
Adaptive Branch and Bound using SAT to Estimate False Crosstalk

Murthy Palla, Jens Bargfrede, Klaus Koch
Infineon Technologies AG

Munich, Germany

Walter Anheier, Rolf Drechsler
University of Bremen

Bremen, Germany

Abstract

Accurate crosstalk analysis has become a key issue in
Static Timing Analysis of modern deep–submicron digital
circuits. The inherent logic and timing properties of the
circuit are often neglected in the crosstalk estimation pro-
cess resulting in an overly pessimistic analysis. The prob-
lem of considering the logic correlations of the circuit to
eliminate false crosstalk has been widely studied, but still
lacks a very efficient solution also due to its NP–hard na-
ture. In this paper, we propose a SAT solver based approach
to efficiently solve the false crosstalk problem. We also pro-
pose a novel and very powerful bounding technique called
Adaptive Bounding as well as an aggressor ordering tech-
nique called Simple Aggressor Ordering for the branch and
bound method running on top of the SAT solver. These tech-
niques are proven to drastically increase the speed of false
crosstalk analysis to an extent that nets with hundreds of
aggressors can be handled. The results of this approach on
the ISCAS89 benchmark circuits are provided.

1. Introduction
Conventional crosstalk models often consider all the po-

tential aggressors of any given victim net or path as valid.
This unrealistic worst–case crosstalk model leads to an
overly conservative and pessimistic estimation of the cir-
cuit crosstalk. The amount of overestimation of crosstalk
(noise, delay or slew change) is called false noise.

The source of overall pessimism in crosstalk analysis
stems from the independent accounting of each aggressor
and victim net coupling. Timing and logic correlations
which could render certain switching scenarios impossible
are simply ignored. Industrial strength crosstalk analysis
tools try to avoid the most obvious blunders by considering
the simple logic correlations arising from single inverter and
buffer cells. Yet this is far from being sufficient as is appar-
ent from [1, 2, 3, 4, 5, 6, 7]. What needs to be done is to
find the aggressor set that has a maximum crosstalk impact
on the victim consisting only of those aggressors that can
logically and temporally induce crosstalk simultaneously.

To demonstrate the concept of false noise, we consider
the circuit in Figure 1 consisting of a victim V and three ag-

gressors a1, a2 and a3. In case of V switching from logic
zero to one, the aggressors will increase the victim’s de-
lay, if they switch from logic one to zero in the vicinity of
V ’s switching time. Conventional crosstalk analysis algo-
rithms consider that the worst–case would occur with all
the three aggressors switching in the same direction at the
same time without considering whether this switching sce-
nario is possible at all. However, a brief check of the circuit
rules out this scenario as not all aggressors can simultane-
ously assume logic 1 or logic 0, which implies that they
cannot simultaneously switch in the same direction. So, a
constraint should be laid pruning such unrealistic scenarios
for crosstalk analysis.

a1
a2

a3

v

Figure 1. False noise example with impossible ag-
gressor combination a1, a2 and a3 of victim V.

False noise not only distorts the crosstalk analysis of
the affected net, but also that of subsequent circuit ele-
ments. The impact of this error propagation depends on the
crosstalk effect considered. While crosstalk noise could be
attenuated by subsequent cells, crosstalk delay never van-
ishes but sums up in the overall path delay and slack [1].
False calculated slew change due to crosstalk even distorts
the analysis of subsequent cells in the path and, finally, the
timing check calculation.

Recently, new algorithms have been proposed to take
into account more complicated logic and timing correla-
tions for finding false noise and selecting the Maximum
Realizable Aggressor Set (MRAS) [1, 2, 3]. In [3], Sim-
ple Logic Implications (SLIs) were used to store the rela-
tions between signal pairs. As SLIs cannot relate more than
two signals at a time, false noise analysis using logic con-
straints was proposed in [1, 2]. The logic constraints of the
circuit other than those of transistors or gates are deduced

9th International Symposium on Quality Electronic Design

0-7695-3117-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ISQED.2008.14

508

9th International Symposium on Quality Electronic Design

0-7695-3117-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ISQED.2008.14

508

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 00:36 from IEEE Xplore. Restrictions apply.

by multiple application of the resolution principle. As the
functions specifying all possible logic constraints are often
too large and cumbersome for practical purposes, this ap-
proach requires to neglect some logic constraints to make
the problem tractable. As we see in the subsequent sections,
we circumvent this problem by using a SAT solver, which
uses substitution instead of resolution to tackle this prob-
lem. This ensures that no logic correlations of the circuit
are left unconsidered. Moreover, dramatic performance im-
provements with respect to our implementation of the logic
correlations based approach proposed in [1] are achieved.

