
Recent Research Development in Flip-Chip Routing

Hsu-Chieh Lee†, Yao-Wen Chang†‡, and Po-Wei Lee†
Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan†

Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan ‡

pg30123@eda.ee.ntu.edu.tw; ywchang@cc.ee.ntu.edu.tw; webber@eda.ee.ntu.edu.tw

Abstract—The flip-chip package is introduced for modern IC
designs with higher integration density, larger I/O counts, faster
speed, better signal integrity, etc. To ease design changes, an extra
metal layer is introduced to redistribute nets between wire-bonding
(I/O) pads in a die and bump pads in a package carrier. Flip-
chip routing is performed by redistributing and interconnecting
nets between the I/O and bump pads. As the design complexity
grows, routing has played a pivotal role in flip-chip design. In
this paper, we first introduce popular flip-chip structures, their
routing-region modeling, and induced routing problems, survey key
published techniques for flip-chip routing with respect to specific
structures and pad assignment methods, and provide some future
research directions for the modern flip-chip routing problem.

I. INTRODUCTION

For modern IC designs, the increasing design complexity and de-
creasing feature size make I/O connection a critical problem. The flip-
chip package is introduced for such designs with higher integration
density and larger I/O counts. The flip-chip packaging is a technique
for connecting a die to an external circuitry such as package carriers or
printed circuit boards (PCB’s). It can bring much more areas for I/O’s,
maintain high-speed performance with shorter interconnections, and keep
signals isolated from environmental hazards or influences. As shown in
Figure 1, a die is flipped over and mounted on a package carrier. To
ease design changes, an extra metal layer, called a Redistribution Layer
(RDL), is added and used to redistribute nets between the I/O pads
and the bump pads [8], [9]. Accordingly, a flip-chip router is needed
to connect the I/O pads to the bump pads. As the design complexity
grows, in particular, routing has played a pivotal role in flip-chip design.

Top metal layer

Redistribution layer

Package carrier

Metal 1

Cells and I/O buffers

I/O pad

Bump pad

Bump ball

Isolator

Die

(flipped over)

Figure 1. Cross view of a flip-chip.

The flip-chip package structure can be categorized into two major
types: (1) the peripheral-I/O flip-chip [8], [9] and (2) the area-I/O flip-
chip [3], [4], as illustrated in Figure 2. Generally speaking, the routing
for the area-I/O flip-chip is harder than that for the peripheral-I/O one
since the routing region among bump pads in an area-I/O flip-chip is
more congested, as illustrated in Figure 2. On the other hand, the area-I/O
flip-chip exhibits significant advantages in shorter connection wirelength,
higher design flexibility, etc.

Depending on the interactions among IC, packaging, and PCB design-
ers, the problem formulation of flip-chip RDL routing can be classified
into three major types: (1) the free-assignment (FA for short) routing
problem [3], [4], [8], [9], [12], [14], (2) the pre-assignment (PA) routing
problem [6], [7], [11], [15], and (3) the unified-assignment (UA) routing
problem [10]. For the FA problem, the net assignments between I/O
pads and bump pads are not predefined before routing, so a router

I/O pads

Bump pads

(a) (b)

Figure 2. Flip-chip structures. (a) Peripheral-I/O flip-chip. (b) Area-I/O flip-chip.

has the freedom to assign each I/O pad to an arbitrary bump pad. In
contrast, for the pre-assignment problem, connections between I/O pads
and bump pads are predefined by IC or packaging designers before
routing, and the assignments cannot be changed during routing. The pre-
assignment problem has been shown to be much more difficult than the
free-assignment problem since the strict mapping between I/O pads and
bump pads impose more design constraints [6], [7]. For the UA problem,
some net assignments between I/O pads and bump pads are predefined,
and some are not. As a result, both the FA and PA routing problems
shall be considered simultaneously to achieve better design flexibility
and performance [10].

Figure 3 classifies flip-chip routing problems with corresponding
published research works, based on the flip-chip structures and pad
assignment methods. In this paper, we first introduce the published
research works and discuss their strengths and weaknesses, and then
provide future research directions for modern flip-chip routing.

Peripheral I/O,

free-assignment

Peripheral I/O,

pre-assignment

Area I/O,

free-assignment

Area I/O,

pre-assignment

FA

Peripheral I/O

Area I/O

PA

Area-I/O, unified FA/PA

Fang et al

Figure 3. Classification of flip-chip routing problems and corresponding
published works.

The rest of this paper is organized as follows. Sections II, III, and

978-1-4244-8192-7/10/$26.00 ©2010 IEEE 404

IV survey published works on the free-, pre-, and unified-assignment
routing problems, respectively. Section V provides some future research
directions for flip-chip routing, and the paper is concluded in Section VI.

II. THE FREE-ASSIGNMENT PROBLEM

In the free-assignment RDL routing problem, each I/O pad can be
paired with any bump pad that is not connected with another net. To
handle this problem, most published works utilize the network-flow-
based algorithm in the global-routing stage [3], [4], [8], [9], [12],
introduced in Subsection II-A. Another non-flow-based method [14] is
introduced in Subsection II-B.

