
Engineering a Scalable Boolean Matching
Based on EDA SaaS 2.0∗

Chun Zhang
State Key Lab of ASIC and
System, Fudan University

Yu Hu
Electrical and Computer
Engineering Department,

University of Alberta

Lingli Wang
State Key Lab of ASIC and
System, Fudan University

Lei He
Electrical Engineering

Department, UCLA

Jiarong Tong
State Key Lab of ASIC and
System, Fudan University

ABSTRACT
Software as a Service (SaaS) 1.0 signifcantly lowers the in-
frastructure and maintenance cost and increases the accessi-
bility of the software by hosting software via the web. Com-
pared with SaaS 1.0, SaaS 2.0 is more flexible since it lever-
ages software tools from both server and client sides with
closer interaction between them. The SaaS 2.0 paradigm
provides new opportunities and challenges for EDA. In this
paper, we take Boolean matching, one of the core sub algo-
rithms in logic synthesis for field programmable gate arrays
(FPGAs), as a case study. We investigate the advantages
and challenges of implementing a scalable EDA algorithm
under SaaS 2.0 paradigm from a technical perspective. We
propose SaaS-BM, a new Boolean matching algorithm cus-
tomized to take full advantage of the cloud while address-
ing concerns such as security and the internet bandwidth
limit. Extensive experiments are performed under a net-
worked environment with concurrent accesses. Integrated
into a post-mapping re-synthesis algorithm minimizing area,
the proposed SaaS-BM is 863X times faster than state-of-
the-art SAT-based Boolean matching with 0.5% area over-
head. Compared with a recent Bloom Filter-based Boolean
matching algorithm, our proposed SaaS-BM is 53X times
faster on large circuits with no area overhead.

Categories and Subject Descriptors
B.6.3 [Hardware]: Design Aids—Automatic Synthesis; C.2.4
[Computer Systems Organization]: Distributed Sys-
tems—Client/Server

General Terms
Algorithms, Design, Experimentation, Performance

∗This work is partially funded by National 863 Program of
China (2009AA012201), Shanghai Pujiang Program 2008,
NSERC Discovery Grant and ISTP Canada. Address com-
ments to llwang@fudan.edu.cn and lhe@ee.ucla.edu.

Keywords
Boolean Matching, Electronic Design Automation (EDA),
Cloud Computing, Software as a Service, Field Programmable
Gate Array (FPGA)

1. INTRODUCTION
With the cloud computing era approaching, the software in-
dustry has encountered disruptive changes. On top of the
cloud computing model, software-as-a-service (SaaS) [1], a
new model of software development, has been adopted in
the electronic design automation (EDA) industry [2], pio-
neered by companies including Xuropa and PDTi [3]. The
SaaS model allows the software vendors to develop, host and
operate software for customer use. Rather than purchase
the hardware and software to run an application, customers
need only a computer or a server to download the applica-
tion and internet access to run the software. For EDA users,
SaaS greatly reduces maintenance and infrastructure costs.

In the SaaS 1.0 paradigm, through internet the vendor
provides systematic, secure remote access to an EDA tool
without any installation, setup or teardown by the user. The
tool is available on demand and provides for an ideal envi-
ronment within which to carry out many of the tool adop-
tion phases. In the past three years, the SaaS 1.0 model has
evolved to SaaS 2.0, where a vendor provides the tool en-
gine (as opposed to an entire tool) through web service and
makes the server-side tool and clients more interactive. For
example, Think Silicon provides IPGeniusTM [4] as a web
service to generate IP cores from different configurations.

The paradigm shift to SaaS 2.0 provides new opportuni-
ties and also poses new challenges to researchers of EDA
community. The entire conventional EDA flow needs to be
examined in order to take full advantage of SaaS 2.0. In
this paper, we perform a case study on the implementation
of a SaaS 2.0-based Boolean matching for FPGA synthesis
to investigate the effectiveness of such a paradigm shift in
logic synthesis.