In [5], a heuristic approach to order the aggressors fed
to the branch and bound algorithm proposed in [1] was pre-
sented. This was shown to considerably improve the speed
of the analysis. However, calculation of tendencies in the
method proposed in [5] requires the deduction of logic con-
straints correlating aggressors using the resolution princi-
ple. To reduce this overhead, we propose an aggressor or-
dering technique based on the aggressor strengths. We call
this technique Simple Aggressor Ordering (SAO). This is
discussed in detail in section 3.2.

In [6, 7], an attempt to integrate logic and timing for
crosstalk analysis has been made. [6] is based on slicing
the timing windows and unrolling the circuit. [7] uses back
propagation to check if a particular crosstalk scenario is
valid. They use SAT solvers to solve the underlying con-
straint satisfiability problem, but do not use efficient opti-
mization algorithms on the top to minimize the number of
crosstalk scenarios that need to be verified. As a result,
both these approaches suffer from degraded performance
for large problem complexities.

In this paper, we propose a solution based on a SAT
solver. We also propose a novel and very powerful bound-
ing technique Adaptive Bounding (AB) for the branch and
bound method which runs on the top of the SAT solver as
an optimizer.

As mentioned earlier, false crosstalk could arise either
due to negligence of logic correlations and/or timing corre-
lations. In this paper, we consider only the false crosstalk
arising due to the negligence of logic constraints of the cir-
cuit, assuming the zero–delay timing model, i.e., zero de-
lay on gates and interconnects. Logic constraints generated
under this assumption are conservative only for glitch free
circuits, obtained, for instance, through special transistor
sizing methods [1]. However, the core of the false noise
analysis approach we propose is independent of the method
used to generate constraints and, hence, is applicable for an
analysis that integrates timing and logic constraints.

We have used a linear crosstalk model for our analysis.
The strength or impact of an aggressor is quantified by the
coupling capacitance between aggressor and victim. In a
more realistic scenario, the strength of each aggressor could
be estimated more accurately, for instance, by considering

aggressor drive strength. However, the methods proposed
are independent of the accuracy in modeling the crosstalk
impact of each aggressor and could benefit from any im-
proved accuracy in this domain.

The rest of this paper is organized as follows: section
2 describes various related background topics. Section 3
describes in detail the optimization of false crosstalk using
the branch and bound method with the proposed techniques.
Section 4 explains our implementation and the results of our
false noise analysis on the ISCAS89 benchmark circuits. Fi-
nally, section 5 presents our concluding remarks.

2. Background
2.1. Logic constraints

Logic constraints are logically impossible combinations
of signals. They are used to determine if a particular switch-
ing scenario of a circuit is logically valid. Mathematically,
a logic constraint is a boolean clause with one or more lit-
erals, either inverted or uninverted. Contrary to [1, 2], we
write logic constraints as disjunctions of literals to be able to
write the logic function of the circuit in Conjunctive Normal
Form (CNF). This means that a satisfiable assignment to the
literals of any logic constraint in our model would make it
logic 1, as opposed to the definition of a logic constraint in
[1, 2].

Logic constraints of various combinational gates used in
the circuit are generated a priori from their function defi-
nitions. At the first step of the false noise analysis, these
generic constraints are mapped onto their corresponding in-
stances in the design. For a more detailed discussion on the
generation of basic logic constraints, the reader is referred
to the papers [1, 2, 5].

2.2. Coupled fan–in cone
For the analysis of a victim net, it is not necessary to

consider the logic constraints of the entire circuit. It is suf-
ficient to consider that part of the circuit that can influence
the victim and the aggressor signals. This part of the circuit
is obtained by finding the fan–in cones of the victim and its
aggressors and merging them [6]. This selection is called
the coupled fan–in cone of the victim.