A. Network-Flow-Based Methods
The basic idea of network-flow-based methods is to model routing

regions as a set of tiles, construct a flow network to model the original
problem instance, apply the Minimum-Cost Maximum-Flow (MCMF)
algorithm [1] on the corresponding flow network, and convert the
resulting flow solution to a global-routing topology for the original
problem. With the global-routing solution, a detail-routing algorithm is
then applied to assign tracks and determine the actual position for each
net.

Based on the routing-region modeling, we can further classify the
network-flow-based methods into two major categories: (1) rectangular-
tile model, and (2) triangular-tile model. We discuss published techniques
for these two models in the following.

1) Rectangular-Tile Model:
a) Peripheral-I/O Structure: Fang et al. [8], [9] proposed the

first work on flip-chip routing problem. A network-flow-based approach
is used to handle the peripheral-I/O free-assignment RDL routing prob-
lem. Figure 4 illustrates an example chip instance, where bump pads
and I/O pads are distributed ring by ring, with two I/O pad rings and
three bump pad rings in the figure. The chip is divided into four sectors,
namely North, East, South, and West, and then each sector is handled
separately.

North

South

West East

r1
b

r2
b

r3
b

r1
p

r2
p

Figure 4. A peripheral-I/O flip-chip is divided into four sectors: North, East,
South, and West. Two rings of I/O pads are denoted by rp1 and rp2 , and three rings
of bump pads are denoted by rb1, rb2, and rb3, from the outer ring to the inner one.

They define a tile to be a rectangular region bounded by four bump
pads and/or I/O pads, and an interval to be a segment between two
adjacent bump pads or I/O pads on the same ring. Two kinds of nodes
are constructed to control the congestion during network-flow processing:
a tile node is constructed for each tile and an intermediate node is
constructed for each interval. As shown in Figure 5(a), the upper four
bump pads form a tile and two intervals, and so does the lower four I/O
pads.

The flow edges are directional edges from the outer rings to the inner
rings, since this work only consider monotonic routes, where no route
passes through the same ring twice. Figure 5(b) is the flow network
constructed for the entire South sector of the chip shown in Figure 4.
The nodes s and t are the source and sink, respectively. Note that the
sink t is connected from all bump pads; only three flow edges from
bump pads to t are shown here for brevity.

Bump pads

I/O pads

Intermediate

nodes

Tile nodes

Flow edges

(b)(a)

s

t

Figure 5. An example flow network construction. (a) Construction of tile and
intermediate nodes. (b) The flow network for the South sector of the flip-chip
shown in Figure 4. Nodes s and t are the source and sink, respectively. Note that
the sink t is connected from all bump pads; only three edges from bump pads to
t are shown here for brevity.

The congestion is controlled through the capacity constraint of tile
and intermediate nodes. Each tile/intermediate node is assigned the
capacity of the maximum number of nets that can pass through the
corresponding tile/interval without violating design rules. The capacity
of a tile (intermediate) node is denoted by Ct (Cd). The capacity of an
edge is set as the maximum number of nets that can pass through in the
edge’s direction. For example, for 2-pin nets, the capacity of an edge
connecting an I/O pad or a bump pad is set as 1, since only one net
can be attached to a pad. And the capacity of an edge connecting an
intermediate (tile) node is set as Cd (Ct).

The cost of an edge is set to be proportional to the Manhattan
wirelength of this edge. Consequently, minimizing the total cost would
lead to shorter total wirelength. With the capacity and cost settings, we
can apply the MCMF algorithm on the resulting flow network to obtain
global-routing topologies for all nets.

After global routing, detailed routing is performed to assign tracks and
decide the exact location of each net. Detailed routing is not elaborated
here, as global routing is more critical and thus we shall focus on it in
this paper.

b) Area-I/O Structure: The area-I/O structure is also popular
in real-world applications. Figure 6(a) illustrates an area-I/O flip-chip
instance, where the I/O pads are located everywhere inside the bump-
pad array, and thus the previous tile model is no longer applicable.

Fang and Chang [3], [4] proposed the first work on area-I/O free-
assignment routing problem. They modified the flow network and the
tile node capacity of the previous model in order to deal with the area-
I/O structure. In the previous flow network, as shown in Figure 5(b), the
directions of all edges are from outside to inside because all nets start
from the outer I/O pad rings and end at inner bump pad rings. In the area-
I/O structure, however, the nets can go any direction. So the flow edges
are constructed in all directions, as shown in Figure 6(b). Moreover, the
intermediate nodes are now constructed between every pair of adjacent
bump pads to avoid congestion, while in the previous flow network the
intermediate nodes are only constructed between pads of the same ring.

Another issue about the area-I/O structure is that the routing region
of a tile is apparently reduced when I/O pads are inside the tile.
Each I/O pad is punched through all redistribution layers, and thus the
corresponding routing resource is occupied. To handle this issue, they
also modified the capacity of a tile node to be the corresponding area
proportion inside the tile; that is, C′

t = ⌊Ct × (1− k)⌋, where k is the
area portion of the I/O pads in the tile.

