
New Placement Prediction and Mitigation Techniques for
Local Routing Congestion

Taraneh Taghavi
IBM, San Diego, CA

asadatt@us.ibm.com

Charles Alpert
IBM, Austin, TX

alpert@us.ibm.com

Andrew Huber
IBM,Hopewell Junction, NY
adhuber@us.ibm.com

Zhuo Li
IBM, Austin, TX

lizhuo@us.ibm.com

Gi-Joon Nam
IBM, Austin, TX

gnam@us.ibm.com

Shyam Ramji
IBM, Hopewell Junction, NY

ramji@us.ibm.com

ABSTRACT
Local routing congestion is becoming increasingly important
as complex design rules make local pin access the bottle-
neck for modern designs and routers. Since congestion anal-
ysis based on global routing does not model these effects,
routability-driven placement and physical synthesis fail to
alleviate local congestion. This work models routing conges-
tion at the placement level in order to apply local congestion
mitigation. We propose a local congestion metric that com-
putes a “routing-difficulty” score for every cell in the design
library. To disperse local congestion, we apply a suite of
detailed placement techniques called MILOR (Movement,
cell Inflation and Legalization, and Optimization within a
Row). Experimental results show that our techniques can
significantly improve routing quality on real industry designs
from 65, 45, and 32 nanometer technologies.

1. INTRODUCTION
Sub-wavelength lithography and design-for-manufactura-

bility requirements have caused the number of design rules to
increase exponentially with each technology generation. At
the 32nm node, sophisticated lithographic techniques require
wider wire tips, more space between long running adjacent
metal shapes, etc. [6, 8]. One industry routing expert [13]
estimates that the number of design rules has more than
tripled between the 45nm and 32nm nodes. These trends,
in addition to growth in the number and variation in metal
layers [1], has made the routing task much more difficult
with each technology node.

A router’s first phase is global routing. A global router
divides the routing region into small tiles and attempts to
route nets through the tiles such that no tile overflows its
capacity. Recent years have seen several new innovations
in global routing [3, 5, 10], motivated by the ISPD routing
contests [7]. After global routing, wires must be assigned to
tracks within each tile, followed by detailed routing which
must connect each global route to the actual pin on the cell.
To date, the design rule explosion has pushed all the routing
complexity directly onto detailed routing.

Not only is global routing the first routing phase, it also
serves to estimate congestion [1] for use by routability-driven
optimizations like floorplanning, placement, and physical syn-
thesis. However, basing these optimizations on feedback
from global routers is problematic since they do not cap-
ture local congestion effects. By the time timing is closed

and detailed routing is run, it is too late to easily mitigate
local congestion. The purpose of this work is to show that
local routing congestion can be modeled at the placement
level.

Complex design rules require sufficient space porosity in
the local metal layers above the transistor layer for the router
to access the pins. However, technology scaling and highly
optimized, area-efficient cell layouts have resulted in an in-
creacing amount of resource contention for pin-access rout-
ing. In other words, making pins too small and packing
“hard-to-route” cells too close together can create an unre-
solvable local routing hot-spot. These local congestion hot-
spots are not adequately modeled by today’s global routers.

A fundamental contribution of this work is a new cost
function that derives a routing-difficulty score for every cell
in the design library. We propose several new detailed place-
ment techniques, designed specifically to alleviate local rout-
ing congestion. We call our algorithm MILOR, an acronym
combining its three primary phases: cell Movement, cell
Inflation and Legalization, and Optimization within a Row.
We ran a router from an EDA vendor on designs from in-
dustry standard IBM 65, 45, and 32 nm cell libraries. Our
experiments show that on average MILOR reduces detailed
routing errors by 89% and router runtime by 58%.

2. IDENTIFYING HARD-TO-ROUTE CELLS
Consider the two different cell layouts from the 45nm li-

brary in Figures 1(a) and 1(b) for the same four-input logic
function. Both have a large output pin on the right side of
the cell, but the layout of the four input pins is remarkably
different. Cell C1 will likely be more difficult to route than
C2 because its pins are smaller and the alignment of pins
makes it more difficult to access vias. Staggered alignments
of the pins in C2 give the router more pin access choices.

