
Analysis of Cyclic Combinational Circuits

Sharad Malik (sharad@ee.princeton. edu)

Dept. of Electrical Eng., Princeton Univ.

Abstract

A loaic circuit is said to be combinational if the

functio; it computes depends only on the input; ap-

plied to the circuit, and is sequential if it depends

on some past history in addition to the current in-

puts. Circuits that have an underlying topology that

is acyclic are combinational, since feedback is a nec-

essary condition for it to be sequential. However, it

is not a sufjlcient condition since there ezist combina-

tional logic circuits that are cyclic. These occur often

in bus structures in data paths. Traditional formal

techniques in logic synthesis, logic analysis and tim-

ing analysis of combinational circuits have restricted

themselves to acyclic combinational circuits since they

have been unable to handle the analysis of circuits with

cycles. Thus, in practice, these circuits are handled

using clumsy work- arounds, which is obviously unde-
sirable. This paper presents a formal analysis of these

circuits, and presents techniques for the logical and

timing analysis of such circuits. These techniques are

practically feasible on reasonably large circuits encoun-

tered in pvactice.

1 Introduction

Even though the phrase cyclic combinational cir-

cuits may seem an oxymoron, these circuits do infact

exist. For example, the circuit in Figure 1 is com-

binational since z is eaual to the mesent value of z.. .
and does not depend on the past history of inputs.

This can be easily verified by checking the circuit out-

put for both x = O and x = 1. While in this circuit
there exists a logical redundancy, and the circuit can

be reduced to an acyclic form by the removal of this

redundancy, this in not true in general. As early as

in 1970, Kautz demonstrated the existence of circuits

for which he was able to prove that the minimal form

must have cycles [8].
The existence of these circuits is not restricted to

the world of abstract researchers, they occur often
in practice. Stok has pointed out their existence in

circuits synthesized from high level descriptions [12].

They also occur often in circuits with bus structures.
Both these families of instances are motivated by the

following abstract example. Consider the function:

z= if(c) then F(G(x)) else G(F(x))

Here c is some logical condition, and x is an in-

put argument (possibly a vector of Boolean variables).

Any acyclic implementation of this function must have

‘FDz

Figure 1: Cyclic Combinational Circuits: A Simple

Example

x

c

v

10

—

z

Figure 2: Cyclic Combinational Circuits: Abstract

E;ample -

two instances of at least one of F or G, since F foIlows

G in the then part, and the converse is true for the

else part. However, Figure 2 shows a cyclic imple-

mentation of this function that uses only one instance

of both F and G, exploiting the fact that for any in-

put assignment to c only one of the two possibilities,

F following G, or G following F will happen.

This abstract example can be transformed to a
practical example by replacing F and G by a shifter

and an adder respectively and considering the func-

tion:

z = if (c) then shift (add(a, b) , d)

else add(shift(a, d), b)

Here a and b are the data arguments, and d is the

amount the shifter must shift its first argument by.

Depending on the logical condition c, the shift is ei-

ther performed on input a before addition to b or the

618
1063-6757/93 $03.00 @ 1993 IEEE

a

Figure 3: Cyclic Combinational Circuits: Practical

Example

result of adding a and b is shifted after addition. The

cyclic version of the circuit implementation is shown

in Figure 3. It is common to use tri-state buses in-

stead of multiplexors in data paths, however the two

are logically equivalent.

Traditional formal techniques in logic synthesis,

logic analysis and timing analysis of combinational

circuits have restricted themselves to acyclic combina-

tional circuits since they have been unable to handle

the analysis of circuits with cycles. Stok laments the

lack of existence of logic and timing analysis programs

that handle cycles in combinational logic circuits. This

motivates his work where he proposes a technique for

resource allocation in high level synthesis that avoids

the creation of such cycles [12]. In addition to re-

quiring special attention, this possibly results in non-

optimality in the resources needed. Inability to handle

cycles has led to some logic synthesis programs pro-

hibiting cycles from ever existing in the circuits they

handle [2]. However, designers do design cyclic com-

binational circuits, and in practice these are handled

using clumsy work-arounds, which is obviously unde-

sirable. These work-arounds typically involve a lot

of special casing and even specific solutions for differ-

ent circuits. This paper presents a formal analysis of

these circuits, and presents techniques for the logical

and timing analysis of such circuits. These techniques

are practically feasible on reasonably large circuits en-

countered in practice.