2) Triangular-Tile Model: Fang et al. [10] first applied the De-
launay Triangulation (DT) and the Voronoi Diagram (VD) algorithm on

405

Bump pads

I/O pads

Intermediate

nodes

Tile nodes

Edges with

unit capacity

Edges with

capacity Ct or Cd

(a)

(b)

Figure 6. A sample area-I/O flip-chip instance. (a) The I/O pads lie within the
bump-pad array. (b) The flow network is now composed of edges of all directions.

flip-chip routing. Their work focuses on the unified-assignment problem,
and is introduced in Section IV. Note that although their work focuses
on the UA routing problem, they still adopt a triangulation, network-
flow-based algorithm to handle FA nets.

Liu et al. recently proposed a network-flow-based approach for
the peripheral-I/O free-assignment RDL routing problem using the
triangular-tile model. Their model is also based on DT and VD. Given a
set of points P , Delaunay triangulation applies a computational geometry
technique to triangulate the plane into triangular regions according to P .
DT has a special property that no point lies inside the circumcircle of
another triangle after DT. And the minimum angle of all the angles of the
triangles is maximized. Also given P = {p1, ...pn}, Voronoi Diagram
is a decomposition of a plane into Voronoi cells C = {c1, ..., cn}, that
any point inside ci is closer to pi than any other pj ∈ P, i ̸= j. VD is
the dual graph of DT and can directly be retrieved through DT.

They first computed the DT and VD of the set of points induced from
the bump polygons, the centers of I/O pads, and some control points on
the boundary of a chip. Figure 7(a) illustrates the corresponding DT and
VD for a portion of a sample peripheral-I/O flip-chip. They then used
VD as the flow network, and flow edges are constructed between VD
nodes and pads. See Figure 7(b) for the resulting flow network. It is clear
that the flow network formed by the VD edges well models the routing
“channels” between pads.

Bump pads

I/O pads

VD nodes

DT edges Flow edgesVD edges

DT nodes

Chip boundary

(a)

Chip boundary

(b)

Figure 7. An example of using Delaunay triangulation on a peripheral-I/O flip-
chip. (a) The Delaunay triangulation and Voronoi diagram of the flip-chip. (b)
Flow network constructed according to the Voronoi diagram.

The cost and capacity setting of the flow network is similar to the

previous models. The cost of an edge is given by its wirelength. And the
capacity of edges connecting source/sink is set to 1 so that only one net
can be attached to one bump or I/O pad. The cost of an VD edge is set
to be proportional to the length of the corresponding edge in the dual
graph DT. Generally speaking, each VD node represents the DT triangle
it resides in, and the capacity of the edge connecting the VD node and
its neighbor is set according to the length of the common edge of these
two DT triangles.

In practice, the directions of nets are limited to 0-, 45-, 90-, and 135-
degrees only. So in this work, the length of a DT edge is projected to
four lines of 0-, 45-, 90-, and 135-degrees and take the maximum of the
projection lengths to model the capacity of the corresponding VD edge.
Further, some very short VD edges are removed both for efficiency and
correctness, since those short edges are often improper routing channels
with inaccurate capacity.

B. Non-Network-Flow-Based Methods
Yan and Chen presented a non-network-flow-based approach for area-

I/O free-assignment RDL routing [14]. For the free-assignment RDL
routing problem, it is most crucial to assign each I/O pad to a bump pad.
While network-flow-based methods assign all pads concurrently through
the MCMF algorithm, this work adopts a different approach of assigning
I/O pads to bump pads.

The Voronoi diagram (VD) is applied to perform the assignment. The
method first constructs the VD of all I/O pads, and acquires the Voronoi
cell for each I/O pad. By the property of VD, each cell contains exactly
one I/O pad, but the number of bump pads inside the cell varies. If an I/O
pad’s cell contains at least one bump pad, the I/O pad is assigned to the
closest bump pad in the cell. Otherwise, the I/O pad remains unassigned
until the next iteration. Figure 8(a) illustrates a sample area-I/O flip-chip
instance. After the VD is constructed, the I/O pads are assigned to the
nearest bump pads in the cell, and only one I/O pad remains unassigned
after the first iteration.

(a) (b) (c)

Bump pads I/O pads Net assignmentVD edges

Figure 8. The pad-assignment procedure of Yan and Chen’s work. (a) After the
VD of I/O pads is constructed, each I/O pad is assigned to the nearest bump pad
in the VD cell. (b) The assigned pads are ignored, and the remaining pads are
repeatedly assigned by the same method. (c) After the initial assignment, some
pairs of assignments are exchanged (the dashed assignments) to reduce the total
wirelength and/or increase routability.

After each iteration, the assigned pads are ignored, and only unas-
signed pads are considered during the next VD generation. As shown in
Figure 8(b), the unassigned pad is assigned in the second iteration.

This procedure generates the initial assignment. Next, it adjusts the
initial assignment by exchanging assignment pairs to reduce wirelength
and removes crossing pairs. For example, the assignments of the two I/O
pads in the center of Figure 8(b) can be exchanged to achieve shorter
wirelength. The swapped assignments are denoted by dashed lines in
Figure 8(c).