(a) (b)

Figure 1: Pin shapes for two standard cells imple-
menting the same logic function.

This example illustrates that pin count and area alone
are insufficient to identify bad cells. We now present our

978-1-4244-8192-7/10/$26.00 ©2010 IEEE 621

cost function which consists of three components: (i) a pin-
existence cost PEC, (ii) a pin-area cost PAC and (iii) a pin-
resolution (or spacing) cost PRC. Let P (C) be the number
of pins of cell C, pi(C) be the ith pin of C, and A(p) be the
area of pin p. The pin existence cost is simply

PEC(C) = P (C) (1)

Clearly, more pins on a cell require more local routing re-
sources. In Figure 1, PEC(C1) = PEC(C2) = 5.

Larger pins enable more potential via insertion points for
pin-access. Therefore, PAC imposes a penalty for smaller
pins. Let θ be the technology defined minimum cell pin
width. We define the pin area cost as

PAC(C) =

P (C)X
i=1

2

“
2−A(pi(C))

θ

”
(2)

Observe that the cost goes down by a factor of two with
each unit increase in pin area. This exponential decrease in
penalty was chosen to reflect the routing difficulty imposed
by especially small pin shapes. In practice, when a pin’s
cost contribution is sufficiently small because the pin is large
(e.g., ≥ 4θ), its contribution to PAC can be ignored. In
Figure 1, PAC(C1) = 3.058 while PAC(C2) = 3.722, so the
cell on the right has higher area cost.

The final component of the cost function is the most com-
plex. The general principle is that pins packed together
limit the number of via configurations, and this is some-
what design-rule dependent. As a first order approximation,
we consider each pair of pins and if their collective bounding
box is small, this suggests that they have difficult pin access.
We define pin resolution cost as

PRC(C) =

P (C)−1X
i=1

P (C)X
j=i+1

2

„
2−

B(Pi(C),Pj(C))
3θ

«
(3)

where B(Pi(C), Pj(C)) is the area of the smallest bounding
box containing Pi(C) and Pj(C). Similar to PAC, the cost
decreases exponentially as the bounding box size increases.
The purpose is to have a sharp penalty for pairs of pins that
are tightly packed, as in Figure 1(a). When the bounding
box is large (e.g., ≥ 12θ), the contribution to PRC can be
ignored so that only pairs of pins that limit each others pin
access are counted. In Figure 1, PRC(C1) = 3.062 while
PRC(C2) = 0.935 which demonstrates PRC can capture
the effect of staggered spacing of the rightmost cell. Using
the above components, we define the cell cost K(C) for cell
C as

K(C) = α · PEC(C) + β · PAC(C) + γ · PRC(C) (4)

where α, β and γ are relative weights that can be adjusted
for each technology. In our experiments, we simply use α =
β = γ = 1. Since each standard cell has a small number
of pins (typically less than 10), K(C) can be computed in
constant time for a given cell C. We precompute K(C) for
each library cell and then store the result, making it cheap to
score the local routability for the entire design, as explained
in Section 3. Returning to our first example, K(C1) = 11.12
while K(C2) = 9.66 which matches our observation that C1

should be harder to route.

3. PROBLEM FORMULATION
Given a routability cost for each cell in the library, one

can aggregate the K(C) scores to quantify local congestion
across a design. If too many high-cost, hard-to-route cells

are packed too closely together, this will cause local routing
congestion. To capture this notion, we borrow the concept
from global routing of dividing the routing region into equal-
sized routing tiles. We generalize the cost of a tile T

K(T) =
X

∀Ci∈T

K(Ci)

A(T)
(5)

where A(T) is the area (in routing tracks) of a tile. Note
that this cost models cell area implicitly. Larger cells are
generally easier to route than smaller cells because they span
more routing tracks. Normalizing by the area of the tile gives
a value that is independent of tile size.

We compute local congestion metrics by sorting all the
tiles from highest to lowest cost. The max cost tile is the
max
∀T

K(T). One can similarly define the top 1%, 2% and

5% of tiles. The objective of the tile algorithms discussed in
Section 4 is to reduce all these metrics while minimizing the
wirelength degradation.