2 Preliminaries

A combinational logic ciTcuit is described by speci-

fying a set of gates and the interconnections between

them. For purpose of this paper, we will consider only

the simple gates, NOT, AND, OR. However, this is just

for ease of exposition and is not a limitation of the

analysis techniques presented later in the paper.

A controlling value on a gate input is one that de-

termines the output of a gate independent of the val-

ues on the other inputs. For example, O is a control-

ling value for an AND gate and 1 for an OR gate. A

non- controlling value on a gate input is one that does

not determine the output of a gate independent of the

values on the other inputs. For example, O is a non-

controlling value for an OR gate and 1 for an AND gate.

A path in a circuit is an alternating sequence of
gates and connections,

{go, co, g~, c~, g~+l}, where connection ci, 1< i <
n, connects the output of gate gi to an input of gate

gi+l. go is a primary input and gn+l is a primary

output. With each gate g, we associate a delay d(g).

A path is said to be simple if each gate in the circuit

appears in the path no more than once.

The length of a path P = {go, co, g~, c~, g~+l},

is defined as length(P) = ~~~~ d(gi).

An event is a transition O s 1 or 1 + O at a gate.

Consider a sequence of events, {To, rl, rn} occur-

ring at gates {go, gl, gn} along a path, such that

~i occurs as a result of event ri _ 1. The event To is said

to propagate along the path.

A path is said to be true if it is can propagate an

event for some input stimulus.

The symbol n is used to denote the set intersection
or the logical AND operation depending on the context.

Similarly the symbol U is used to denote the set union

or the logical OR operation.

3 Functional Analysis

3.1 Intuitive Reasoning

It is possible that a circuit may be combinational

under the assignment of specific delay values to the

circuit components (gates and wires), but may be se-

quential otherwise. It is natural to expect the tempo-

ral behavior of a circuit to be a function of the delay

valuesj but it is undesirable for its functional or logical

behavior to be dependent on the delay values. Thus,
when we classify a circuit as being combinational, we

would like it to be combinational regardless of the de-

lay values on circuit components. Indeed, logic design-

ers designing cyclic circuits do not take into account

delays during the logical design of these circuits; we

dld not need to know what the delay values were to

classify the circuits in Figures 2 and 3 as being combi-

national. It is this delay independent notion of com-

binational circuits that we will use in the rest of the

paper.

Cyclic combinational circuits have structural feed-

back, however there is no logical feedback that is trans-

mitted to the primary outputs. To understand this
further, let us examine the simple circuit shown in

\

Figure 4 a). (This is the same as shown earlier in

Figure 1. When z = O, there is logical feedback in

the circuit, since y depends on the previous value of

y. However, for this value of z, this feedback is not

transmitted to the primary output z, since z is equal

to O independent of the value of y. Thus, we see that
the primary outputs may be combinational even when

some intermediate signals in the circuit are sequential

In fact, parts of the circuit may even display oscilla-

619

x

E
z

y, Y

(a) (b)

y,Y

(a) x

Figure 4: Cyclic Combinational Circuits with Sequen-

tial Parts

‘\ /y

/7c

x

Figure 5: Breaking a Single Feedback Connection

tory behavior. This is seen in Figure 4(b) where y

oscillates when x = O even though z is combinational.

To explore this further, let us consider cyclic cir-

cuits where breaking a single connection breaks all

cycles. Let us call the new input and output of the
acyclic circuit thus created as y and Y as shown in

Figure 5. Here z and z denote the vector of primary

inputs and outputs of the circuit. xi and Zi will be

used to denote the ith primary input and output, re-

spectively.