After the pad assignment, the global-routing topology is decided for
each net by a global wire assignment step. Detailed routing is then carried
out by river routing followed by maze routing.

C. Remarks
The network-flow-based formulation is very popular for handling

the free-assignment RDL routing problem because it can determine the
global routes concurrently. More importantly, the flow running freely in a

406

network well matches the intrinsic nature of free assignment of nets in a
flip-chip. The most essential part of a network-flow-based algorithm lies
in a good tile model that the capacity of nodes and edges can accurately
represent the routing resource so that the design rules are not violated.

For the two tile models, the rectangular-tile model is naturally formed
with the regular structure of the bump-pad array, while the triangular-
tile model is formed with Delaunay triangulation. Generally speaking,
the triangular-tile model is more flexible for various flip-chip structures,
but it is less accurate in capacity modeling for layouts corresponding to
irregular triangles. The strengths and weaknesses of the two tile models
are further discussed in Section V.

III. PRE-ASSIGNMENT PROBLEM

For the pre-assignment problem, each I/O pad is assigned to a bump
pad according to a pre-defined netlist. Published approaches for this
problem can be classified into two categories: (1) ILP-based methods
and (2) non-ILP-based methods.

A. ILP-Based Method
For the pre-assignment problem, the network-flow-based methods

are no longer applicable because each I/O pad must be connected
to a predefined bump pad, which violates the nature of flows in a
network. Under the pre-assignment constraint, the problem becomes a
multi-commodity flow problem [1], which is known to be NP-complete
for integral flows. In this subsection, we introduce an Integer Linear
Programming (ILP) formulation to solve this problem.

Fang, Hsu, and Chang [6], [7] first address the peripheral-I/O pre-
assignment problem. Their global-routing algorithm consists of two parts:
(1) ILP network construction and (2) ILP formulation.

1) ILP Network Construction: A peripheral-I/O pre-assignment
flip-chip has the same pad structure as that shown in Figure 4, except
that each I/O pad is now assigned to a specific bump pad.

Similar to the free-assignment work in Section II-A1, an interval is
defined to be the segment between two adjacent bump pads or two I/O
pads, and a tile to be the rectangular region bounded by four adjacent
pads. However, here ILP nodes are constructed, instead of tile and
intermediate nodes.

Figure 9(a) illustrates an example with three nets, nets 1, 2, and 3.
Three I/O pads are assigned to two bump pads since nets 1 and 2 are
assigned to the same bump pad.

ILP nodes are constructed in a way that the nodes of outer rings are
propagated to inner rings, ring by ring. Figure 9(b) illustrates the ILP
network of nets 1. 2. and 3. The procedure of generating the network
in Figure 9(b) begins at the outermost ring, rp1 . No ILP nodes are
constructed in this ring since no other nets could possibly pass through
this ring. Then, the configuration of rp1 must be propagated to the next
ring, rp2 . There are three possible locations for net 1 to pass through rp2 :
(1) to the left of I/O pad 2, (2) between I/O pads 2 and 3, and (3) to
the right of I/O pad 3. Therefore, three ILP nodes representing net 1 are
constructed at these locations. As a result, rp2 now consists of five nodes:
< 1, 2, 1, 3, 1 >, as shown in Figure 9(b).

Next, it propagates the nodes on rp2 to the next ring. Similarly, each of
the five nodes in rp2 can pass through rb1 through three different locations.
So totally 15 ILP nodes are constructed for rb1.

Finally, propagating the nodes of rb1 to rb2, we find that all the three
nets are assigned to bump pads in this ring. Therefore, each net has
exactly one possible location in this ring—the assigned bump pad. No
additional ILP nodes are constructed in this ring, and the network in
Figure 9(b) is thus successfully generated.

2) ILP Formulation: After constructing the ILP network, we now
need to express the objective function and constraints in the ILP form.

We need the following notations for the ILP formulation:
• xi,j : 0-1 integer variable that denotes if a candidate segment j is

chosen in the global-routing path of net ni. xi,j=1 if the segment
j is chosen; xi,j=0, otherwise.

• ei,j : edge that denotes a candidate segment j of the global-routing
path of ni.

• L(ei,j): function that denotes the length of ei,j .

1,2 3

bi bj

32

1

Bump pads I/O pads ILP nodes ILP edges

1,2 3

bi bj1 2 1 3 1

32

1

1 1 1

1 2 1 3 11 2 1 3 1

Possible ILP

node positions

(a)

(b)

r1
p

r2
p

r1
b

r2
b

Ring

r1
p

r2
p

r1
b

r2
b

Ring

Figure 9. ILP node construction. (a) ILP nodes are constructed for an interval.
(b) The complete ILP network for nets 1, 2, and 3.

• W (ei,j): function that denotes the wire width of net ni.
• C(ei,j , ep,q): function that denotes the crossing between ei,j

and ep,q . If ei,j crosses ep,q , C(ei,j , ep,q)=1; otherwise,
C(ei,j , ep,q)=0.