Two hard-to-route cells that are close together are poten-
tially problematic, so we seek to separate them. The degree
of separation increases the ability to route dramatically. If
S is the space between two adjacent cells C1 and C2 we wish
the cost to decrease exponentially with S so we propose

K(C1, S, C2) =
“
2−

S
2

” K(C1) + K(C2)

W (C1) + W (C2)
(6)

where W (Ci) is the width of cell Ci. The techniques de-
scribed in Section 6 seek to shift cells within a row to opti-
mize this metric.

4. TILE-BASED DETAILED PLACEMENT
An obvious way to reduce local congestion is to simply pick

a cell in a high-cost tile and move it to a low-cost one. The
challenge is to make these moves so that bins do not get over-
full, wirelength does not degrade significantly, and cells do
not move too far away from their original location (since that
can potentially distort timing closure). The cell movement
approach described in Subsection 4.1 borrows concepts from
the detailed placement literature [2, 4] to find good moves
and adapt them to our local congestion metrics.

At some point though, cell movement runs out of “good
moves” and can only alleviate local congestion at the ex-
pense of severe wirelength degradation (which could then
hurt global congestion). Thus, Subsection 4.2 applies a cell
inflation and legalization technique inspired by the works
of [9, 11, 12] that incrementally and locally spreads cells to
relieve global congestion in problematic regions.

4.1 Single-cell Movement (M) Phase
The basic idea for the M cell movement phase of MILOR

is to iteratively

1. Select a source tile Ts with high cost

2. Identify a cell C ∈ Ts to move

3. Move cell C to a low-cost target tile Tt

Since K(Ts) is the sum of the costs of the cells inside Ts,
K(Ts) is guaranteed to decrease since one of its cells is moved
to a different tile. If no good move for C can be determined,
another cell in Ts can be moved instead. A good move is
one where (a) sufficient space in Tt exists for cell C, (b) that
improves the maximum of K(Ts) and K(Tt), and (c) does
not significantly degrade wirelength.

The challenge is to find a cell move that does not degrade,
and perhaps even improves wirelength. It seems reasonable

622

to only consider moving the highest-cost cells, but those of-
ten are anchored by neighboring cells. For that purpose, the
bounding box B(C) which produces the minimum wirelength
solution for C is determined. Since B(C) often contains the
current location of C, we expand B(C) by ∆ on each side to
increase the search space for a new location for C. A larger
value of ∆ corresponds to exploring a larger solution space.
For each of N random locations (x, y) in the expanded B(C),
we compute the change in wirelength d(C, x, y) of moving C
to (x, y) and choose the best move.

The top 1% of highest-cost tiles are chosen to give the al-
gorithm a chance to make several moves before calling legal-
ization. Legalization never needs to make too many moves
to resolve overlaps since only moves to tiles with sufficient
space are permitted. We run detailed placement between
passes to recover wirelength increased by displacing a cell C
from its current location.

4.2 Inflation / Legalization (IL) Phase
When no easily-found, good cell moves remain, MILOR

deploys its IL inflation and legalization phase. Cell inflation
and legalization has been applied as an incremental tech-
nique to mitigate global routing congestion in CRISP [11]
and CROP [12]. These approaches first run global rout-
ing estimation to identify tiles that are problematic, inflate
cells in these tiles to produce overlaps, then remove overlaps
through legalization and detailed placement techniques. A
similar concept was also deployed by diffusion [9] which seeks
to dissolve over congested bins through cell spreading.

In this paper, with each iteration, a subset of cells in high-
cost tiles are inflated by at most 1% of the total cell area,
following the convention of [11]. The cells are selected from
the tiles with the highest 5% of K(T) values to force spread-
ing only for bad tiles. The cell C with the highest K(C) to
W (C) ratio is selected to bias inflation for smaller cells.