Let D(Y, y) be the set of assignments to z for which

the value Y depends on the value of y. Similarly, let

D(,z, y) be the set of assignments to z for which z de-

pends on y. The term depends is being used in an

intuitive way here, a stricter definition of it and a de-

scription of how the set D is computed is deferred till

later in the paper. There is logical feedback at signal

y as long as D(Y, y) is not empty. If z is to be combi-

national, then D(z, y) must be disjoint from D(Y, y),

i.e.

D(z, Y) n D(Y, y) = # (1)

If this were not so, then for any member of the non-

empty intersection, the value on the signal y in the
original circuit would depend on its previous value,

i.e. it would be sequential, and z would depend on

this sequential value, making it sequential.

Thus we see that Equation 1 represents a necessary

condition for the circuit to be combinational. It is easy

to see that it is sufficient too; if it holds then there exist

no assignments to z for which y is sequential and at

the same time z depends on y.

Let us now try and define the function D more pre-
cisely. Traditionally the Boolean difference of z with

respect to y, denoted by ~, has been used to describe

‘LLLH-
1 2 3

Figure 6: A

time

(b)

Seemingly Combinational Circuit

the set of conditions (assignments to other variables

that z depends on) for which z depends on the value of

y. For any assignment in ~, toggling y would result

in z toggling. Let us tentatively use this definition for

D(z, Y), k let D(z, Y) a ~. For both the circuits in

Figure 4 we have the following:

Thus, ~ n ~ = @,and, aa expected, the circuits

will be classified as being combinational. Let us now

consider the example shown in Figure 6(a). At first

glance it appears that z must be combinational since
the output of the AND gate must always be O and hence
z = z. T&, however, is incorrect. Let the invert ers

in the figure have a delay of 1 time unit each and

the other gates have zero delay. Further, assume that

when the circuit is powered on, the signals a and b

both have the logical value O on them and z = O.

With this assumption on the starting values and the

given delay values on the gates in the circuit, it is easy

to see that the circuit output z changes as shown in

Figure 6(b) and will oscillate indefinitely. z is far from

being combinational! But ~ = O when the connection

y is broken to make the circuit acyclic; so z should not

depend on y. What is wrong with using the Boolean

difference here is that it assumes signals in the circuit

to reach stable values. That is obviously true only for

those signals whose values are uniquely set by the z

variables. Nothing can be said for the other signals.

How do we capture this condition?

620

gate type fg.o fg.l

NOT fg,.l f,, .0
AND Ui fg; .O n; fgi. 1
OR fl; fgi.0 Ui fgi .1

Table 1: Calculus for Ternary Symbolic Simulation

3.2 Ternary Symbolic Simulation

A brief digression into ternary symbolic simula-

tion is needed here. Ternary symbolic simulation

was introduced by Bryant in the analysis of switch

level circuits [4]. Ternary valued logic permits func-

tions/signals to have a third value X (unknown) in

addition to the two values O and 1 used in switch-

ing functions. For any assignment to the inputs x,

each signal in the circuit evaluates to one of 1, 0 or

X. Thus for each signal the input space (assignments

to the inputs) is partitioned into three parts, one for

each of the three possible values. Let s be a signal

in the circuit and let f,. 1(z) and f, .O(z) be switching

functions defined as follows. ~~. l(z) evaluates to 1 for

exactly those assignments to z for which s evaluates

to a 1. Similarly, f. .O(z) evaluates to a 1 for exactly

those values of z for which s evaluates to O. These two

functions are sufficient to represent the ternary valued

function being computed at s since input assignments

for which s evaluates to X are the remaining ones, i.e.

those for which (f.. l(z) U f, .O(z)) holds true. Table 1

shows how the outputs of simple gates are evaluated

using this lldual rail encoding” for ternary functions,

given the functions for the inputs of the gates. Here g

is the output of the gate and gi are the inputs of the

gate, with i varying over the inputs.