Boolean matching is a widely used technique in field pro-
grammable gate array (FPGA) technology mapping, post-
mapping re-synthesis and architecture evaluations. As it is
called many times as a sub-routine in those applications,
Boolean matching has been shown to be one of the most
time-consuming sub-problems in combinational logic syn-
thesis [12]. In this paper, we proposed SaaS-BM, a new
Boolean matching algorithm deployed under the SaaS 2.0

978-1-4244-8192-7/10/$26.00 ©2010 IEEE 750

paradigm, which is hundreds of times faster than the state-
of-the-art SAT-based Boolean matchers [14] for FPGAs in
the literature.

To verify the effectiveness of the proposed SaaS-BM, we
integrate it into a post-mapping re-synthesis [15] application
minimizing area. Tested on a collection of three different
benchmark sets, the re-synthesizer geared with the proposed
SaaS-BM under 100 client accesses is 863X times faster than
the one with the SAT-based Boolean matching [14], with
only 0.5% more area (in terms of number of LUTs). Com-
pared with a recently proposed Filter-based Boolean match-
ing [17], SaaS-BM servicing 100 clients concurrently is 53X
times faster for the largest benchmark set circuits with no
area overhead.

The reminder of the paper is organized as follows. Section
2 presents preliminaries. Section 3 depicts the main frame-
work of the proposed SaaS-based Boolean matcher. Section
4 describes implementation details of the scalable Boolean
matching at server side, and section 5 analyzes the perfor-
mance issues under a networked environment. In section
6, we present experimental results by integrating SaaS-BM
into a post-mapping re-synthesis algorithm minimizing area.
Section 7 concludes the paper.

2. PRELIMINARIES
2.1 Boolean Matching
For a programmable logic block (PLB) H that consists of
various configurable devices (e.g., LUTs or macro-gates),
and a Boolean function f , Boolean matching (BM) either
finds a set of configurations for H to implement f , or con-
cludes that H cannot implement f . Ideally, an FPGA Boolean
matcher should be scalable to large Boolean functions and
complex PLB structures in terms of both runtime and mem-
ory, and be flexible with regard to reusability across different
PLB structures.

Most of the existing Boolean matching algorithms are
based on function decomposition [16] or on canonicity and
Boolean signatures [11]. However, the function decomposi-
tion technique lacks flexibility and needs to be customized
for different PLB architectures, and canonicity-based ap-
proaches can only handle functions of limited input size.
Due to significant improvement of the modern SAT solvers,
SAT-based Boolean matching [15] has also been proposed.
While SAT-based Boolean matching (SAT-BM) offers great
flexibility in handling various PLB architectures, the compu-
tational complexity prevents its applications to large PLBs,
even with numerous improvements [14].

Recently, a Filter-based Boolean matching technique was
proposed [17]. Instead of computing the Boolean matching
on-the-fly, the results are pre-computed and stored in a li-
brary, i.e., a lookup table. Bloom Filter is used to implement
the library. However, it has two main disadvantages. First,
due to its probabilistic nature, Bloom Filter has false pos-
itives (e.g., a function can be falsely claimed in the library
while it is actually not). Secondly, function implementa-
tions (e.g., LUT configurations) are not kept in the library.
In either case, an explicit Boolean matching computation
is still needed to double-check a function’s existence and to
generate correct implementations.

3. OVERVIEW OF SAAS-BM
The proposed SaaS-BM is based on the traditional client/server
model. Instead of performing the Boolean matching compu-
tation at each EDA user’s local machine, this time-consuming

operation is provided as a service at the servers provided by
the EDA tool vendors.

On the server side, a scalable Boolean matcher is cus-
tomized for the cloud computing paradigm where the stor-
age is a relatively cheap resource. Instead of performing
the computation of each Boolean matching instance on-the-
fly, we use a table lookup-based approach similar to [17].
Matching results are pre-computed and stored in a key/value
database, which is indexed by a Boolean function and each
function is associated with its implementation (i.e., configu-
rations of programmable devices). When the server receives
a Boolean matching request for a given function from the
client, a database query is performed. If the function is
found in the database, the corresponding implementation
associated with this function is returned to the client. Oth-
erwise, a null is returned indicating the given function is not
implementable.

