
Sequential Importance Sampling for
Low-Probability and High-Dimensional

SRAM Yield Analysis
Kentaro Katayama†, Shiho Hagiwara††, Hiroshi Tsutsui†, Hiroyuki Ochi†, Takashi Sato†

† Department of Communications and Computer Engineering, Kyoto University
Yoshida-hon-machi, Sakyo, Kyoto, 606-8501 Japan

E-mail: paper@easter.kuee.kyoto-u.ac.jp
†† Integrated Research Institute, Tokyo Institute of Technology
4259-R2-17 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan

Abstract—In this paper, a significant acceleration of estimating
low-failure rate in a high-dimensional SRAM yield analysis is
achieved using sequential importance sampling. The proposed
method systematically, autonomously, and adaptively explores
failure region of interest, whereas all previous works needed to re-
sort to brute-force search. Elimination of brute-force search and
adaptive trial distribution significantly improves the efficiency
of failure-rate estimation of hitherto unsolved high-dimensional
cases wherein a lot of variation sources including threshold
voltages, channel-length, carrier mobility, etc. are simultaneously
considered. The proposed method is applicable to wide range of
Monte Carlo simulation analyses dealing with high-dimensional
problem of rare events. In SRAM yield estimation example, we
achieved 106 times acceleration compared to a standard Monte
Carlo simulation for a failure probability of 3 × 10−9 in a six-
dimensional problem. The example of 24-dimensional analysis on
which other methods are ineffective is also presented.

I. INTRODUCTION

In sub-100nm technology, within-chip variation has unig-
norable impact on circuit performance. The random variation
caused by the fluctuations of number and placement of dopant
atoms makes circuit performance less predictable. The smaller
the gate area becomes, the more critical the random variation
becomes [1]. The worst-case analysis [2] usually leads to too
pessimistic result, thus statistical method is required to make
yield estimations reasonably realistic.

Monte Carlo (MC) method is one of the most robust
approaches to estimate the failure probability of SRAM cells
on which random variations have a serious influence. The
MC method is general, easy to implement, and achieves a
good accuracy with enough number of samples. However, the
number of required samples increases greatly when analyzing
a rare event accurately. In general, SRAM cells have a good
yield, so a method to accelerate the MC simulation with no
loss of accuracy is strongly required.

Importance sampling (IS) [3] is an efficient method for rare
event simulation. The IS is a variance reduction technique
in which alternative distribution is used to obtain a greater
number of rare event samples. Finding a good alternative
function is a key for successful IS. To determine such good al-
ternative distributions, several approaches have been proposed.
In [4], the norm minimization technique is proposed. This is
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Fig. 2. Comparison of proposed and conventional Monte Carlo analyses.

based on the theory of large deviations. They propose to shift
the original distribution to the coordinate of minimum norm
failure-sample found in separate preliminary analysis (Fig. 1),
since that coordinate has the largest contribution to the yield
estimation.

The preliminary analysis to find the minimum norm is non-
trivial and tends to require very large number of simulations
particularly in high dimensional problems. Here, the dimen-
sion is the number of variables considered in the MC analysis.
Because probability estimation can be started only after the
minimum norm sample is determined, SRAM designers have
to wait long until the shift vector is determined as well as IS
is converged.

As illustrated in Fig. 2, a large number of MC trials are
required for exploring the minimum norm sample. In case
the preliminary analysis fails to find the failure sample of
sufficiently small norm, convergence rate of the IS becomes
very slow. In addition, there is another difficulty in finding
the minimum norm sample in high dimensional cases. The
parameter-variable space that needs to be explored enlarges
exponentially to the number of dimensions. What makes the
situation worse is that conventional approaches use uniform
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Fig. 3. IS with the optimal alternative distribution.

sampling in a hypercube region, which is intractable in high
dimensional cases. In high dimensional problems, the number
of samples (and thus time) required for finding minimum norm
sample is significantly large. Reducing number of samples may
shorten exploration time, but at the risk of poorly selected shift
vector (i.e. the minimum norm sample of failure) candidate for
IS, which significantly slows down IS convergence.