3.3 Logical Analysis

Armed with the machinery of ternary symbolic sim-

ulation, let us continue our analysis of cyclic combi-

national circuits. As before, for now let us restrict

ourselves to dlrcuits of the form shown in Figure 5; for

these circuits breaking a single connection, y, breaks

all cycles in the circuit. The ternary valued func-

tions for the inputs to this acyclic circuit are as fol-

lows. For y: fy.0 = o, fv.1 = O, for a primary in-
put Zi: f=,.0 = Z, f=,. 1 = q. This captures the

fact that the values for the primary inputs are com-

pletely known while those for the feedback signal y

are completely unknown. With the functions avail-
able for the primary inputs, the calculus of Table 1

can be used with a depth first traversal of the acyclic

circuit graph to evaluate the functions at Y and z.--
Then, (fY. l(a) U fY .O(0)) denotes those assignments

of x for which the value of Y cannot be determined

to be a lo~ical 1 or a O using iust the values of x.
u.

i.e. these are the assignments for which Y depends on

y. Similarly, Ui(f., .1(z) U f., .O(z)) denotes the set of
assignments for which at least one primary output (i

varies over the primary outputs) depends on y. This

mathematical definition of the intuitive notion “de-

pends” captures the fact that a signal s depends on y

as long as the assignment to the x variables does not
by itself determine the logical value O or 1 of s. The

ternary calculus makes sure that no assumptions are

made about stable values on any signals ezcept for the
primary input vaTiables x.

Using this definition for D in Equation 1 we see

that following must be true for the circuit to be com-

binational.

(ui(fz,.l(z) u fz,.o(z))) n (fy.l(z) u fy.o(z)) = ~2)

\–,
For the example shown in Figure 6, we see that:

fz.o=o fz.l = x

fy.o=x fy.l=o

Thus, we see that Equation 2 is not satisfied. In

particular the assignment to x for which both z and Y

depend on y is x = O, which is the case demonstrated

in Figure 6(b).

3.4 Sensitization of Non-Simple Paths

Let us see what Equation 2 means in terms of paths

in the circuit. Consider a path, as shown in Figure 7,

from the primary inputs to the primary outputs in

the circuit, that is not simple, i.e. it contains a cy-

cle. (Note that not all gates along the path have been

shown in this figure.) At least one of the following two

things must happen for this path for each assignment

of the primary inputs if the circuit is combinational.

●

●

There must be some gate in the cycle which has an

off-path input that is at a stable controlling value.

This is indicated by the OR gate with a side input

set at 1 in the figure, This side input determines

the output of the gate and thus effectively cuts

off information from circulating in the cycle, i.e.

it logically breaks the cycle.

There must be some gate on the part of the path

from the cycle to th; primary output tha~ has

an off-path input with a stabIe controlling value.

This is indicated by the AND gate with a side in-

put set at O in the figure. This side input deter-

mines the output of the gate and thus effectively

cuts off information from the cycle from reaching

the primary output.

3.5 Iterative Function Computation

The discussion in the previous sections describes
the condition that we need to check in order to clas-

sify the circuit as being combinational or not. How-

ever, it does not provide a method for computing the

switching function being computed by the circuit. In-

terestingly, ternary symbolic simulation can be used

to even compute this function. This is done as fol-
lows. Once fy. 1 and fY.0 have been computed, these
values are used for fy. 1 and fv.0 in another iteration

of the ternary symbolic simulation of the acyclic cir-

cuit. This captures the fact that the function at signal

621

x

Figure 7: A Non-Simple Path

Y will be fed back to the acyclic circuit at y. Since

we will be computing the functions at signals at sev-

eral iterative steps, we will indicate this using a super-

script on the function name. The absence of a value

in the superscript indicates the initial or the zero-th

iteration, which is what we have seen thus far. Thus,

j$.1 = fi-l.l and ~.O = fi-’.O. The functions for the

primary input variables z are invariant over the iter-

tion number, i.e. C. 1 = z for all i, similarly ~=.0 = Z

for all i.