From the client’s perspective, the Boolean matching is
simplified to a request and reply interaction with server clus-
ters through Internet. Once a Boolean matching instance
is formed locally during any EDA application, client will
send the request and then wait for the response from the
server. To improve performance, the user-end contains a
cache implemented by Bloom Filter [17]. As the Boolean
matching operation is encapsulated as a black-box opera-
tion performed remotely, minor changes on existing EDA
tool flows are required.

The proposed SaaS-BM has the following attributes, which
make it particularly suited to be deployed in the cloud.

• On the server side, as the number of Boolean match-
ing request increases, the efficiency of the database
query increases due to the cache effect of the key/value
database.

• Our SaaS-BM addresses the security concern in the
design outsourcing. To use our SaaS-BM service, the
end-users of the EDA tool do not need to expose their
entire designs to the cloud. Instead, the client-side ap-
plication decomposes the problem into Boolean func-
tions, from which a complete design is hard to reverse-
engineer.

• SaaS-BM is scalable to large-scale clouds due to the
simplicity of the data structures in the key/value data-
base.

4. BOOLEAN MATCHING AT SERVER SIDE
4.1 Selection of Storage Medium
Database provides a uniform and efficient method for man-
agement of massive data sets. Over the past 30 years, rela-
tional databases have dominated the data storage and man-
agement application domains. While relational databases
scale well on a single server node, their complexity becomes
overwhelming when one tries scaling to hundreds or thou-
sands of nodes in the cloud [5].

In SaaS-BM, we propose to build the server-side lookup
table with the key/value database techniqdue [6][5]. Unlike
a relational database, schemas and relationships between ta-
bles are not explicitly defined in a key/value database, and
therefore it is more flexible when scaling to larger number
of server nodes. Both functionalities (i.e., key) and their
implementations (i.e., value) for frequent Boolean functions
extracted from benchmark circuits are pre-calculated, stored

751

Table 1: Library and Testing Set

Library Set
apex2, des, ex1010, pdc, spla

clma, elliptic, frisc, s38417, s38584

Testing Set
alu4, apex4, bigkey, diffeq, dsip
ex5p, misex3, s298, seq, tseng

and indexed in this database. In this way, all SAT-checking
time is eliminated, and the matching time is only limited by
database querying performance.

In our application, we choose Berkeley DB (BDB) [6],
an efficient open-source implementation of the key/value
database. Besides the aforementioned scalability of the key/
value database in the cloud, we favor it over the relational
databases due to the underlying property of our data. Specif-
ically, we have simple data relationships (i.e., functions with
corresponding implementations) and stable query requests
(i.e., lookup implementations for given functions), which
match directly with the BDB’s design perspective. By orga-
nizing data in a single two-column table implemented with
basic data structures such as hash-table or balanced search
tree, BDB provides users with extremely high performance
and the flexibility to tune for different applications. In ad-
dition, BDB is capable of managing giga-bytes to tera-bytes
of data, while the amount of data which can be kept is only
limited by hardware.

4.2 Generation of Library
Instead of performing a brute-force enumeration for all K-
input functions, which is impossible for large functions (e.g.,
9-input functions), we propose to generate the matching li-
brary using frequently appeared functions extracted from a
selected group of benchmark circuits. As will be shown in
Table 2, Boolean functions in real circuits exhibit repetitivity
of occurrence across different benchmark circuits, and there-
fore we can apply a matching library extracted from one set
of circuits to new circuits.

In our experiments, the functions are extracted from 10
MCNC benchmark circuits, which is called the library set in
Table 1. To test the effectiveness of our library, functions
extracted from another 10 circuits in MCNC benchmark cir-
cuits (testing set) are checked for their existence against the
library.

The detail library generation process works similar to the
one proposed in [17]. For frequently appeared functions
with up to 9 inputs extracted from the library set circuits
using the ABC tool [7], their implementability is checked
against certain PLBs using SAT-BM [14], and correspond-
ing matching results (e.g., LUT configurations) are stored
into database. Note that in our experiment, we adopt PLB
structures shown in Figure 1, as they’ve been proven to be
effective in reducing area at post-mapping re-synthesis [15].