For the above reasons, existing methods are limited to
problems has a small number of variables. [4], [5] can deal
with only six variables, the threshold voltages of six SRAM
transistors. [6] deals with 12-d analysis. [7] considers 403-
dimensional case, but it reduces the number of variables to
11 using primary components analysis. Higher dimensional
problems that simultaneously consider other sources of vari-
ability, such as channel-length, carrier mobility, and oxide
thickness variations, were impossible to solve because of the
difficulty in effectively determining failure regions and the
minimum norm samples. With our proposed method using se-
quential importance sampling (SIS), the samples appropriately
weighted according to the contribution to the total yield can
be autonomously and efficiently generated. Thus, it eliminates
lengthy pre-analysis and accelerates convergence as shown in
Fig. 2.

Another issue of the existing IS is that the samples generated
by an alternative distribution do not match well with the shape
of the failure region. Theoretically, the optimal alternative
distribution is the one that follows the failure distribution,
as shown in Fig. 3 using one-dimensional example. Such
a distribution accelerates the IS simulation most effectively
[3]. This will never be satisfied by just shifting the original
sample distribution, which is usually a Gaussian distribution.
The proposed method, on the other hand, generates samples
from the optimal distribution autonomously regardless of the
shape of the failure region and the number of dimensions.

Furthermore, the existing work [4] determines the sampling
regions based on the prior knowledge of circuit structure. In
SRAM analysis example, circuit symmetry is utilized. Our
method does not rely on any knowledge of circuit structure,
thus can be used for truly general problems.

In this paper, we propose an application of sequential
importance sampling (SIS) technique called particle filter,
which resolves all the above problems. The proposed method
is applicable to efficiently determining the shape of failure
distribution and simultaneously estimates the failure probabil-
ity. It also eliminates the pre-analysis so users are free from
tweaking parameters required to obtain failure region samples
having a small norm. In the proposed method, samples au-
tonomously approximate unknown failure distributions. With
obtained optimum samples as shown in Fig. 3, our method
achieves several orders of acceleration and is applicable to

high dimensional problems.

II. BACKGROUND

Our method, the sequential importance sampling (SIS), is
based on IS. Thus, in this section, we briefly review standard
MC and IS.

A. Monte Carlo method

The MC method is one of the most popular statistical
methods to estimate a probability. With a large number of
samples, estimation of the target probability becomes accurate.
The principle of the MC method is explained as follows. Let
us consider a target probability p which is the probability that
random variable X falls into a certain (failure) region A. The
probability p can be expressed as follows,

p = Pr(X ∈ A). (1)

The MC method generates N samples of X , that is Xi(i =
1, ..., N), to obtain pMC which is the estimation of p, the
true target probability. The estimated probability pMC can be
obtained by

pMC =
1
N

N∑
i=1

I(Xi ∈ A), (2)

where I(Xi ∈ A) is an indicator function defined by

I(Xi ∈ A) =
{

1 (Xi ∈ A),
0 (Xi /∈ A). (3)

Figure of merit ρ(pMC) is given by

ρ(pMC) =

√
Var(pMC)

pMC
, (4)

where Var(pMC) is variance of pMC at the end of N -sample
simulations. This is a barometer for the reliability of pMC. If
ρ(pMC) ≤ ε

√
log10 1/δ, we can declare that the estimate of

p has (1 − ε)100 % accuracy with confidence at least (1 −
δ)100 %.

The required number of samples N(ε, δ) to obtain (1 −
ε)100 % accuracy at (1 − δ)100 % confidence is given by

N(ε, δ) ≈ log10(1/δ)
pε2

. (5)

For example, to obtain accuracy of 90 % (ε = 0.1) and con-
fidence of 90 % (δ = 0.1), ρ(pMC) ≤ 0.1 should be satisfied,
and about 100/pMC samples are required. The standard MC
requires a large number of samples when estimating a rare
event.

B. Importance Sampling

The IS is a method to reduce the estimation variance
of standard MC. Replacing the original sample distribution
X ∼ f(X) by an alternative one X̃ ∼ g(X̃) in which
p(X̃ ∈ A) is high, more samples fall in the failure region.
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Fig. 4. Particle filter.

Reliable estimation can thus be obtained without increasing
N . pIS, the probability obtained by IS, is calculated as

pIS =
1
N

N∑
i=1

I(X̃i ∈ A)ω(X̃i), (6)

where ω(X̃i) = f(X̃i)/g(X̃i) is a weight function. The IS is a
powerful method to accelerate the MC simulation as described
in [4]. As stated earlier, to apply IS, determination of the
alternative distribution is important.