A direct consequence of Equation 2 is that

That is, for each input assignment of x, each of the

primary outputs .z~ are uniquely determined to be ei-

ther 1 or O after the first iteration. Thus, the switching

function being computed at primary output Zi is f~i. 1

which is the same as f~i .0. To see why this is so, let

; be a particular input assignment and let Zi be some

output. The following two cases are possible for the
value of z~ for input Z:

Case 1: fji.O(Z) U f~i.l(~) = 1

In this case the value of Zi is determined to be 1

or O after the initial iteration.

Case 2: f~i.0(5) U f~i.l(~) = O

In this case the value of zi is not determined

to be 1 or O after the initial iteration. In
this case, zi depends on the value of U. HOW-

ever, from Equation 2 we know that in this case

f~.o(~) u f! .1(2) = 1, i.e. the value of Y
is uniquely determined to be a 1 or O since it

cannot depend on y for this input assignment.
Since f~.()(~) = f$!.0(2) and f~.l(;) = f$?.1(~

f:i.w”u f:i.w = I,

mined at the end of the

The correctness of Equation

description.

i.e. ~i is uniquely deter-

first iteration.

3 follows from the above

x y = constant

Figure 8: A Functionally Equivalent Acyclic

The iterative function comtmtation also

Circuit

directlv

gives us an acyclic circuit that \s functionally equiv~-

lent to the cyclic circuit that we started with. This is

shown in Figure 8. Here, CZ is the circuit computing

z and Cy is the circuit computing Y. In C’Y we can

set y to any constant value (O or 1) since z does not

depend on it.

We are now in a position to relax the condition that

we have imposed thus far on the circuit, i.e. break-

ing a single connection breaks all the cycles in the

circuit. While that condition made it easy for us to

gain some insight into the nature of the problem, it is

obviously restrictive, and at this point no longer nec-

essary. Let the cardinality of the feedback arc set be

k, i.e. breaking k connections breaks all the cycles

in the circuit. Let the additional inputs and outputs

created by breaking these connections be Y1, YZ, ..., yk

and Y1, Yz, ..., yk respectively. For the original cyclic

circuit to be combinational, the following is both nec-

essary and sufficient.

Ui (f~,.l(a) U fj,.O(z)) = O for some j < k (4)

Thus, in no more than k iterations the functions

at the primary outputs must not depend on the feed-

back variables. The derivation of Equation 4 follows

the same lines as that of Equation 3. Intuitively the

k iterations permit the primary input to determine

the value at the primary outputs through a path that

traverses all the feedback connections as sketched in
Figure 9. All paths in the circuit will be considered

in k iterations. Thus, there is no need to consider any

more it erat ions that that. If in k it erat ions the values
of all output signals are known to be 1 or O for each

input assignment, then the circuit is combinational,

else it is sequential. Note that if the circuit is sequen-
tial, the LHS of Equation 4 provides the set of input

assignments under which the circuit displays sequen-

tial behavior. If all of these are known to be don’t

cares, then for the care assignments the circuit is still

combinational.

622

Y, Y2)’k

Figure 9: A k-iteration Path

z

hCz

’72
Y

Y
x c;-----

Y j instancss

.,..
x ..,,

“’”k I

x y. constant

Figure 10: Equivalent Acyclic Circuit: General Case

Correspondingly, the equivalent acyclic version of

the circuit is shown in Figure 10. Here j copies of CY

are needed, where j is the smallest iteration count for

which Equation 4 holds. The superscript on CY serves

as an index for the copy. In C’& only those Y signals

need be computed which stabilize (value known to be 1

or O for all input assignments) in less than 1 iterations.