Figure 1: PLB structures used for library generation

Top 2-million frequently appearing functions are checked
by SAT-BM [14]. For each function, we keep up to 10,000
of its input permutations into the library as well. Overall,
there’re 3 billion records (i.e., functions with corresponding

Table 2: Coverage of the generated library. I-hit
stands for implementable functions found in the li-
brary, so is the case of N-hit for non-implementable
functions. I-miss and N-miss lists the number of
functions not found in the library.

Functions
Type 7-input 8-input 9-input
I-hit 80,460 69,886 48,048

I-miss 2,219 3,465 4,851
I-Coverage 97.3% 95.3% 90.8%

N-hit 11,621 15,680 20,022
N-miss 5,700 10,969 27,079

N-coverage 67.1% 58.8% 42.5%

implementations) stored in the library, with the size of 250
GigaBytes. It takes about two weeks to generate the library
on a Linux server with Quad-Core Intel Xeon 2.33GHz CPU.
Note that other Boolean matching (other than SAT-BM)
algorithms, e.g., [16], can also be employed to perform the
library generation for homogeneous PLBs.

Table 2 illustrates the effectiveness of the SAT-building
method, where the coverage for 100,000 functions randomly
extracted from testing set circuits are tested. A function is
said to be covered if its matching result can be found in the
library1. As shown in Table 2, over 90% of implementable
functions are covered. Following these observations, the
Boolean matching problem on the server side can be reduced
as follows: Given a Boolean function, we query its existence
in the database. If it is found, the correct implementation
is fetched; otherwise, we can regard it as non-implementable
without significant quality degradation on existing EDA ap-
plications.

4.3 Key Selection and Compression
The length of the representation for a Boolean function has
a tremendous impact on database query performance, as it
is used as the key to index the data record. In our experi-
ment, we compare two commonly used representations of a
Boolean function, i.e., truth-table and BDD. Interestingly,
we found that for functions extracted from library set cir-
cuits, the length of BDD representation grows slowly than
the truth-table representation. In addition, there exist spe-
cialized BDD compression algorithms [13], where each BDD
node can be represented using only 1 to 2 bits. As a result,
we decide to choose BDD as function representation in our
method.

In our library, BDD is dumped out into Buddy format [8],
where 4 integers (i.e., node-id, node-level, low-edge and high-
edge) are needed to describe each BDD node. In most cases
only one byte is needed for each integer in binary format,
since normally there are less than 256 nodes in the diagram.
To further reduce the space requirement, we compress the
dumped output with a common compression package – Zlib
[9]. Note that we can choose different compression methods
depending on the compression time and query performance
trade-off. Table 3 shows the performance of the library built
in section 4.2. The second column presents compressed key
size2. The third column of Table 3 lists the library query

1While actually only implementable functions for given
PLBs need to be kept, however, for the purpose of com-
pleteness, the coverage for non-implementable functions are
also tested in this experiment.
2Although truth-table representation have smaller size for
functions with less than 9 inputs, we keep using BDD be-
cause it accommodates better to larger functions, which

752

Table 3: Performance of library queries. Query time
is calculated as by averaging the speed of 100,000
functions randomly selected from testing set

Compressed Size (bytes) Query time (us)
2-input 22.04 8.58
3-input 29.52 10.04
4-input 35.99 10.29
5-input 43.33 11.21
6-input 51.80 11.57
7-input 62.90 11.58
8-input 76.72 11.77
9-input 93.59 11.97

speed, which is the time we need to perform Boolean match-
ing. As is shown, it is much faster compared to SAT-BM
where several seconds are needed to match one 9-input func-
tion.

5. BM IN NETWORKED ENVIRONMENT
In order to respond multiple client requests at the same time,
the server must provide competitive performance for concur-
rent access to the database. In BDB [6], a cache is provided
to keep newly and frequently appearing queries in memory.
Since in real circuits a small set of common functions holds
a large percentage of all functions that may appear, such a
cache mechanism greatly improves the concurrent query per-
formance by avoiding the slow disk I/O operations. Figure 2
illustrates the impact of BDB cache on query performance.
As we increase the number of database queries, the average
time for each query decreases by more than two factors of
magnitude. Note that the average query time converges to
a stable range (i.e., several micro-seconds) when the query
number is large enough. In real cases, since the server shall
handle much more queries than is shown in Figure 2, we can
expect it to be the actual performance for database query.