III. SEQUENTIAL IMPORTANCE SAMPLING

In our method, the particle filter is applied to explore
the failure region, and to simultaneously calculate the target
probability using IS. After a few iterations of the procedure
described in this section, failure probability can be obtained.
With the use of autonomously determined samples that follow
the failure region, significant speedup becomes possible.

A. Particle filter

The particle filter is one of SIS methods applicable to any
state-space model [8]. It is based on a set of samples (called
“particles”) which explore the failure region. The particles can
adaptively track the failure region regardless of the shape and
probability distribution of the failure region. The procedure of
the particle filter consists of three stages, (1) prediction stage,
(2) measurement stage, and (3) resampling stage, as shown
in Fig. 4. Each stage of the particle filter is summarized as
follows.
(1) At the prediction stage, the next position of each particle

is predicted by using its states in the past.
(2) At the measurement stage, the likelihood of each particle

is calculated, and the weight of the particle is updated
based on its likelihood.

(3) At the resampling stage, particles with higher weight are
replicated and the ones with lower weight are eliminated.
This is achieved by sampling with replacement consider-
ing the weights of the particles.

By iterating these steps, particles explore a given state-space
to find regions of importance following the target probability
distribution.

B. Proposed method
In our method, we initially place particles on an n-dimen-

sional sphere having a large radius to find failure samples.
Here, the central point stands for nominal state of parameters.
We propose to use a uniform distribution on a spherical surface
although any distributions can be used for initialization The
objective of the initial particle placement is to comprehen-
sively find failure regions. Once the failure region is found,
the particles are gradually moved to the regions of more
importance while repeating the above procedure as long as
the failure region is contiguous. Thus, the initial particles does
not have to have small norm. In case no initial particle falls
into the failure region, we set the radius of sphere larger and
explore again so that the particles are also moved to the failure
region.

At the prediction stage, particles are moved based on the
Gaussian distribution whose mean is the present position of
each particle. We use the Gaussian distribution whose mean
and sigma are Xi and σpred, respectively. The optimal variance
of the prediction distribution will be discussed in the next
section. When particles are at coordinates Xi(i = 1, ..., N),
the probability of a particle to lie at x by the prediction stage
is given by the following,

m(x) =
1
N

N∑
i=1

p(x|Xi). (7)

where p(x|Xi) is a conditional probability that Xi moves to
x. Weight function ω(x) is calculated by

ω(x) =
p(x)
m(x)

, (8)

where the target probability p(x) is estimated by Eq. (6).
At the measurement stage, the weights of particles are

updated by the following,

Wi = I(Xi ∈ failure)p(Xi), (9)

where Wi(i = 1, ..., N) is the weight of a particle i, and p(Xi)
is the original probability. Based on these weights of particles,
the resampling stage processes the particles.

In our method, we use running-average of estimated prob-
ability obtained in each predictions for overall probability
estimation.

pave(nt) =
1
nt

nt∑
j=1

pj
IS. (10)

Here, nt is the number of iterations and pi
IS is obtained

probability in j-th iteration step. We stop our algorithm when
ρ(pave(nt)) becomes smaller than 0.1. At the beginning of
analysis when particles are still moving to more important
regions, which we call burn-in period, estimation tends to be
far from true value. We start evaluating the convergence of
running-average ρ(pave(nt)) after

0.5 ≤ pave(nt + 1)
pave(nt)

≤ 2.0 (11)

is satisfied.
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Fig. 5. Density function of variable x. Fig. 6. Failure region. Fig. 7. Failure function f(x).
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TABLE I
STANDARD DEVIATIONS (σ) OF DEVICE PARAMETERS.

Load Driver Access
Vth 30 mV 22 mV 18 mV
Lg 1 nm 1 nm 1 nm
Tox 0.042 nm 0.040 nm 0.040 nm
µ0 5.4 mm2/Vs 5.0 mm2/Vs 5.0 mm2/Vs

C. Example

A graphical example of how the proposed method using
particle filter works in a two-dimensional problem is presented
in Figs. 5 to 8. x = (x1, x2) ∼ p(x) (illustrated in Fig. 5) is a
two-dimensional variable and the failure region defined here
is

x2 ≥ 0.04x2
1 + 4 or x2 ≤ −0.04x2

1 − 4, (12)

as shown in Fig. 6. Combining Figs. 5 and 6, the failure
function f(x) is defined as follows,

f(x) = I(x ∈ failure)p(x). (13)

In this case, f(x) looks like Fig. 7. This is the distribution
that we want to obtain the probability. In other words, the
failure probability is the integral (volume) of this function.
In this example, f(x) is also a weight function (Eq. (9)).
Initially, we place particles on the n-dimensional sphere (circle
in two-dimensional case) to seek the failure sample as shown
in Fig. 8(a). At the measurement stage, we update the weight
of particles by Eq. (9). The weights of particles in the failure
region have non-zero value and those in the pass region drop
to zero. In Fig. 8(b), the size of particles corresponds to
their weight. At the resampling stage, we update the position
of particles in proportion to the weights of the particles.