It is interesting to note that j maybe much smaller

that k. In particular, for the circuit in Figure 3, k is
the width of the datapath, but j = 1 independent of

k. Thus that circuit is a one-iteration cyclic combina-

tional circuit.

Based on our present insight into cyclic combina-

tional circuits, we believe that most practical instances

of these will be one-iteration cases.

From the earlier discussion using Figure 7 it is easy

to see that any feedback arc set will suffice for pur-

poses of this algorithm. All we are checking for here

is that each non-simple path is blocked either in the

cycle or in the part from the cycle to the primary out-

put by means of an off-path input that is at a stable

controlling value. Determining a feedback arc set is

linear in the size of the circuit and can be done using

a depth first search starting at the primary inputs.

4 Complexity Analysis

Consider the following two related problems that

are being examined in thh paper.

PI: Is a given cyclic circuit combinational for all as-

signments of delays to the gates?

P2: Is a given cyclic circuit sequential for some as-

signment of delays to the gates?

P1 and P2 are clearly complementary problems and

it is sufficient to examine the complexity of any one

of them. For a circuit to be sequential we need to

determine an input assignment for which the circuit

will demonstrate sequential behavior. This looks sim-

ilar to the satisfiability problem for Boolean functions,

and it would seem relatively straightforward to show

that P2 is in NP. However, this is not easy. The reason

for this is that even though we can “guess” this input

assignment, there is no known polynomial time algo-

rithm that will simulate the circuit and tell us if the

output is sequential for some delay assignment. We

cannot guess the delay assignment since delay values

are real numbers. Thus, it is not easy to demonstrate

that P2 in in NP.

Let us now go back to Equation 4. Finding a sat-

isfying input assignment for the Boolean function on

the LHS of the equation is equivalent to detecting that

it is sequential. Thus, we can now “guess>’ an input

assignment for the original cyclic circuit, and check if

it satisfies Equation 4 in time that is polynomial in the

circuit size. Thus, a corollary of Equation 4 is that P2

is in NP.
Having established that P2 is in NP, it is now easy

to show that it is in fact NP-complete by reducing

satisfiabllity to it. Let ~ be any Boolean function that

we wish to check for satisfiability. Let z be computed

by the following equation corresponding to a single

Arm gate.

z = AND(z, f)

Clearly z is sequential if and only if ~ has a satisfy-

ing assignment. In fact it is precisely for the satisfying

assignments of ~ that z is sequential. This completes

the proof that P2 is NP-complete. Since P 1 is the com-

plementary problem for P2, P1 is co-NP-complete.
This precise classification of these problems is im-

portant since it highlights the intrinsic nature of these

problems. The lack of a classification of these prob-

lems may have been responsible for a lack of a clean

solution to them in the past.

5 Timing Analysis

Section 3 describes techniques to check if a cyclic

circuit is combinational, and determine the switchhqg

623

function being computed by the circuit if it indeed

is combinational. However, it does not tell us much

about the temporal behavior of the circuit. If this cir-

cuit is to be used in a synchronous design, then the

maximum time taken for the circuit outputs to stabi-

lize after the inputs have been applied will determine

the period of the clock that controls the memory ele-

ments. How do we determine this period?

In acyclic combinational circuits, this is relatively

easy since the length of the longest path in the cir-

cuit provides an upper bound on the period. This

bound is tight if there exists an input stimulus that

will actually sensitize a path of this length. If no such

stimulus exists then all paths of this length are said to

be false and in this case the bound is not tight. Func-

tional timing analysis techniques developed in recent

years (e.g. [10, 5, 11, 6, 1]) have been successful in de-

termining a tighter bound by taking into account the

functionality of the circuit elements and thus elimi-

nating the false paths during the analysis.

This section examines the problem of determining

the maximum delay of a cyclic combhational circuit

and provides several different techniques of comput-

ing an upper bound on the circuit delay. Of these,

only one is guaranteed to be tight. In the following

discussion, we assume that the cyclic circuit, C, un-

der consideration, has already been determined to be

combinational.