Figure 2: The Impact of BDB cache. The perfor-
mance is tested under single thread querying the
database.

To precisely test the effectiveness of the proposed SaaS-
BM paradigm, we build a network environment to simulate
its performance, where up to 1,000 clients are concurrently
sending matching requests. At the server side, the server
keeps listening at a given port for the client’s connection re-
quest in the main process. Whenever one connection arrives,
a separate thread is spawned to handle communications with
that client using POSIX pthread library. The connection
is established under TCP/IP protocol, which guarantees no

makes it easy to extend our library in the future.

data loss through the network. Note that since the database
works in a read-only mode during Boolean matching, we dis-
able the LOCK mechanism in BDB to improve performance.
To represent clients, we generate multiple processes sending
random matching requests on another machine3.

Table 4 compares the matching time when different num-
ber of clients are accessing concurrently. Note that the
matching time is only 8 ms even when 1,000 clients are con-
nected at the same time.

Table 4: Average Boolean matching time for 9-
input functions under network environment, includ-
ing both network data transferring and database
querying time

Number of users Matching time (ms) Slowdown
1 0.01 1x
10 0.04 4x
100 0.64 64x
1000 8.64 864x

Figure 3 plots the average matching time for different
clients. Results show that the performance differs in a small
range, indicating that different clients get matching service
with almost the same quality.

Figure 3: Distribution of query time among different
clients

The above results were collected using a hardware infras-
tructure consisting of a 5400/RPM hard-disk and a 100Mbps
network interface card. We believe that the concurrent ac-
cess performance can be significantly improved in the real
cloud, where more advanced hardware is available and the
servers are carefully configured (e.g., the cache size and the
thread management).

5.1 Using Bloom Filter as Cache at Client Side
The experiment in section 5 is carried out inside a 100Mbps
LAN. However, it’s more realistic that the client needs to
access the server through a public network (e.g., Internet).
In that case, we need to take network latency into consider-
ation. With modern broadband network technologies, it is
common to achieve a 1Mbps connection speed. As we need

3Each client is set with a small interval between two con-
tinuous Boolean matching request, to represent the time to
perform other operations in real EDA applications

753

less than 100 bytes to represent the implementation of a 9-
input Boolean function, it roughly takes 0.8 ms to transfer
the data.

To address the problem incurred by network latency, we
propose to set up a cache at client side, where the most com-
mon non-implementable functions against PLBs in Figure 1
are kept. Instead of sending remote request to server for
every Boolean function, it is first checked for its existence in
the cache. Once found, it is regarded as non-implementable,
thus the explicit check on server side is eliminated.

Bloom Filter [17] serves well to build the local cache. A
Bloom Filter is a space efficient probabilistic data structure
to test for an element’s membership in a set. When properly
configured, it has several advantages including: (1) constant
checking time; (2) low false positive rate; (3) extremely low
space cost to store one element. Specifically, with 1% false
positive rate, we need only 9.6 bits to store one arbitrary
element, regardless of the actual size of the element itself.

In our experiment, the local cache in our experiment keeps
the non-implementable functions found during library gen-
eration described in section 4.2 and takes a memory space
of 2GBs. As is shown in Table 2, over 40% 9-input non-
implementable functions are covered. In other words, we
can avoid about half of the matching at server side for non-
implementable function using such a cache. As function
lookup in the local cache costs only about 4 us, as a result,
tremendous speedup can be achieved.

6. EXPERIMENT RESULTS
To show the effectiveness of the proposed SaaS-BM, a post-
mapping re-synthesis minimizing area (i.e., LUT number)
[15] is adopted as an application for Boolean matching. The
re-synthesis procedure works in a greedy mode, which takes
a circuit mapped to 3-LUTs (mapped by ABC [7]) and scans
the combinational portion of the circuit in a topological or-
der. During the scanning, new logic blocks are generated by
enumerating and combining the logic blocks at inputs of a
LUT, and each logic block is checked for its implementabil-
ity against PLB1 and PLB2 (shown in Figure 1). When an
implementable case is found by the Boolean matcher, the
logic block is replaced by the corresponding PLB structure
if such a replacement reduces the number of LUTs without
increasing the logic depth. The algorithm terminates after
several iterations (e.g., set by user) of full scan of all LUTs,
or until no LUT can be further reduced.

