
SAT-Based Model Checking Without Unrolling

Aaron R. Bradley

Dept. of Electrical, Computer & Energy Engineering
University of Colorado at Boulder

Boulder, CO 80309
bradleya@colorado.edu

Abstract. A new form of SAT-based symbolic model checking is de-
scribed. Instead of unrolling the transition relation, it incrementally gen-
erates clauses that are inductive relative to (and augment) stepwise ap-
proximate reachability information. In this way, the algorithm gradually
refines the property, eventually producing either an inductive strengthen-
ing of the property or a counterexample trace. Our experimental studies
show that induction is a powerful tool for generalizing the unreachability
of given error states: it can refine away many states at once, and it is
effective at focusing the proof search on aspects of the transition system
relevant to the property. Furthermore, the incremental structure of the
algorithm lends itself to a parallel implementation.

1 Introduction

Modern SAT-based model checkers unroll the transition relation and thus present
the SAT solver with large problems [2, 19, 16, 18]. We describe a new SAT-based
model checking algorithm that does not unroll the transition relation, that is nev-
ertheless complete, that is competitive with the best available model checkers [3],
and that can be implemented to take advantage of parallel and distributed pro-
cessors. The fundamental idea is to generate clauses that are inductive relative
to stepwise reachability information.

Section 2 introduces the vocabulary to discuss the algorithm. Section 3 re-
views how to generate an inductive subclause from a given clause, the technique
on which this new work is based [4]. Then Section 4 presents the algorithm at a
high level, while Section 6 describes it formally and proves its correctness.

An implementation of the algorithm, called ic3 (“Incremental Construction
of Inductive Clauses for Indubitable Correctness”), placed third at HWMCC’10
and is available for download at the author’s website [3]. Section 7 discusses the
critical optimizations. Section 8 empirically analyzes the runtime characteristics
of a parallel version of ic3.

2 Definitions

A finite-state transition system S : (x̄, I, T ) is described by a pair of propositional
logic formulas: an initial condition I(x̄) and a transition relation T (x̄, x̄′) over



a set of Boolean variables x̄ and their next-state primed forms x̄′ [6]. Applying
prime to a formula, F ′, is the same as priming all of its variables.

A state of the system is an assignment of Boolean values to all variables
x̄ and is described by a cube over x̄, which is a conjunction of literals, each
literal a variable or its negation. An assignment s to all variables of a formula
F either satisfies the formula, denoted s |= F , or falsifies it, denoted s 6|= F . If
s is interpreted as a state and s |= F , we say that s is an F -state. A formula F

implies another formula G, written F ⇒ G, if every satisfying assignment of F

satisfies G.
A clause is a disjunction of literals. A subclause d ⊆ c is a clause d whose

literals are a subset of c’s literals.
A trace s0, s1, s2, . . ., which may be finite or infinite in length, of a transi-

tion system S is a sequence of states such that s0 |= I and for each adjacent
pair (si, si+1) in the sequence, si, s

′
i+1 |= T . That is, a trace is the sequence of

assignments in an execution of the transition system. A state that appears in
some trace of the system is reachable.

A safety property P (x̄) asserts that only P -states (states satisfying P ) are
reachable. P is invariant for the system S (that is, S-invariant) if indeed only
P -states are reachable. If P is not invariant, then there exists a finite counterex-

ample trace s0, s1, . . . , sk such that sk 6|= P .
An inductive assertion F (x̄) describes a set of states that (1) includes all

initial states: I ⇒ F , and that (2) is closed under the transition relation:
F ∧ T ⇒ F ′. The two conditions are sometimes called initiation and conse-

cution, respectively. An assertion F is inductive relative to another assertion G

if condition (1) and a modified version of (2) hold: G∧F ∧T ⇒ F ′. An inductive
strengthening of a safety property P is a formula F such that F ∧P is inductive.

3 Review of Inductive Generalization

Previous work introduced a technique for discovering a minimal inductive sub-

clause of a given clause if one exists [4]. Such a clause (1) is a subclause of c, (2)
is inductive (possibly relative to known or assumed information G), and (3) is
minimal in that it does not contain any strict subclauses that are also inductive.

Inductive generalization of a cube s is the process of finding a minimal induc-
tive subclause d of ¬s, if one exists. The resulting subclause over-approximates
the set of reachable states while excluding s and all states that can reach s. In
practice, a minimal inductive subclause is typically substantially smaller than
the cube s from which it is extracted and excludes states that are not necessarily
related to s by T , which is why we say that the inductive subclause generalizes
that s is unreachable.