After cells are inflated, some overlaps will be created. Like
diffusion, the algorithm tries to spread cells by pushing them
apart as opposed to making big cell moves, until one can
legalize the design. Running a pass of wirelength-driven
detailed placement is an important step since the spread-
ing phase can severely degrade wirelength. However, this
phase can hurt local congestion since it may pack cells back,
but since cells remain inflated, iterations of the inflation and
spreading phase improve local congestion more than detailed
placement degrades it. When the design starts to get too
full, spreading and legalization have a difficult time finding
a solution that does not severely degrade wirelength, and
this causes the algorithm to exit. A major advantage to this
approach is that while it reduces K(T) for the highest cost
tiles, it also locally creates space around individual high-cost
cells within high-cost tiles. Experiments in Section 6 demon-
strate that the IL phase alone significantly improves router
performance.

5. OPTIMIZATION WITHIN A ROW (OR)
Optimization within a row is the final phase of MILOR

and is designed to attack local congestion at the cell-pair
level. The problem we solve is finding new locations for cells
within a row that preserve their relative order, while mini-
mizing the maximum cell-pair cost. Assume we are given a
row with cell coordinates 0 to L consisting of already placed
and ordered cells C1, C2, · · · , Cn. For each Ci, let X(Ci)
be the coordinate of the leftmost cell boundary. All widths
W (Ci) and locations X(Ci) values are integers, a reason-
able assumption since the widths of all cells in the available

libraries are actually multiples of the routing track width.
Let di denote the displacement of cell Ci from its original

location Xi (di can be positive, zero, or negative), making
the X(Ci) + di the new location. For two adjacent cells Ci

and Ci+1, let si(di, di+1) be the space between the cells, so

si(di, di+1) = X(Ci+1) + di+1 −X(Ci)− di −W (Ci)

Recall Equation 6 defines the cost between adjacent cell
pairs. Extending this definition, let Ki(di, di+1) denote the
local congestion cost of Ci and Ci+1 as a function of their
displacements. We have

Ki(di, di+1) =

(
K(Ci, si(di, di+1), Ci+1), if si(di, di+1) ≥ 0

∞, if si(di, di+1) < 0

(7)
Since Ki does not consider wirelength, we apply two tech-

niques to bound cell movement. First, each cell is forbid-
den from moving more than distance M (we use M = 10 in
practice) from its original location. Also, we seek to penalize
large cell moves, so we define a new function:

Fi(di, di+1) = Ki(di, di+1) + β · (d2
i+1) (8)

where β is a constant (we use β = 0.01) that reflects the
degree of penalty for cell movement. The cost Fmax for the
entire row is the maximum of each pair of cells in the row:

Fmax = max
i=1,··· ,n−1

Fi(di, di+1) (9)

A legal placement for the first cell requires (1) X(C1)+d1 ≥
0, and similarly, a legal placement for the last cell requires (2)
X(Cn)+dn+W (Cn) ≤ L. Legally placing cells C2, . . . , Cn−1

requires (3) X(Ci) + di ≥ X(Ci−1) + di−1 + W (Ci−1). Note
that one can also consider C1 and/or Cn to be fixed cells, in
which case we also require d1 = 0 and dn = 0.
Row Placement for Local Congestion Problem: Given
a legal placement of cells C1, . . . , Cn with widths W (Ci),
locations X(Ci), cost function Fi(di, di+1), and a max-dis-
placement constraint M , find cell displacement values di

with |di| ≤ M such that the new cell placement obeys con-
straints (1), (2), and (3) and Fmax is minimized.

In the next section, we use a dynamic programming for-
mulation to derive an optimal solution to this problem.

5.1 Dynamic Programming
Each cell Ci has 2M+1 possible locations between X(Ci)−

M and X(Ci) + M . Our approach processes cells starting
from C1 and explores cell pair locations for (C1, C2), fol-
lowed by (C2, C3), etc. Once the optimal placements for
C1, . . . , Ci−1 are computed for the 2M +1 possible values of
di−1, we compute the costs for each combination of di−1 and
di to obtain the 2M + 1 optimal placements for C1, . . . , Ci.
Let ti(di) denote the cost (Fmax) of the best placement so-
lution for C1, . . . , Ci for each possible di value. This value
is computed recursively. For bookkeeping purposes, define
γi(di) to be the displacement for cell Ci−1 in the optimal
sub-solution of C1, . . . , Ci with displacement di for Ci. Pseu-
docode for this algorithm is given in Algorithm 1. Steps 1
and 2 initialize the solution costs. The main algorithmic
computation takes place between Steps 5 and 7, where y it-
eratively stores the lowest cost solution of placing Ci at di

and trying all possible locations for Ci−1, and γi(di) stores
the corresponding best location for Ci−1. Steps 8-11 com-
pute the end case of the last cell in the row, and the solution
is recovered in Steps 12-13.