Algorithm 1 Resynthesis-one-iteration(network)

1: for all node of network in topological order do
2: cutset = enumerateKfeasibleCut(node)
3: for all cut in cutset do
4: for all PLB H in PLB library do
5: if |cut| ≥ |H| then
6: continue {No area reduction}
7: end if
8: impl = booleanMatching(cut, H)
9: if impl 6= NULL then

10: updateNetwork(cut, H)
11: end if
12: end for
13: end for
14: end for

The pseudo code of the re-synthesis procedure is shown
in Algorithm 1. For the Boolean matching sub-routine (i.e.,
function booleanMatching called in line 8), three algo-

Figure 4: Impact of Bloom Filter Cache

rithms are implemented: single-client SAT-BM [14], single-
client F-BM [17] and SaaS-BM with 100 concurrent clients’
access.

Table 5 compares the run-time4 and quality of these three
matchers. To further explore the effectiveness of the library,
two other benchmark sets (IWLS 2005 [10] and Industrial
designs) are also tested. Separate comparisons are listed
for each benchmark set, while the last two rows average
over all three benchmark sets. The Ratio in this table is
computed as geometric mean. As is shown in the table, the
re-synthesizer geared with SaaS-BM is 863X times faster
than the one with SAT-BM over three benchmark sets, and
with only 0.5% area overhead. Note that we achieve better
speedup for large circuits, i.e., for IWLS benchmark circuits,
SaaS-BM-based re-synthesizer is 53X times faster than F-
BM-based one, with the same area. Considering that for
SaaS-BM is capable of performing 100 concurrent Boolean
matching operations, this speedup is tremendous.

To further analyze the effect of the Bloom Filter based
cache, we compare the run-time with and without such cache.
Figure 4 shows the run-time is reduced by 37% when Bloom
Filter is applied as cache at client’s local machine. Such im-
provement comes from the fact that, during the re-synthesis,
many more non-implementable functions than implementable
cases are found (shown in Table 6), so the local cache allows
us to quickly prune non-implementable functions without
the need for network communications to the server.

Table 6: Number of implementable and non-
implementable functions found during re-synthesis

Circuit Implementable Non-implementable
leon2 6374 26006
leon3 10202 41020

leon3 mp 6606 42281
netcard 5330 11637

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a network based scalable Boolean
matching method SaaS-BM. The method changes traditional
EDA flows, by constructing a new client/server network ser-
vice model. Incorporated into a post-mapping re-synthesizer

4This is the time to perform Boolean matching, including
public network latency

754

Table 5: Comparison between SAT, Bloom Filter and SaaS based Boolean Matchers
Runtime (s) Reduced LUT # Total LUT #