Coupled fan–in cones are often very large for victim nets
near the primary outputs or the inputs of sequential cells.
This could be avoided by fixing the maximum depth of the
fan–in cones. We have observed that fixing the maximum
cone depth to 15 instances has a significant impact on speed
with only a little loss of accuracy. It should be noted that
this solution is acceptable because it is still conservative.

For all the analyses we ran for the results of this paper,
we did not restrict the maximum fan–in cone depth. Hence,
all the figures we provide are highly accurate. Speed im-
provements are to be expected if the depth is reduced.

509509

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 00:36 from IEEE Xplore. Restrictions apply.

2.3. Validation of crosstalk scenarios
For a crosstalk configuration to be valid, all the ag-

gressors of that particular configuration should be able to
switch simultaneously in the direction required to induce
the crosstalk effect under consideration. As we use a zero–
delay model, it is sufficient to check if the required pre–
transition and post–transition values for the victim and its
aggressors are satisfiable. In other words, we find the re-
quired pre–transition and post–transition values on the ag-
gressor and the victim nets and verify that the assignments
do not lead to any violations. If no violations occur, the con-
figuration is said to be valid, and invalid, otherwise. Verify-
ing the satisfiability of logic constraints is discussed in the
next section.

2.4. Constraint satisfiability and SAT solvers
Satisfiability of the logic constraints has to be ensured to

validate any crosstalk scenario as logically feasible. As this
is a very critical step in terms of speed, we chose to take
advantage of all the latest developments in the SAT solver
domain by using a publicly available SAT solver. Mod-
ern SAT solvers like zChaff and miniSat have demonstrated
their capabilities by winning many SAT competitions [8].
In our implementation we use miniSat, a conflict–driven
SAT solver, for the analysis. However, the methodology and
techniques provided here are independent of the solver and
any conflict–driven SAT solver could easily be plugged–in.

Once the coupled fan–in cone of a given victim net is
found, the logic constraints of its instances are fed to the
SAT solver, which can then check the logical validity of a
given aggressor configuration as explained in section 2.3.
Each time the SAT solver is called, it updates its clause
database with new clauses that are learnt during its search
process. This improves its performance for subsequent
queries on the same problem instance.

3 Finding maximal aggressor set
The ultimate goal of false noise analysis is to find a max-

imal set of valid aggressors that can simultaneously induce
crosstalk on the given victim. In other words, the best of all
the 2n possible combinations of aggressors, where n is the
number of potential aggressors, has to be found in such a
way that the obtained solution is logically valid. This can
be achieved by using the branch and bound algorithm as
proposed in [1].

3.1 Branch and bound algorithm review
Branch and bound is an optimization method, mostly

used for non–convex NP–hard problems. It explores the so-
lution search space by pruning off non–promising or futile
regions as it proceeds based on a bounding criterion and
satisfiability. In the case of false noise analysis, the branch

and bound explores a binary search tree of aggressors where
each node of the tree indicates a specific selection of the ag-
gressors already traversed. The validity of any branching,
or, in other words, the corresponding crosstalk configura-
tion, is determined using the SAT solver. The currently best
solution is kept track of during the entire process.

exclude a1include a1

exclude a2include a2

no better solution

violation

Figure 2. A sample branch and bound decision tree.
The idea of search space pruning based on violations
and a bounding criterion are depicted.

Figure 2 depicts the binary tree explored by the branch
and bound algorithm. The tree is traversed recursively in a
depth–first fashion. During the traversal, at each node, all
further possible combinations (with the decisions taken at
the higher levels fixed) which include and exclude the cur-
rent node are explored by recursive calls to its sub–nodes.
However, this search is implicit in some cases where it
could be proven that further exploration is not necessary. In
other words, before any further recursive calls to the branch
and bound method, it is verified using the bounding crite-
rion that a further exploration of the sub–tree is useful. The
sub–tree of any node is explored further only if it can po-
tentially yield a better solution than the current best.

Pruning can also be done based on the validity of con-
figurations. If at any stage, a decision either to include or
to exclude an aggressor proves to be invalid, the sub–tree
corresponding to this decision branch is pruned.