623

Algorithm 1 Optimization within a Row (OR)

� Input: Cells C1 to Cn in a row from 0 to L
� Output: Displacement di for each cell Ci

1 t1(d1) = 0, d1 = −M to M
2 ti(di) =∞, i = 2 to n, di = −M to M
3 for Cell Ci, i = 2 to n
4 for di = −M to M
5 for di−1 = −M to M
6 y = max(ti−1(di−1), Fi−1(di−1, di))
7 if(y < ti(di)) then ti(di) = y, γi(di) = di−1

8 Fmax =∞, q = 0
9 for dn = −M to M

10 if(tn(dn) < Fmax) then Fmax = tn(dn), q = dn

11 dn = q
12 for i = n downto 2
13 di−1 = γi(di)

Table 1: Design Characteristics

Tech Design # cells # nets
Density Area

(%) (mm2)

65nm
CKT1 162K 157K 67 2.62
CKT2 1502K 1045K 21 42.14

45nm
CKT3 357K 322K 57 12.81
CKT4 960K 1039K 53 31.55

32nm
CKT5 20K 12K 66 0.16
CKT6 6K 5K 51 0.08

6. EXPERIMENTAL RESULTS
To validate MILOR, we chose six placed designs from

logic blocks synthesized from 65, 45, and 32nm production
libraries, ranging from 6000 to over 1.5 million cells. All
these designs have been through detail placement, legaliza-
tion, circuit optimization (e.g. buffering) and timing opti-
mization steps. Design characteristics are shown in Table
1. Since 32nm is a fairly new technology node, only small
technology-flushing testcases were available.

To measure the effectiveness of local congestion mitigation
techniques we routed the results with a commercial router.1

The key router statistics we extract are as follows: Global
Overflow tells how many nets violate the global routing
constraints, which is a typical measure of global routing suc-
cess, but ignores local congestio. Routing Errors gives all
the violations (shorts, opens, spacing, same-net, . . .) after
routing and is the best indicator at how close the design
was to achieving a complete routing solution. Fast Errors
is the number of errors reported by a “light” version of de-
tailed routing which gives an indication of how many hard
detailed routing problems exist. Run Time is the total
router runtime on a 2.6 GHz Linux machine, while restricting
the router to a single thread for consistency in comparison.

To see the contribution of each component of MILOR, we
ran routing on four different placements, the first being the
initial placement of the design. Second, we ran just the in-
flation/legalization phase (IL). Third, we combine IL with
optimization within a row (OR) to obtain the ILOR algo-
rithm. Finally, we add the movement component to obtain
the entire MILOR algorithm. Results are shown in Table
2. As shown in this table, MILOR runs in a few hours or
less, even on the largest designs. On all designs MILOR run-
time is overshadowed by router runtime. On some designs,
like CKT1 and CKT2, the MILOR phases improve the global
overflow statistics, while on CKT3 they make them worse. It
is shown that all components of MILOR consistently reduce
routing errors, again supporting the notion that local con-
gestion is not well captured by overflows from global routing.
It can be seen that IL, ILOR, and MILOR are able to reduce

1Unfortunately, we cannot utilize academic routers for this
experimental methodology since they lack design rule knowl-
edge and model pins as points.

Table 2: IL, ILOR and MILOR routing results
Design Flow CPU Global Fast Route Router

(min) OV Errors Errors CPU (h)