SAT-BM F-BM SaaS-BM SAT-BMF-BMSaaS-BM SAT-BM F-BM SaaS-BM

MCNC

alu4 246 7.86 0.16 14 14 14 1742 1742 1742

diffeq 392 0.05 0.10 4 3 3 1344 1345 1345

ex5p 0.02 0.02 0.001 1 1 1 1105 1105 1105

s298 8.89 0.07 0.10 7 7 7 1291 1291 1291

seq 3.93 0.02 0.003 1 1 1 1522 1522 1522

Ratio to SAT-BM 1x 1/58x 1/426x 1x 0.94x 0.94x 1x 1.000x 1.000x

Ratio to F-BM – 1x 1/7x – 1x 1x – 1x 1.000x

Industrial

Ex1 11982 101 18 1721 1139 1139 19105 19687 19687

Ex2 1578 26 1.84 305 271 271 6326 6360 6360

Ex3 32156 24 14 674 549 549 7502 7627 7627

Ex4 10280 86 7.84 669 513 513 15272 15428 15428

Ex5 671 6.66 0.73 93 79 79 2873 2887 2887

Ratio to SAT-BM 1x 1/163x 1/1096x 1x 0.79x 0.79x 1x 1.013x 1.013x

Ratio to F-BM – 1x 1/7x – 1x 1x – 1x 1.000x

IWLS

leon2 63834 1771 26 6673 6456 6456 374701 374918 374918

leon3 60959 1976 45 10770 10395 10395 566134 566509 566509

leon3mp 46063 1382 45 6941 6636 6636 341309 341614 341614

netcard 23626 1342 14 5566 5435 5435 336334 336465 336465

Ratio to SAT-BM 1x 1/29x 1/1549x 1x 0.97x 0.97x 1x 1.001x 1.001x

Ratio to F-BM – 1x 1/53x – 1x 1x – 1x 1.000x

Ratio to SAT-BM 1x 1/80x 1/863x 1x 0.89x 0.89x 1x 1.005x 1.005x

Ratio to F-BM – 1x 1/11x – 1x 1x – 1x 1.000x

reducing area, our method is 863X times faster while provid-
ing 100 concurrent Boolean matching services and with only
0.5% more area, against the one using with an optimized
SAT-BM which performs one single Boolean matching at
a time. Compared to the recent single-client Bloom Filter-
based Boolean matching, our approach under 100 concurrent
client access is still 53X times faster with the same area on
large benchmark circuits.

In the future, we plan to optimize the configurations at
both client and server side to get better performance. In
addition, we’ll target more realistic hardware settings (e.g.,
multiple servers). Thirdly, we’ll incorporate the SaaS-BM
into other EDA applications.

8. REFERENCES
[1] Software As A Service, http://en.wikipedia.org

/wiki/Software as a service.
[2] Cloud Computing, SaaS and Electronic Design,

http://www.xuropa.com/blog/2008/12/12/cloud-
computing-saas-and-electronic-design-part-4/.

[3] PDTi, http://www.productive-eda.com/.
[4] IP Genius, http://www.ipgeniuscores.com

/ipgenius.php.
[5] http://www.readwriteweb.com/enterprise/2009/02/is-

the-relational-database-doomed.php.
[6] Berkeley DB, http://www.oracle.com/technology

/products/berkeley-db/index.html.
[7] ABC, http://www.eecs.berkeley.edu/ alanmi/abc/.
[8] Buddy, http://sourceforge.net/projects/buddy/.
[9] Zlib, http://www.zlib.net/.

[10] IWLS 2005 benchmark, http://iwls.org/iwls2005
/benchmarks.html.

[11] A. Abdollahi and M. Pedram. A new canonical form
for fast Boolean matching in logic synthesis and

verification. In DAC ’05: Proceedings of the 42nd
annual Design Automation Conference, pages 379–384,
New York, NY, USA, 2005. ACM.

[12] J. J. Cong and Y.-Y. Hwang. Boolean matching for
LUT-based logic blocks with applications to
architecture evaluation and technology mapping.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 20:1077–1090, 2001.

[13] E. R. Hansen, S. S. Rao, and P. Tiedemann.
Compressing Binary Decision Diagrams. In Proceeding
of the 2008 Conference on ECAI 2008, pages 799–800,
Amsterdam, The Netherlands, The Netherlands, 2008.
IOS Press.

[14] Y. Hu, V. Shih, R. Majumdar, and L. He. Exploiting
symmetry in SAT-based Boolean matching for
heterogeneous FPGA technology mapping. In ICCAD
’07: Proceedings of the 2007 IEEE/ACM International
Conference on Computer-Aided Design, pages
350–353, Piscataway, NJ, USA, 2007. IEEE Press.

[15] A. Ling, D. P. Singh, and S. D. Brown. FPGA
technology mapping: a study of optimality. In DAC
’05: Proceedings of the 42nd annual Design
Automation Conference, pages 427–432, New York,
NY, USA, 2005. ACM.

[16] A. Mishchenko, R. Brayton, and S. Chatterjee.
Boolean factoring and decomposition of logic
networks. In ICCAD ’08: Proceedings of the 2008
IEEE/ACM International Conference on
Computer-Aided Design, pages 38–44, Piscataway, NJ,
USA, 2008. IEEE Press.

[17] C. Zhang, Y. Hu, L. Wang, L. He, and J. Tong.
Building a faster Boolean matcher using Bloom Filter.
In FPGA ’10: Proceedings of the 18th annual
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 185–188, New York,
NY, USA, 2010. ACM.

755

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