• Pi(ei,j): function that denotes the connection of ei,j and I/O pad
pi ∈ P . If ei,j connects pi, Pi(ei,j)=1; otherwise, Pi(ei,j)=0.

• Din
k (ei,j): function that denotes the connection of ei,j and the input

side of ILP node dk ∈ D. If ei,j connects the input side of dk,
Din

k (ei,j)=1; otherwise, Din
k (ei,j)=0.

• Dout
k (ei,j): function that denotes the connection of ei,j and the

output side of ILP node dk ∈ D. If ei,j connects the output side
of dk, Dout

k (ei,j)=1; otherwise, Dout
k (ei,j)=0.

• Tm(ei,j): function that denotes the existence of ei,j in tile m ∈ M .
If ei,j is in tile m, Tm(ei,j)=1; otherwise, Tm(ei,j)=0.

• tm: constant that denotes the routing resource of tile m ∈ M .
• Hu(ei,j): function that denotes the existence of ei,j in interval

u ∈ U . If ei,j is in interval u, Hu(ei,j)=1; otherwise, Hu(ei,j)=0.
• hu: constant that denotes the routing resource of interval u ∈ U .
• si,p: constant that denotes the maximum allowance of the signal

skew between net i and net p. Each si,p is in the constraints F .
With these notations, the RDL routing problem can be formulated as

follows:

min
∑

ei,j∈E

L(ei,j)xi,j

subject to

C(ei,j , ep,q)(xi,j + xp,q) ≤ 1, ∀ei,j , ep,q ∈ E, (1)∑
ei,j∈E

W (ei,j)Tm(ei,j)xi,j ≤ tm, ∀m ∈ M, (2)

407

∑
ei,j∈E

W (ei,j)Hu(ei,j)xi,j ≤ hu, ∀u ∈ U, (3)∣∣∣∣∣∣
∑
j∈ni

L(ei,j)xi,j −
∑
q∈np

L(ep,q)xp,q

∣∣∣∣∣∣ ≤ si,p,∀si,p ∈ F, (4)

∑
ei,j∈E

Pi(ei,j)xi,j = 1, ∀pi ∈ P, (5)

∑
ei,j∈E

Dout
k (ei,j)xi,j =

∑
ei,q∈E

Din
k (ei,q)xi,q, ∀dk ∈ D, (6)

• The objective function is to minimize the total wirelength under
the constraints.

• Constraint (1) avoids the crossing between nets: if two edges cross
each other, at most one can exist.

• Constraint (2) is used to avoid the congestion overflow of a tile
since there may be too many edges passing through the tile formed
by four bump pads.

• Constraint (3) is used to avoid the congestion overflow of an
interval between two pads, similarly.

• Constraint (4) formulates the signal-skew constraint between two
nets, which is not of our main concerns here.

• Constraint (5) guarantees that at least one edge of the I/O pad pi
of net ni be chosen, that is, every net be routed.

• Constraint (6) is for the flow conservation; that is, the total flow of
the output side and the input side must be the same.

After solving this ILP formulation, global routing is completed, and
then detailed routing is applied to compete the routing.

Note that this ILP formulation is actually a modeling of the multi-
commodity flow problem. Constraint (5) assigns unit flow to each I/O
pad. Constraint (6) ensures flow conservation for each node. Constraints
(2) and (3) control congestion of tiles and intervals, just like the
capacity of tile and intermediate nodes in a free-assignment flow network.
Additionally, Constraint (1) forbids net crossing, and Constraint (4) limits
the signal skew.

B. Non-ILP-Based Methods
Unlike the ILP-based methods, some other works take advantage of

the regular structure of a flip-chip to develop more efficient algorithms
to solve the problem.

Lee et al. in [11] developed an algorithm based on net sequence
exchange for pad rings. The net sequence of a pad ring is defined as the
order of nets going outward from the ring. As shown in Figure 10(a),
the sequence of the upper I/O pad ring is < 1, 2 >, and the sequence
of lower bump pad ring is < 2, 1 >. If the pads are connected directly,
there will be a crossing between nets 1 and 2. To avoid crossing, we must
either exchange the I/O pad ring sequence to < 2, 1 > and detour net 2
(Figure 10(b)), or exchange the bump pad ring sequence to < 1, 2 > and
detour net 1 (Figure 10(c)). They observed that the number of detours
should be minimized, since detours consume more routing resources and
decrease routability.

d1

b1 b2

(a) (b) (c)

d2 d1

b1 b2

d2 d1

b1 b2

d2

n2n1

I/O pad

Bump pad

Net assignment

n1n2
n1 n2

Figure 10. Example of sequence exchange. (a) If I/O pads and bump pads are
connected directly, there will be a crossing. Therefore, the net sequence must be
exchanged (b) on the I/O-pad side or (c) on the bump-pad side to complete the
routing.

Based on this concept, it iteratively routes bump pads outwards, from
the innermost bump pad ring to the outermost bump pad ring. In each

iteration, two dynamic programming algorithms are applied to exchange
the sequence: (1) weighted longest common subsequence (Weighted
LCS) [2] and (2) maximum planar subset of chords (MPSC) [13]. Both
algorithms are applied to maximize the number of direct routes and
minimize the number of detoured nets.