More number of particles are distributed around the particle
whose weight is large, and the particles whose weight is small
eventually disappear as shown in Fig. 8(c). At the prediction
stage, we move particles randomly as shown in Fig. 8(d) and
calculate the failure probability by using Eqs. (7), (8), and (6).
By iterating measurement, resampling, and prediction, we can
successfully estimate failure probability.

IV. EXPERIMENTAL RESULTS

The proposed method is applied to estimate yield of a six-
transistor SRAM cell shown in Fig. 9. The SRAM yield is
defined by the read noise margin (RNM) [9]. Transistors L1
and L2 are loads, D1 and D2 are drivers, and A1 and A2 are
access transistors, respectively. The 65-nm PTM model [10]
is employed as a transistor model. A circuit simulator, SPICE,
is used to calculate the RNM considering device-parameter
variations.

In this experiment, we consider the following two cases.
1) The threshold voltages (Vth) of all transistors are the

variables: the six-dimensional problem (6-d).
2) In addition to the above case, the channel-lengths (Lg),

the oxide thicknesses (Tox), and the carrier mobilities (µ0)
are varied (24-d).

The variables are considered to be all independent, and follow
Gaussian distributions, although interactions between variables
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Fig. 10. Failure probability estimation for 6-d. Fig. 11. Failure probability estimation for 24-d. Fig. 12. Estimated probabilities of 20 trials.
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(a) Estimated probabilities. (b) Minimum norm samples.
Fig. 15. Comparison with existing method [4].

(such as channel-length and threshold voltages) are automati-
cally considered in the circuit simulation.

Standard deviations (σ) of device parameters used in our
experiments are shown in Table I. The gate length is 65 nm
for all transistors. The oxide thickness is 1.95 and 1.85 nm for
load and the other transistors, respectively. The carrier mobility
is 57.4 and 49.1 mm2/Vs for the load transistors and the others,
respectively. The supply voltage VDD is 1.0 V.

A. Read failure probability in various dimensions

The read noise margin (RNM) is a measure for evaluating
read stabilities of an SRAM cell [9]. The RNM is the max-
imum noise level under which the read operation succeeds.
In sub-100 nm process, small RNM due to various device
variations is a serious concern for optimizing an SRAM cell.
The RNM is calculated by measuring the side of the largest
square that can be inscribed between voltage transfer curves
of VR and VL using DC analysis. When the RNM of a cell is
negative, the cell is considered as read-failure. The proposed
method is applied to estimate failure rate of the SRAM cell
under device parameter variations of different dimensions.

Figs. 10 and 11 show estimated failure probabilities using
the proposed method for 6-d and 24-d cases. The number of
particles is 500 and 2,000 for 6-d and 24-d cases, respectively.
The x-coordinate of the left-most point in the graph shows
the number of initial particles. We stop our algorithm when
ρ(pave(t)) < 0.1. This means that the algorithm stops when
accuracy of 90 % (ε = 0.1) and confidence of 90 % (δ = 0.1)
is achieved.

At the beginning of the analysis, short burn-in period is
observed. After a few iterations when the particles are settled,
a good estimation of the very low failure probabilities is
obtained. In particular, in the 6-d case, the probability is
as low as the order of 10−9. With our method, very good

estimation is obtained by 104 SPICE-runs. This is a significant
improvement compared with standard MC, whose analysis
requires more than 1010 SPICE-runs. Our analysis is already 6
orders magnitude faster than the standard MC in the 6-d case.
The speedup is even larger for higher dimensional cases, while
not even a run-time estimation is possible for standard MC.

As expected, the failure probability increases as we increase
the number of variables, as shown in Fig. 11. This is quite
understandable because adding variation sources deteriorates
the noise margin. Even in the high-dimensional cases, the
proposed method achieves very stable and thus successful
estimation with much less than 106 SPICE-runs.