Our branch and bound algorithm is based on the fol-
lowing properties of which the first two are inspired from
[1]. Let W () be the weight function which gives the overall
crosstalk induced by a set of aggressors.

Property 1: Let A be the set of all potential aggressors.
If Ar ⊂ A is any set of realizable aggressors and AR is the
maximum realizable aggressor set (MRAS), then W (Ar) ≤
W (AR).

Property 2: Let A be the set of all potential aggres-
sors, and A1 and A2 be two disjoint subsets of A, such that
A1 ∪A2 = A and A1 ∩A2 = /0 . If Ar1 ⊂ A1, and Ar ⊂ A are
realizable aggressor sets such that W (Ar) > W (Ar1 ∪A2),
then the maximum realizable aggressor set (MRAS) AR is
not a subset of Ar1 ∪A2, i.e., AR 6⊂ Ar1 ∪A2.

Property 3: Let A be the set of all potential aggressors
and Ar ⊂ A be a set of realizable aggressors. Assume that
Ac ⊂ A is a set of conflicting aggressors of which aggressor
a has the least strength. If As ⊂ A is any selection of ag-

510510

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 00:36 from IEEE Xplore. Restrictions apply.

gressors such that Ac ⊂ As and W (Ar) > W (As−{a}), then
the maximum realizable aggressor set (MRAS) AR is not a
subset of As, i.e., AR 6⊂ As.

Procedure 1 ADAPTIVE BNB: Pseudocode for the Adap-
tive Branch and Bound Algorithm
Input: An aggressor vector ordered using SAO, Av =

{a1,a2, · · · ,an}; Index of the aggressor to be processed,
i; Current aggressor selection, As; Current MRAS, Ar;
Weight function W () to find the overall influence of a
given aggressor set

Output: Current MRAS, Ar
1: Set unprocessed aggressor set Au = {ai,ai+1, · · · ,an}
2: if Au = /0 return Ar
3: Set A

′
s = As∪{ai}; Set A

′
u = Au−{ai}

4: if aggressor configuration A
′
s is valid then

5: WUB = ADAPTIVE UPPER BOUND(A
′
s, A

′
u)

6: if W (A
′
s) > W (Ar) then Ar = A

′
s

7: if WUB > W (Ar) then
8: Ar = ADAPTIVE BNB(Av, i+1, A

′
s, Ar)

9: else
10: Get conflicting aggressor set, Ac from SAT solver
11: Add Ac to conflict database
12: WUB = ADAPTIVE UPPER BOUND(As, A

′
u)

13: if WUB > W (Ar) then
14: Ar = ADAPTIVE BNB(Av, i+1, As, Ar)
15: return Ar

3.2 Simple Aggressor Ordering (SAO)
The order in which the aggressors are traversed plays a

vital role in the amount of solution search space that can
be pruned. A tendency based ordering of aggressors is
proposed in [5]. This approach is based on the switching
tendencies of aggressors which can be calculated from the
logic constraints correlating them. As this would be a con-
siderable overhead with our approach, we propose and use
a different ordering technique called Simple Aggressor Or-
dering, which orders the aggressors in the descending order
of their strengths.

Our experiments have shown that this kind of ordering is
essential not just for speed improvement, but in many cases
also for feasibility. If the decisions on stronger aggressors
are done in the beginning, many decisions on less signif-
icant aggressors can be avoided if their addition does not
yield any improvement. The latter can be verified by com-
putation of the bounding criterion.

3.3 Learning in Branch and Bound
In this paper, we introduce the idea of learning in Branch

and Bound, which could aid the Adaptive Bounding strat-
egy discussed in section 3.4. As mentioned in section
2.4, a conflict–driven SAT solver is used in our approach.

Conflict–driven SAT solvers are based on learning from
conflicts occurring during their search for a satisfiable solu-
tion. The idea of Conflict–Based Learning is very effective
because the search process can be driven in such a way that
the conflicts that once occurred do not occur again.

During the constraint satisfiability check, if an aggressor
configuration is found to be invalid, the set of conflicting
aggressors can be deduced from the conflict information
obtained from the SAT solver. This information is stored
in a database in the form of a list of conflicting aggressor
sets for any given aggressor. As we see in the next section
on Adaptive Bounding, this information can be exploited to
calculate very tight upper bounds in the branch and bound
process.