CKT1

None 0 161 44620 43 15.7
IL 24 84 4657 22 3.5

ILOR 30 85 3793 0 3.4
MILOR 66 30 3715 0 2.3

CKT2

None 0 1810 53299 3703 47.5
IL 116 484 16669 319 14.3

ILOR 117 91 15226 144 9.5
MILOR 259 83 15659 164 12.2

CKT3

None 0 476 24761 3583 58.2
IL 54 677 7375 1726 49.5

ILOR 60 735 6552 1070 45.1
MILOR 120 684 5723 190 45.3

CKT4

None 0 429 167724 544 68.1
IL 126 411 41237 238 15.2

ILOR 129 420 38403 199 13.5
MILOR 294 430 28507 137 13.8

CKT5

None 0 0 40658 967 6.1
IL 0.6 0 33965 720 5.9

ILOR 1.2 0 33547 648 5.3
MILOR 1.8 0 29667 212 3.9

CKT6

None 0 0 12999 87 2.0
IL 0.6 0 6760 57 1.3

ILOR 0.6 0 6029 35 1.3
MILOR 0.6 0 5548 5 0.9

fast errors. Similarly, IL, ILOR, and MILOR all significantly
reduce total routing errors on average. MILOR produces an
average of 89.5% fewer router errors. All three approaches
drastically improve router runtime. Running MILOR before
routing reduces runtime by an average of 58.7%, a greater
than 2X speedup. A faster router runtime strongly indicates
that the router had an easier-to-solve instance to optimize.

7. CONCLUSION
In this paper, we proposed new metrics to measure lo-

cal routing congestion, demonstrating shortcomings with the
global routing model. We also presented a suite of detailed
placement algorithms, MILOR, that significantly improve
router errors. In future work, we seek to further improve
the local congestion metrics by closely studying the causes
of actual routing failures.

8. ADDITIONAL AUTHORS
Lakshmi Reddy (IBM, email: reddyl@us.ibm.com), Jarrod

Roy (IBM, email: royj@us.ibm.com), Gustavo Tellez (IBM,
email: tellez@us.ibm.com), Paul Villarrubia (IBM, email:
pgvillar@us.ibm.com) and Natarajan Viswanathan (IBM,
email: nviswan@us.ibm.com),

9. REFERENCES
[1] C. Alpert, Z. Li, M. Mo¡tt, G.-J. Nam, J. Roy, and G. Tellez, “What Makes

a Design Di¡cult to Route,” ACM ISPD, pp. 7–12, March 2010.
[2] A.E. Caldwell, A.B. Kahng adn I.L. Markov, “Optimal Partitioners and

End-Case Placers for Sandard-Cell Layout,” IEEE TCAD, vol. 19, 2000.
[3] Y.-J. Chang, Y.-T. Lee and T.-C. Wang, “NTHU-Route 2.0: A Fast and

Stable Global Router,” IEEE/ACM ICCAD, pp. 338–343, November 2008.
[4] D. Hill, “Method and System for High Speed Detailed Placement of Cells

within an Integrated Circuit Design,” US Patent 6370673, April 2002.
[5] M. Mo¡tt, “MaizeRouter: Engineering an E↑ective Global Router,” IEEE

TCAD, vol. 27, no. 11, pp. 2017–2026, 2008.
[6] S. Nassif and K. Nowka, “Physical Design Challenges beyond the 22nm

Node,” ACM ISPD, March, 2010.
[7] G.-J. Nam, C. Sze and M. Yildiz, “The ISPD Global Routing Benchmark

Suite,” ACM ISPD, pp. 156–159, 2008.
[8] K. Nowka, S. Nassif, and K. Agarwal, “Characterization and Design for

Variability and Reliability,” IEEE CICC, pp. 341–346, September 2008.
[9] H. Ren, D. Pan, C.J. Alpert, P.G. Villarrubia and G.-J. Nam,

“Di↑usion-based Placement Mitigration with Application on Legalization,”
IEEE TCAD, vol. 26, no. 12, pp. 2158–2172, 2007.

[10] J. Roy and I. Markov, “High Performance Routing at the Nanometer
Scale,” IEEE/ACM ICCAD, pp. 496–502, 2007.

[11] J. Roy, N. Viswanathan, G.-J. Nam, C. Alpert and I. Markov, “CRISP:
Congestion Reduction by Iterated Spreading During Placement,” IEEE/ACM
ICCAD, pp. 357–362, November 2009.

[12] Y. Zhang and C. Chu, “CROP: Fast and E↑ective Congestion Re↓nement
of Placement,” IEEE/ACM ICCAD, pp. 344–350, 2009.

[13] Personal communication with an industrial routing expert

624

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