B. Accuracy of the proposed method

In order to evaluate the stability and accuracy of our method,
we repeated the estimation in 6-d case for 20 times. The
result is shown in Fig. 12. In this experiment, the number
of particles N and the sigma used in the prediction stage
σpred is set 500 and 1.0σ, respectively, where σ is the device
parameter variation. We stopped each trial when ρ(pave(t))
is less than 0.1. In each trial, estimated probability is about
3.16 × 10−9. When the number of SPICE-runs is not enough
large, estimated probability has a variation. However, it can
be seen that the accuracy could be improved by increasing the
number of SPICE-runs. Note that the number of SPICE-runs
is in proportion of the number of iterations and particles. In
this case, obtained probability differs by at most 10 % from
the average. This result corresponds with the stop criterion.

C. Optimization of our method

In the proposed method, the number of samples for es-
timation relies on the parameters of the particle filter —
particularly on the choice of prediction function. In Fig. 13,
the relationship between σpred, sigma of Gaussian distribution
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used in the prediction stage, and the number of SPICE-runs is
shown. The number of particles is again 500. If σpred is too
low, particles move slowly. In other words, particles spend a
lot of simulations for exploring the failure region. If σpred is
too large, m(x) in Eq. (7) greatly varies so failure probability
obtained in each prediction stage fluctuates. According to
Fig. 13, the choice of σpred is relatively insensitive to the total
number of circuit simulations at around 1.5σ, The automatic
determination of σpred is one of our future works.

The number of particles also affects the estimation effi-
ciency. The relationship between the number of particles and
the number of SPICE-runs when σpred = 1.0σ is shown in
Fig. 14. When the number of particles is small, IS returns
unreliable values because of insufficient number of random
samples. As a result, running-average of estimated probability
requires many samples for convergence. When the number
of particles is large, IS returns reliable values so the number
of iterations for convergence can be small. Regardless of
it, however, the number of required samples increases when
particles are too many. So there is an optimal point in number
of particles. Compared with the effect of σpred, the number
of particles is less insensitive to the total number of circuit
simulations. The automatic control of the number of particles
is another future work.

D. Comparison with existing method

In Fig. 15(a), the number of SPICE simulations to estimate
probability in 6-d case is compared with the existing method.
The dashed-dotted line and dashed line are the results of the
existing norm minimization method [4], where 10,000 and
100,000 samples are used in the pre-analysis, respectively.
In the case of 10,000 samples (dashed-dotted line), due to
very slow convergence caused by the sub-optimal shift-vector
selection, the failure probability lies mostly out of the plotted
range.

The existing method [4] has difficulty in finding a good
minimum norm sample in their pre-analysis when the number
of samples are small. In this method, the hypercube is sampled
by uniform distribution, which becomes significantly ineffi-
cient when estimating low probability cases. Increasing the
dimensions also exponentially enlarges the exploration space,
thus the pre-analysis of the norm-minimization technique is
inapplicable to the cases larger than 6-d. The 6-d is the only
case that we could compare convergence rate. As can be seen
in the figure, our proposed method finishes much earlier than
the norm minimization starts IS. The time required for the pre-
analysis in norm minimization technique is more than enough
to obtain good estimation in our method.

This fact can be observed from a different angle. In
Fig. 15(b), we compare the minimum norm obtained in our
method, and the existing method. The particles (number of
total SPICE-runs) in our method and the samples for pre-
analysis of norm minimization are equivalent (500) for fair
comparison. The graph shows the maximum, average, and
minimum of 30 trials of the minimum norm sample found in
the respective analyses. Our method always finds a good min-

imum norm sample, which shows the particles appropriately
track important failure region, although finding the minimum
norm is not the primary objective of our method. In the case
of the existing method, it is impossible to judge whether a
good alternative distribution for IS is chosen. In our method,
alternative distribution changes in each iteration and we calcu-
late the running-average of the probability estimated by each
distribution. Appropriateness of the alternative distribution is
indirectly observed by the convergence of failure probability.

V. CONCLUSIONS

We proposed an SIS method for accelerating the MC
simulations. This method is applicable for yield estimation to
low-probability and high-dimensional analyses. The particle
filter autonomously detects the failure region and particles
track the shape of failure distribution, so that IS becomes
most efficient. Our method is verified through experimental
analysis of SRAM yield. In the low-probability failure analysis
of 10−9 orders, over 106× speedup compared to standard MC
method has been achieved. Higher dimension problems up to
24 dimensional problems are also efficiently solved.
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