3.4 Adaptive Bounding

The power of branch and bound lies in its ability to
prune futile search spaces. This can be improved by using
a bounding strategy that calculates very tight upper bounds.
Adaptive Bounding is such a technique that helps branch
and bound to efficiently use knowledge that is already ac-
quired during the process by adaptively taking care that a
conflict that already occurred is considered in the estima-
tion of upper bounds. This helps the Branch and Bound
to efficiently foresee the necessity to explore an unexplored
sub–tree.

Procedure 2 ADAPTIVE UPPER BOUND: Pseudocode
to find upper bound using the Adaptive Bounding technique
Input: Aggressor set As (current aggressor selection); Ag-

gressor set Au (unprocessed aggressors); Weight func-
tion W () to find the overall influence of a given aggres-
sor set

Output: Adaptive Upper Bound, WUB
1: Let AUB = As
2: for each aggressor a of Au do
3: Let SAc be the set of all known conflicts of a
4: Set con f lictFlag = f alse
5: for each conflict aggressor set Ac of SAc do
6: if Ac−{a} ⊂ AUB then
7: Set con f lictFlag = true;
8: Break
9: if con f lictFlag = f alse then add a to AUB

10: return W (AUB)

As explained in section 3.1, during its process, the
branch and bound algorithm needs to calculate an upper
bound on the crosstalk due to a set of aggressors, say As,
obtained from the current selection and a set of unprocessed
aggressors, say Au. A non–learning branch and bound ends
up in finding the overall crosstalk due to As∪Au. However,
this is not realistic if any of the conflicting aggressor sets
from the conflict database are present in As∪Au.

511511

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 00:36 from IEEE Xplore. Restrictions apply.

Adaptive Bounding is based on property 3 described in
section 3.1. With the application of this technique, a more
realistic upper bound could be calculated by considering
only a maximal set of aggressors from Au along with As. As
the learning process in the branch and bound is supported by
the conflict–driven mechanism of the SAT solvers, applica-
tion of this technique does not add any considerable over-
head to the optimization process. The Adaptive Bounding
process is described in pseudocode in procedure 2.

4 Implementation and Results
The proposed approach has been implemented in C++ in

a false noise analysis engine and tested in an industrial en-
vironment. It is designed in such a way that all the nets of
a given circuit that have cross–coupling are processed for
false noise to filter their unrealistic aggressors. Although
false noise analysis is aimed to be performed as a post-
processing step to reduce the number of violations reported
by static timing analysis (STA) by many [1, 2, 3, 6, 7], we
target to perform this during STA to make timing analysis
more realistic, accurate and reliable.

We have tested the proposed approach on several IS-
CAS89 benchmarks. The experiments were conducted on
a SUN sparc Sun–Fire–V890 workstation. All the nets that
see cross–coupling with other nets are considered. No ag-
gressors are filtered based on coupling capacitance ratios or
absolute values as is done by some commercial STA tools.
Such simplifications are possible and would have a positive
speed impact on our approach. Also, because we did not
use any approximate heuristics that trade–off accuracy and
speed, as proposed in [1], one can expect a further improve-
ment in speed with their application.

We have provided a comparison of the results of our
SAT based false noise analysis with and without the use
of the proposed Simple Aggressor Ordering and Adaptive
Bounding techniques. The analysis is done for the crosstalk
fall delay scenario, where the victim is assumed to make a
falling transition while the aggressors are rising. Similar re-
sults can be produced for other crosstalk types. Columns 2
to 5 of Table 1 provide the number of cross–coupled nets of
each circuit processed versus the number of unsolved nets
for each case. A net is considered unsolved if the number
of recursive branch and bound calls during the optimization
process exceeds an upper limit of 10,000. It can be ob-
served that the application of both SAO and AB (referred as
SAO+AB in Table 1) made all the nets solvable for all the
tested circuits.

Columns 6 to 9 of Table 1 give the average reduction of
pessimism of each net in terms of the number of aggressors.
It can be observed that the amount of pessimism reduced
per net is larger when SAO and AB are applied. This is a
direct consequence of their ability to solve all the nets thus
yielding optimal results. Reduction in pessimism could also

be quantified in a different way, for instance in terms of the
reduction of the number of false timing violations, as has
been done in [1, 2, 3, 6, 7]. In the future we will work on
these issues.