An example of applying the LCS algorithm to minimize detoured nets
is shown in Figure 11(a): There are three I/O pads, d1, d2, d3 and three
bump pads, b1, b2, b3. di is assigned to bi, i = 1, 2, and 3. The input of
the LCS computation is the two sequences, < 1, 2, 3 > and < 3, 1, 2 >.
There are two maximal common subsequences, < 3 > and < 1, 2 >;
each subsequence represents a set of nets that can be directly routed
without net crossing. The resulting topologies of directly routing < 3 >
and < 1, 2 > are shown in Figure 11(b) and Figure 11(c), respectively.
It is clear that the result of routing < 1, 2 > directly is indeed better,
implying the preference for a longer LCS. In the original paper, the LCS
algorithm is extended to weighted LCS to further minimize wirelength
(weight).

d1 d2 d3

b3 b1 b2

d1 d2 d3

b3 b1 b2

d1 d2 d3

b3 b1 b2

seq.1=[1,2,3]

seq.2=[3,1,2]
subseq.=[3] subseq.=[1,2]

(a) (b) (c)

Figure 11. An example of the LCS computation. (a) Two sequences. (b) One
possible subsequence. (c) The other possible subsequence.

The nets not in the LCS must be detoured. These detoured nets might
cross with nets coming from the inner rings. The MPSC computation is
used to determine which nets should be routed directly, and which nets
should be further detoured. For example, as shown in Figure 12(a), net 3
is forced to be detoured in the previous LCS computation, and cross with
nets 4 and 5 coming from inner rings. To decide which nets should be
detoured further, a circle is constructed to enclose these three nets, and
each net is regarded as a chord. Then, the MPSC algorithm is applied
to get the maximum set of non-crossing chords (nets). In this example,
the MPSC is {4, 5}. Figures 12(b) and (c) illustrate that the topology of
directly routing nets {4, 5} and further detouring net {3} (Figure 12(c))
is better than the opposite (Figure 12(b)).

d1 d2 d3

b3 b1 b2

d1 d2 d3

b3 b1 b2

d1 d2 d3

b3 b1 b2

(a) (b) (c)

b4 b5 b6 b4 b5 b6 b4 b5 b6

chord set: {3,4,5} subset:{3} subset:{4,5}

Figure 12. An example of the MPSC computation. (a) The circle and the set
of chords (solid lines). (b) One possible subset. (c) A better subset with two
non-crossing chords.

Their experiments show that the algorithm not only has a huge speedup
over the previous ILP-based method, but also achieves better quality (due
to some inaccurate tile modeling in the ILP-based method). See Section V
for further discussions.

Yan and Chen [15] also proposed a pre-assignment routing algorithm
for peripheral-I/O flip-chip. Their work is based on a similar concept of
maximizing direct routes and minimizing detoured nets.

408

C. Remarks
ILP is a flexible method for solving the general flip-chip routing

problem. However, ILP by its nature is a brute-force approach that
basically tries every possible solution blindly. While it guarantees to
find the “optimal” solution in the solution space, it is typically very
time-consuming.

On the other hand, both the non-ILP-based methods observe and
utilize the regularity of the peripheral-I/O structure to develop more
efficient algorithms to minimize the number of detoured nets, thus
improving the routing result.

IV. UNIFIED-ASSIGNMENT PROBLEM

In modern designs, a routing instance could contain both free- and pre-
assignment nets. This is mostly caused by the designers pre-defining the
pin assignments for some crucial nets such as power and clock signals,
while leaving other less important nets unassigned. As a result, it is
desirable to develop a routing algorithm that can consider PA and FA
nets simultaneously, instead of handling PA and FA nets separately.

A. Triangular-Tile Model
Fang, Wong, and Chang proposed the first work for the area-I/O

unified-assignment (UA) RDL routing problem. As mentioned in Sec-
tion II, their method is actually the first work utilizing Delaunay triangu-
lation and the Voronoi diagram to handle flip-chip routing. Figure 13(a)
illustrates an area-I/O UA flip-chip instance, and the DT and VD results.
Note that all I/O pads are labeled with net ID’s, while only some of the
bump pads are labeled with net ID’s. An I/O pad whose net ID is also
labeled on a bump pad is a PA net, and must be connected to the bump
pad with the same ID. On the other hand, an I/O pad whose net ID does
not appear on any bump pad is a FA net, and can be connected to any
unlabeled bump pad.

Bump pads

I/O pads

VD nodes

DT edges

Flow edges

VD edges

2

1

4

1

3

5

(a)

2

1

4

1

3

5

(b)

Figure 13. An example of area-I/O UA routing. Note that all I/O pads are labeled
with net ID’s, while only some of the bump pads are labeled with net ID’s. (a) The
Delaunay triangulation and Voronoi diagram of the flip-chip, similar to Figure 6.
(b) Flow network constructed according to the Voronoi diagram.

After computing the VD as shown in Figure 13(a), we can get the
flow network by adding edges connecting VD nodes and nearby pads.
Figure 13(b) gives the resulting flow network. Note that this example
is the FA flow network, so only FA bump pads are connected. The PA
bump pads are connected to the flow network when we need to route
the PA nets.