Let us examine the first of these bounds. From the
discussion accompanying Figure 7, we know that no

non-simple path from a primary input to a primary

output in the circuit is true. Each non-simple path is
blocked for each primary input assignment in at least

one of the following two parts:

● the cycle

● sub-path from the cycle to the primary output

A path is said to be blocked at a gate for some pri-

mary input assignment if there is an off-path input to

that gate with a controlling value, thus blocking prop-

agation of any event along the path beyond this gate.
Thus, a simple bound on the delay of the circuit is
the length of the longest simple path. Let us call this

bound the .CI bound. This bound is analogous to the

longest path bound for acyclic circuits. In the case of

acyclic circuits, this was easy to compute, in the cyclic

case, finding the length of the longest simple path is

NP-hard. While there has been significant practical
success in finding efficient heuristics for other NP-hard

problems in design automation, no successful heuris-

tics have been reported for this problem. A related

result in theoretical computer science points to the dif-

ficulty of even approximating the length of the longest

path by showing that this problem is NP-hard, even

for bounded degree graphs [7]. This leaves us with the
interesting and challenging proposition of finding effi-

cient heuristics for the longest simple path problem.

We are currently examining this issue. The LI bound

is not guaranteed to be tight, since the longest simple

path may not be true, there may exist no input stimu-

lus that sensitizes it. Thus, we need to determine the

length of the longest true simple path.

Computing the length of the longest true simple

path seems unmanageable. However, the equivalent

acyclic combinational circuit (subsequently referred to

as Al) shown in Figure 10 comes in handy here. It is

interesting to see the relationship between the sets of

paths in this acyclic circuit, P(A1), and the set of sim-

)

ple paths in the original cyclic circuit, P(C . P(A1) is

neither contained in, nor does it contain P C). To see

why this is so, P(A1) may have paths that correspond

to non-simple paths in the cyclic circuit. These are the

paths that traverse two copies of the same gate in the

acyclic version of the circuit. On the other hand P(A1)

may not have all the simple paths. Recall that the it-

erative computation described in the previous section

stopped after j iterations when the outputs stabilized.

Thus, while P(A1) is guaranteed to contain, for each

input assignment, one path such that this path gets

the stable final value to the output, it may not con-

tain all the simple paths. However, the length of the

longest path in P(A1) serves as a bound for the de-

lay since all outputs do stabilize to their final value

no later than this length. Let us call this bound the

& bound. However, the longest path in P(A1) may

not be true and hence this bound is not tight. Thus,

a tighter bound is the length of the longest true path

in P(A1), let us denote this as J23. Even this bound

is not tight. This follows from the following observa-

tion. For each input assignment for which the longest

paths in P(A1) get the stable values to the outputs,
there may a shorter simple path in P(C) that is not

contained in P(A1) that gets that value to the output

faster. Thus, the longest true paths in P(A1) may still

be false in P(C).

The longest true paths in P(C) can actually be

found using functional timing analysis in an acyclic

circuit. This acyclic circuit is similar to the one shown

in Figure 10, except that j is now replaced by k, (sub-

sequently referred to as A2). This guarantees that A2

contains all the simple paths of C. Let P(A2) be the

set of paths in this circuit. Now the longest true path

in P(A2) is the longest true simple path in P(C). This

bound, termed .C4 is a tight bound on the circuit de-

lay. Figure 11 summarizes the relationship between

these bounds. The only unknown relationship is the

one between .CI and L2.

We feel that in practice, Cl and LZ, will be tight
bounds, while C2 will be loose. Of these, we have es-

tablished techniques for computing L3. As mentioned

earlier, it will be interesting to see how these compare

in computation time to those that will be developed

for L~.

For the circuit in Figure 3, ,CI and ,C3 both pro-
vide the tight bound of the delay through three mul-

tiplexors and one adder and one shifter. L2, however,

returns the delay of five multiplexors and two adders

and two shifters.