Columns 10 to 15 of Table 1 signify the speed improve-
ment achieved using the proposed methods. The speed has
been measured using two estimates: the average number
of recursive calls to the branch and bound method and the
CPU time. As already mentioned, we declare a net as un-
solvable by a particular approach if it required more than
10,000 branch and bound (BnB) calls. For each infeasible
case the BnB call count is set to be 10,000 and the CPU
time to reach this stage is measured. The efficiency of each
of the proposed techniques SAO and AB in successfully fil-
tering futile search spaces during the optimization process
can clearly be observed. As another measure to estimate
the overall time required for the analysis, we also compare
the total CPU time required for the analysis of each circuit.
As the lower bounds of BnB call counts and CPU times
are used for infeasible cases, the average improvement fig-
ures provided in Table 1 are the lower bounds on the perfor-
mance and accuracy gains achieved.

A comparison of the speed of our approach to the classi-
cal logic constraints approach [1] is not provided, because
our implementation of this approach could not finish in most
of the cases as we do not apply any approximate heuristics.

The results clearly show the efficiency of the proposed
techniques in effectively increasing solvability and speed,
and reducing pessimism. These techniques could also be
applied on the top of the logic constraints approach pro-
posed in [1] with considerable improvement in speed. How-
ever, we do not recommend this as the basic logic con-
straints approach is many factors slower than our SAT based
approach even without the application of SAO and AB.

5 Conclusions
A SAT based approach to analyze false crosstalk has

been proposed along with two powerful techniques, Sim-
ple Aggressor Ordering and Adaptive Bounding, that help
to improve the speed of the optimization process. The pro-
posed techniques have been implemented and tested on IS-
CAS89 benchmark circuits demonstrating their capability
to drastically improve speed, accuracy and solvability with-
out any trade–offs. The results provided show the necessity
of such methods to solve the false noise problem in the first
place.

References
[1] A. Glebov, S. Gavrilov, R. Soloviev, V. Zolotov, M. Be-

cer, C. Oh, and R. Panda., Delay noise pessimism re-
duction by logic correlations, International Conference
on Computer Aided Design, pages 160–167, 2004.

512512

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 00:36 from IEEE Xplore. Restrictions apply.

Circuit

No of Nets # Pot.
Aggrs.
(max/
avg)

Avg. Reduction in
Aggr. Count (%)

Avg. no. of BnB
Calls per net

Total CPU time
(sec)