The algorithm consists of four stages: (a) congestion estimation, (b)
PA nets routing, (c) FA nets routing, and (d) iterative improvement.

a) Congestion Estimation: Congestion estimation is performed
by simply applying the MCMF algorithm on the FA flow network,
like the network in Figure 13(b). In this stage, the FA nets are not
actually routed. However, the potentially congested nodes and edges are
identified.

b) PA Net Routing: The PA bump pads are first connected to the
flow network, then the PA nets are routed using maze routing. The costs
of nodes and edges, previously used by FA nets, are now raised much
higher, implying a penalty to potential congestion and wire crossing
between FA and PA nets.

c) FA Net Routing: After the PA nets are routed, we can now
actually route the FA nets. The previously routed PA nets are treated as
obstacles, and edges crossing these PA nets are assigned high costs to
prevent wire crossing. Again, the MCMF algorithm is applied to get the
routing results of FA nets.

d) Iterative Improvement: After the FA routing, there may be
some wire crossings between FA and PA nets. The reasons are that
there is no solution without wire crossings or the detours of the FA
nets are too long. Then we rip up and reroute the PA nets crossing the
routed FA wires. We also rip up and reroute the FA nets if the cost
of rerouting the PA nets is too high, or simply impossible. Finally, the
iterative improvement stage converges.

Their experiments show that considering PA and FA nets simultane-
ously achieves better results than considering them separately.

B. Remarks
This work provides a method to handle the area-I/O UA RDL routing

problem. It shows that the triangular-tile model can be used to handle
both PA and FA nets. Moreover, the FA part of the algorithm itself can
be extracted as an area-I/O FA routing algorithm. Their experiments also
show that the co-consideration of different issues are crucial when facing
problems consisting of multiple issues.

V. FUTURE RESEARCH DIRECTIONS

Although recent works have made significant progress in the flip-chip
routing problem, there are still many emerging challenges arising from
advanced technologies and designs. In this section, we present some
potential research directions for modern flip-chip routing.

A. Tile Modeling
Constructing a tile model that accurately represents the capacity of the

corresponding routing region is crucial for all network-flow and multi-
commodity-flow (ILP) based methods. However, most published works
still suffer from the accuracy problem in their modeling.

All published works set the capacity of each tile to be a single integer
(constant), denoting the maximum number of nets that can pass through
the tile without violating design rules. In practice, however, the number
of nets that can pass through a tile is affected by the routing configuration
inside the tile. Figure 14 illustrates how the capacity of a tile varies with
different routing configurations.

(a) (b) (c)

Bump pads TilesNets

Figure 14. Capacity of a tile varies with different routing configurations. (a)
Capacity is 2. (b) Capacity is 3. (c) Capacity is 4.

We also observe that the triangular-tile model is less accurate in
capacity estimation than the rectangular-tile one, since the boundary of a
triangular tile can be of any direction. This situation is even worse when
the triangle is slim and/or tilted.

Yan and Wong proposed a rectangular-tile model that can accurately
model the routing capacity for the escape routing problem [16]. This
model can be applied to flip-chip routing. However, it can only model
square tiles and thus cannot readily be used for area-I/O flip-chips.
Further, it does not handle obstacles and irregular structures to be
discussed later.

409

Generally speaking, the rectangular-tile model is more accurate than
the triangular-tile one in terms of net capacity. In contrast, the triangular-
tile model is more flexible and is not limited to a rectangular pad array
structure. It is thus desirable to develop a model that is both accurate
and flexible.

B. Obstacle Handling
Obstacles are unavoidable in flip-chip routing because of pre-placed

modules and/or pre-routed nets, as shown in Figure 15. In presence of
obstacles, the traditional rectangular-tile model may not be accurate since
the tiles might partially be blocked or cut in half. On the other hand, the
triangular-tile model can still be constructed by triangulating the chip
plane. As discussed earlier, however, the triangular-tile model suffers
from the accuracy problem in capacity estimation.

pre-placed module

pre-routed net

Figure 15. An example of pre-placed modules and pre-routed nets.

C. Irregular Structure Handling
In modern designs, the bump-pad array on a flip-chip is not always

regular. Figure 16 illustrates two kinds of irregular structures in practical
designs. Figure 16(a) shows a staggered bump-pad array, where the
inner bump pads are literally “staggered”. Figure 16(b) shows a special
structure that the inner I/O pad ring locates inside the bump-pad array.

For these irregularly structured designs, it is desirable to develop a
flexible algorithm that can handle not only known regular structures,
but also other irregular structures yet to come. We believe that a better
way to deal with these structures is to find the regularity within these
irregular structures, and apply algorithms based on simple, yet essential
concepts, like the pre-assignment non-ILP-based method [11] surveyed
in Section III-B.

(b)(a)

Figure 16. (a) Staggered bump-pad array. (b) Inner I/O pad ring structure.

