% less compared to Mills.
The results and their analysis make it clear that the spatial
correlation has profound positive impact on the quality of
prediction. Moreover, run time estimate of execution time
alleviates the constraints of fixed time scenario and thus
significantly improves the effective utilization of system
resources. Therefore, SETS is the applicable solution for the
scheduling of soft real-time systems.

Pe
rc

en
tag

e(
%

)

0

10

20

30

40

50

60

70

80

90

100

Task Utilization Task Schedulability Deadline Misses

Our SETS

Mills [6]

Figure 13: Comparison of SETS with Mills for different metrics

V. CONCLUSION
We propose scheduling techniques for soft real-time systems
exhibiting stochastic task execution times. Our solution is
estimating their execution times using a joint state space model.
The solution of the proposed model is found by a Monte Carlo
sampling based recursive technique to estimate the execution time
of the task independent of distributions. Moreover, state space
modeling opens the opportunity to take benefit of the large body
of work that already exists for solving state space. Within this
work, we formulated an online Monte Carlo method for the
solution of state space. The recursive solution significantly
reduces the memory and computational requirements compared to

other sophisticated methods (i.e. Markov Chains) obtaining nearly
a Bayesian estimate. We have shown that the inclusion of spatial
correlations among execution time of tasks significantly improves
the prediction quality. The proposed method may not scale well
in case of thousand of tasks in a task graph. A workaround can be
found by investigating the distributed estimation by combining
the most relevant tasks in a single cluster. Furthermore, the
computational cost of Monte Carlo method can be reduced by
generating the proposal distribution by RANdom Sample
Consensus (RANSAC) for run time distributions, and will be
considered in future work. The scheduling by variable laxity EDF
on multicore systems for variable execution times shows a 76%
improved task utilization.

VI. REFERENCES
[1] Edward A. Lee, “Building unreliable system out of reliable components:

A real time story”, http://www.eecs.berkeley.edu/Pubs/
[2] Shekhar Borkar, Norman P. Jouppi and Per Stenström, “Microprocessors

in the Era of Terascale Integration”, Design automation and test in
Europe, pp. 237-242, 2007.

[3] A. Burns, G. Bernat, and I. Broster. “A probabilistic framework for
schedulability analysis”. EMSOFT, pp. 1-15, 2003

[4] Sorin Manolache, Petru Eles, Zebo Peng. “Schedulabil-ity analysis of
multiprocessor real-time applications with stochastic task execution
times”, ICCAD, pp. 699-706, 2002.

[5] Val Donaldson and Jeanne Ferrante, “Determining Asynchronous
Acyclic Pipeline Execution Times”, IPPS, pp 568-72,1996.

[6] Alex F. Mill and J. Anderson, “A stochastic framework for multiproces-
sor soft real time scheduling“, IEEE RTAS 2010.

[7] S. Yaldiz, A. Demir and S. Tasiran, “Stochastic modeling and optimiza-
tion for energy management in multicore systems: A video decoding
case study”, IEEE trans. on computer aided design, pp. 1264-1277,
2008

[8] E. Bini, G. Butazzo, and etl. “A hyperbolic bound for the rate monotonic
algorithm”. In Proceedings of the 13th Euromicro Conference on Real-
Time Systems, pp. 59–66, 2001.

[9] J. C. Palencia Gutierrez and M. Gonzalez Harbour. “Schedulability
analysis for tasks with static and dynamic offsets”. In Proceedings of the
19th IEEE RTS Symposium, pp. 26–37, 1998.

[10] R.Wilhelm and etl., “The worst-case execution-time problem - overview
of methods and survey of tools. ACM Trans. Embedded Comput. Syst.
7(3): 2008.

[11] Guillem Bernat, Antoine Colin and Stefan M.Petters, “WCET analysis
for probabilistic hard real time systems”. IEEE Real-Time Systems
Symposium, pp. 279-288, 2002.

[12] A.Doucet, N.Freitas, N.Gordon, A. Smith, “Sequential Monte Carlo
Methods in Practice”, Springer 2001.

[13] L. Abeni and G. Butazzo. “QoS Guarantees using probabilistic
deadlines”. IEEE ECRTS, pp. 242-249, 1999.

[14] J. Kleinberg, Y. Rabani, and E. Tardos. “Allocating bandwidth for
bursty connections” SIAM Journal on Computing, 30(1), pp. 191–217,
2000.

[15] A. Goel and P. Indyk. “Stochastic load balancing and related problems”.
In IEEE Symposium on Foundations of Computer Science, pp. 579–586,
1999.

[16] S. Hua, G. Qu, and S. Bhattacharyya. “Exploring the probabilistic design
space of multimedia systems”. In Proceedings of the 14th IEEE
InternationalWorkshop on Rapid Systems Prototyping, 2003

[17] J. Luis et al. “Stochastic analysis of periodic real-time systems”. In
Proceedings of the 23rd Real-Time Systems Symposium, pp. 289, 2002.

[18] D. Guo, X. Wang and R. Chen, “New sequential Monte Carlo methods
for nonlinear dynamic systems”. Journal of Statistical and computing,
pp. 135-147, 2005.

[19] M. A. Iverson, F.O. zguner, and L.C. Potter, “Statistical prediction of
task execution times through analytic benchmarking for scheduling in a
heterogeneous environment”, IEEE Transaction on Computers vol. 48,
pp 1374-1379, 1999.

[20] J.J.F. Commandeur and S. Koopman. “Time series analysis using state
space models”, Oxford University Press, USA, 2007.

[21] Simon Haykin and etl, “Kalman filtering and neural networks”, Wiley-
Interscience, 2001.

[22] Tommy Oberg, “Modulation, Detection, and Coding”, John Wiley &
Sons, Inc., New York, 2001.

[23] K. Pradheep Kumar and A. P. Shanthi , “Application of non-uniform
laxity to EDF for aperiodic tasks to improve task utilization on multicore
platforms”, CoRR 2009.

[24] Cheddar, http://beru.univ-brest.fr/~singhoff/cheddar/

130

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