proc-
essed

unsolved

SAT SAO
SAO
+ AB

SAT SAO
SAO
+ AB

SAT SAO
SAO
+ AB

SAT SAO
SAO
+ AB

s208.1 72 0 0 0 27/6 22.01 22.01 22.01 192 14 7 1.07 0.12 0.07
s298 92 2 0 0 37/6 19.41 20.49 20.49 346 19 8 3.36 0.24 0.14
s349 101 1 0 0 26/7 15.24 15.59 15.59 346 9 8 3.52 0.18 0.12
s386 111 9 0 0 33/7 18.89 22.70 22.70 996 39 10 13.49 0.55 0.29
s382 116 1 1 0 49/6 23.95 23.94 24.34 171 95 7 2.98 1.98 0.2
s344 122 3 0 0 42/8 20.31 21.15 21.23 519 27 9 7.69 0.5 0.21
s420.1 124 2 0 0 40/6 21.76 22.33 22.33 198 30 8 3.47 0.67 0.17
s444 129 3 0 0 43/6 23.55 24.53 24.53 337 17 7 6.2 0.36 0.25
s713 155 8 1 0 62/9 12.08 13.47 13.72 376 31 8 8.45 0.91 0.32
s400 155 2 0 0 51/7 25.94 26.53 26.53 721 90 11 18.42 2.99 0.55
s635 158 2 1 0 67/5 21.29 21.45 21.71 182 78 7 4.92 2.11 0.38
s526 160 5 0 0 36/7 20.80 21.90 21.90 560 26 9 13.22 0.74 0.3
s499 161 3 1 0 60/9 36.43 36.85 37.27 393 106 12 9.43 2.8 0.48
s641 163 15 1 0 64/12 10.36 12.68 12.88 1463 162 14 44.15 5.54 0.79
s526n 167 6 0 0 42/8 22.79 24.40 24.40 591 44 10 14.64 1.27 0.41
s510 182 15 0 0 52/9 29.43 34.05 34.05 1080 75 13 27.98 2.14 0.61
s820 239 24 3 0 63/9 23.19 27.49 28.22 1112 321 14 48.8 15.23 1.07
s938 243 4 1 0 76/7 19.64 20.08 20.21 296 87 9 14.87 5.47 0.98
s838.1 246 5 2 0 75/7 18.11 18.49 18.81 345 96 9 16.86 5.92 0.87
s832 272 25 6 0 64/9 22.83 25.93 27.11 1040 313 14 59.33 17.44 1.33
s991 294 4 0 0 60/9 13.21 13.60 13.60 253 29 10 18.86 2.67 1.27
s1238 354 41 7 0 85/11 22.82 27.54 28.67 1345 370 18 118 37.05 3.43
s1196 378 36 7 0 84/10 25.59 29.67 30.79 1177 362 18 112 36.33 3.62
s1494 431 59 27 0 123/14 23.44 27.35 31.01 1578 824 32 195 96.98 7.75
s3271 775 17 1 0 72/7 19.64 20.34 20.38 367 36 8 134 16.99 5.42
s9234.1 909 73 30 0 126/12 16.11 17.55 18.79 937 461 20 588 290 18.63
s5378 977 84 2 0 91/11 14.19 16.52 16.60 1142 128 14 699 92.71 14.01
s4863 984 58 5 0 88/8 10.95 12.33 12.48 700 91 11 506 90.23 18.42
s6669 1248 72 1 0 96/9 8.15 9.27 9.29 680 61 11 952 112 22.08
s13207.1 2310 187 57 0 204/12 16.02 17.63 18.54 946 356 20 3147 1284 103
s15850.1 2415 191 94 0 201/14 12.38 13.28 14.41 922 471 26 3653 1860 148
s38584.1 5580 599 213 0 335/15 11.39 12.76 13.64 1240 474 25 24048 9809 661
s38417 6763 516 135 0 226/11 11.01 12.28 12.78 884 276 15 24826 8472 596
Improvement (%) – SAT vs. SAO+AB (min/max/avg) 0 / 32.33 / 11.37 95.72 / 99.04 /97.82 92.28 / 98.21 / 96.24

Table 1. Solvability, aggr. count reduction, avg. no. of BnB calls and CPU times for various ISCAS89 benchmarks

[2] A. Glebov, S. Gavrilov, V. Zolotov, R. Panda, C. Oh,
and D. Blaauw, False–noise analysis using resolution
method, International Symposium on Quality Elec-
tronic Design, 2002.

[3] A. Glebov, S. Gavrilov, D. Blaauw, S. Sirichotiyakul,
C. Oh, and V. Zolotov, False noise analysis using logic
implications, International Conference on Computer
Aided Design, pages 515–521, 2001.

[4] R. Arunachalam, R. D. Blanton, and L. T. Pileggi, False
coupling interactions in static timing analysis, Design
Automation Conference, 2001.

[5] M. Palla, K. Koch, J. Bargfrede, M. Glesner, W. An-
heier, Reduction of crosstalk pessimism using Ten-
dency Graph Approach, International Conference on
Computer Design, 2006.

[6] K. Tseng, M. Horowitz, False coupling exploration in
timing analysis, IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, Vol. 24, No.
11, pages 1795–1805, 2005.

[7] Y. Ran, A. Kondratyev, K. Tseng, Y. Watanabe,
M. Marek-Sadowska, Eliminating False Positives in
Crosstalk Noise Analysis, IEEE Transactions on Com-
puter Aided Design of Integrated Circuits and Systems,
Vol. 24, No. 9, pages 1406–1419, 2005.

[8] The International SAT Competitions web site,
http://www.satcompetition.org

[9] N. Eén, N. Sörensson, An Extensible SAT–solver, In-
ternational Conference on Theory and Applications of
Satisfiability Testing, 2003.

513513

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 00:36 from IEEE Xplore. Restrictions apply.