D. Chip-Package-Board Co-Design
Advanced technologies have complicated the designs of chips as well

as packages and PCB’s. In order to improve the deign performance
and convergence among them, chip-package-board co-design is strongly
recommended by industry. Fang, Ho, and Chang published an ILP-
based routing algorithm for chip-package-board co-design [5]. Although
the algorithm guarantees to find an optimal solution, as expected, this
algorithm is time-consuming. It is thus desirable to explore the special
properties of chip-package-board co-design to develop more efficient
algorithms for this problem.

E. Electrical Effect Optimization
For high-speed applications, many electrical effects need to be con-

sidered. For example, it is important to minimize the difference of
the path lengths between two nets (i.e., signal skew), to minimize the
coupling length between two nets with different signal polarity (i.e.,
signal integrity), etc. Many more electrical effects need to be considered
in flip-chip routing for more advanced technologies yet to come.

VI. CONCLUSIONS

Routing is a critical step in modern flip-chip design. In this paper,
we have surveyed published techniques to tackle the flip-chip routing
problems with various combinations of flip-chip structures (peripheral-
I/O and area-I/O structures), tile modeling (rectangular and triangular
tiles), and pad assignments (free-, pre-, and unified-assignment between
I/O pads and bump pads). Common techniques (such as the network-
flow-based method and the ILP-based method) for generic structures as
well as ad hoc techniques (such as dynamic programming and greedy
heuristics) for particular structures are compared. Although significant
progress has been made in flip-chip routing research, modern flip-chip de-
signs need to consider more complex constraints and flexible structures,
inducing many more challenges and opportunities for future research on
tile modeling, obstacle handling, irregular flip-chip structure handling,
chip-package-board co-design, and electrical effect optimization for the
modern flip-chip routing problem.

VII. ACKNOWLEDGEMENTS

This work was partially supported by SpringSoft, Synopsys, TSMC,
and NSC of Taiwan under Grant No’s. NSC 98-2622-E-002-005-A2,
NSC 98-2221-E-002-119-MY3, NSC 97-2221-E-002-237-MY3, NSC
96-2628-E-002-249-MY3, and NSC 96-2628-E-002-248-MY3.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications, Prentice Hall, 1993.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,
2nd edition, The MIT Press, 2001.

[3] J.-W. Fang and Y.-W. Chang, “Area-I/O flip-chip routing for chip-package
co-design,” Proc. ICCAD, pp. 518–522, 2008.

[4] J.-W. Fang and Y.-W. Chang, “Area-I/O flip-chip routing for chip-package
co-design considering signal skews,” IEEE Trans. on Computer-Aided De-
sign, vol. 29, pp. 711–721, 2010.

[5] J.-W. Fang, K.-H. Ho, and Y.-W. Chang, “Routing for chip-package-board
co-design considering differential pairs,” Proc. ICCAD, 2008.

[6] J.-W. Fang, C.-H. Hsu, and Y.-W. Chang, “An integer linear programming
based routing algorithm for flip-chip design,” Proc. of DAC, pp. 606–611,
2007.

[7] J.-W. Fang, C.-H. Hsu, and Y.-W. Chang, “An integer linear programming
based routing algorithm for flip-chip designs,” IEEE Trans. Computer-Aided
Design, Vol. 28, No. 1, pp. 98–110, 2009.

[8] J.-W. Fang, I.-J. Lin, Y.-W. Chang, and J.-H. Wang, “A network-flow based
RDL routing algorithm for flip-chip design,” IEEE Trans. on Computer-
Aided Design, vol. 26, pp. no. 8, pp. 1417–1429, 2007.

[9] J.-W. Fang, I-J. Lin, P.-H. Yuh, Y.-W. Chang, and J.-H. Wang, “A routing
algorithm for flip-chip design,” Proc. ICCAD, pp. 753–758, 2005.

[10] J.-W. Fang, M.D.F. Wong, and Y.-W. Chang, “Flip-chip routing with unified
area-I/O pad assignments for package-board co-design,” Proc. DAC, pp.
336–339, 2009.

[11] P.-W. Lee, C.-W. Lin, and Y.-W. Chang, “An efficient pre-assignment routing
algorithm for flip-chip designs,” Proc. ICCAD, pp. 239–244, 2009.

[12] X. Liu, Y. Zhang, G. K. Yeap, C. Chu, J. Sun, and X. Zeng, “Global routing
and track assignment for flip-chip designs,” Proc. DAC, pp. 90–93, 2010.

[13] K. J. Supowit, ”Finding a maximum planar subset of a set of nets in a
channel,” IEEE Trans. on Computer-Aided Design, vol. 6, no. 1, pp. 93–94,
1987.

[14] J.-T. Yan and Z.-W. Chen, “IO connection assignment and RDL routing for
flip-chip designs,” Proc. ASP-DAC. pp. 588–593, 2009.

[15] J.-T. Yan and Z.-W. Chen, “RDL pre-assignment routing for flip-chip
designs,” Proc. GLSVLSI, pp. 401–404, 2009.

[16] T. Yan and M. D.-F. Wong, “A correct network flow model for escape
routing,” Proc. DAC, pp. 332–335, 2009.

410

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