624

L1 longest simple path in C

,C2 longest path in Al

L3 longest true path in Al

Z4 longest true path in A2

Figure 11: Alternate Bounds for Circuit Delay

m
All times are in seconds on a Sun 4/75GX.

Table 2: Experimental Results for Different Datapath

Widths

6 Implementation and Experiments

The iterative function computation using the dual-

rail encoding for ternary functions is very easy to im-

plement using a Binary Decision Diagram representa-

tion [3] for representing -f;. 1 and f: .0.

For delay bounds, we are currently examining

heuristics for computing the longest simple path in

cyclic circuits (the ,C1 bound). For the L3 bound, we

are using the functional timing analysis program pre-

sented in [1].

Very few examples are available for use as bench-

mark circuits for this purpose. Table 2 shows com-

putation time for the logical analysis using iterative

computation, as well as for computing the L3 bound

for different widths of the datapath circuit shown in

Figure 3 with a one-bit shift.

7 Current Related Work

This paper describes the analysis of cyclic combi-

national circuits. Since we know that cyclic combina-

tional circuits may be potentially smaller that their

acyclic versions, can we use any of the ideas devel-
oped in the analysis for logic synthesis of cyclic com-

binational circuits? In particular, can we incorporate

thk in a general logic synthesis environment, thus re-

moving the restriction that the circuits generated by

them need to be cyclic. Some preliminary ideas in that

direction have been developed and will be reported

shortly [9].

8 Acknowledgments

Thanks to Richard Rudell for pointing out the prac-

tical interest in this problem, and also for supplying

the examples shown in Figures 2 and 3. Thanks to

Ajai Kapoor for stimulating dkcussions on complex-

ity issues.

This research is supported by an NSF Research

Initiation Award and an IBM Faculty Development

Award.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

P. Ashar, S. Malik, and S. Rothweiler. Functional

timing analysis using ATPG. In Proceedings of the

European Design Automation Conference, February

1993.

R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli,

and A. Wang. MIS: A multiple-level logic optimiza-

tion system. IEEE Transactions on Computer-Aided

Design, pages 1062-1081, November 1987.

R. E. Bryant. Graph-Based Algorithms for Boolean

Function Manipulation. In IEEE Transactions on

Computers, volume C-35, pages 677–691, August

1986.

R. E. Bryant. Boolean analysis of MOS circuits. L%%??

Transactions on Computer-Aided Design, pages 634–

649, July 1987.

H. C. Chen and D. H. C. Du. Path sensitiza-

tion in critical path problem. IEEE Transactions

on Computer-Aided Design, pages 196–207, February

1993.

S. Devadas, K. Keutzer, and S. Malik. Delay com-

putation in combinational circuits: Theory and algo-

rithms. In Proceedings of the International Conference

on Computer-Aided Design, November 1991.

D. Karger, R. Motwani, and G. D. S. Ramkumar. On

approximating the longest path in a graph. Technical

report, Dept. of Computer Science, Stanford Univer-

sity, 1993.

W. H. Kautz. The necessity of closed loops in min-

imal combinational circuits. IEEE Transactions on

Computers, pages 162–164, February 1970.

S. Malik and P. Ashar. Synthesis and testing of cyclic

combinational circuits. Technical report, Dept. of

Electrical Engineering, Princeton University, 1993. In

Preparation.

P. C. McGeer and R. K. Brayton. Integrating func-

tional and temporal domains in logic design. Kluwer

Academic Publishers, 1991.

P. C. McGeer, A. Saldanha, R. K. Brayton, and

A. Sangiovanni-Vincent elli. Timing analysis and

delay-fault test generation using path recursive func-

tions. In Proceedings of the International Conference

on Computer-Aided Design, November 1991.

L. Stok. False loops through resource sharing.

In Proceedings of the International Conference on

Computer-Aided Design, pages 345–348, November

1992.

625