While the details of finding inductive subclauses are best left to the original
paper [4], an informal description of how to do so is in order. Suppose that we
wish to find a subclause d ⊆ c0 that is inductive relative to G, if one exists. First
consider consecution: G ∧ c0 ∧ T ⇒ c′0. If both this implication and initiation
hold, c0 is itself inductive. Otherwise, a counterexample state s exists. Form the



clause c1 = c0∩¬s by keeping only the literals that c0 and ¬s share. Iterate this
process until it converges upon some clause ci. If ci satisfies initiation, then let
d = ci; otherwise, c0 does not have an inductive subclause. This process is called
the down algorithm [4].

Now d ⊆ c0 is inductive, but it is not necessarily minimal — and in practice
it is large. Form d1 by dropping some literal of d, and apply down to d1. If down

succeeds, the result is a smaller inductive subclause; if it fails, try again with
a different literal. Continue until no literal can be dropped from the current
inductive subclause. The result is a minimal inductive subclause of c0. This
process is called the MIC algorithm; it can be accelerated using the up algorithm
[4]. Section 7 discusses optimizations to these procedures.

4 Informal Description

Consider a transition system S : (x̄, I, T ) and a safety property P . Our algorithm
decides whether P is S-invariant, producing an inductive strengthening if so or
a counterexample trace if not.

Let us first establish the core logical data structure. The algorithm incre-
mentally refines and extends a sequence of formulas F0 = I, F1, F2, . . . , Fk that
are over-approximations of the sets of states reachable in at most 0, 1, 2, . . . , k

steps. While major iterations of the algorithm increase k, minor iterations can
refine any i-step approximation Fi, 0 < i ≤ k. Each minor iteration conjoins one
new clause to each of F0, . . . , Fj for some 0 < j ≤ k, unless a counterexample is
discovered. (Adding a clause to F0 = I is useless, but it simplifies the discussion.)

Assuming that any clause conjoined to F0, . . . , Fj over-approximates j-step
reachability, this simple description implies that the sequence always obeys the
following properties: (1) I ⇒ F0 and (2) Fi ⇒ Fi+1 for 0 ≤ i < k. Actually,
letting clauses(Fi) be the set of clauses that comprise Fi, (2) can be more strongly
expressed as (2’) clauses(Fi+1) ⊆ clauses(Fi) for 0 ≤ i < k. The algorithm
guarantees two other relationships: (3) Fi ⇒ P for 0 ≤ i ≤ k, and (4) Fi ∧ T ⇒
F ′

i+1 for 0 ≤ i < k. If ever clauses(Fi) = clauses(Fi+1), then these properties
imply that Fi is an inductive strengthening of P .

With this logical data structure and its intended invariants in mind, we now
turn to the workings of the algorithm. Initially the satisfiability of I ∧ ¬P and
I ∧ T ∧ ¬P ′ are checked to detect 0- and 1-step counterexamples.

Now let us suppose that we are in major iteration k > 0, so that sequence
F0, F1, . . . , Fk satisfies properties (1)-(4). Is it the case that Fk ∧ T ⇒ P ′?

Suppose so. Then the extended sequence F0, F1, . . . , Fk, Fk+1 = P satisfies
properties (1)-(4). We can move onto major iteration k+1. Additionally, for any
clause c ∈ Fi, 0 ≤ i ≤ k, if Fi∧T ⇒ c′ and c 6∈ clauses(Fi+1), then c is conjoined
to Fi+1. If during the process of propagating clauses forward it is discovered that
clauses(Fi) = clauses(Fi+1) for some i, the proof is complete: P is invariant.

Now suppose not: Fk ∧ T 6⇒ P ′. There must exist an Fk-state s that is one
step from violating P . What is the maximum i, 0 ≤ i ≤ k, such that ¬s is
inductive relative to Fi? If ¬s is not even inductive relative to F0, then P is



not invariant, for s has an I-state predecessor. But if P is invariant, then ¬s

must be inductive relative to some Fi. We then apply inductive generalization
to s: a minimal subclause c ⊆ ¬s that is inductive relative to Fi is extracted as
described in Section 3. Because the inductive generalization is performed relative
to Fi, this process must succeed. After all, ¬s is already inductive relative to Fi.

The relatively inductive clause c is now conjoined to each of F0, . . . , Fi+1.
(Why to Fi+1? Fi ∧ c ∧ T ⇒ c′ holds by the construction of c, so doing so
maintains property (4).) Notice that because c′ is not, in general, simply an
implicate of Fi∧T , c may actually provide new information to Fℓ for some ℓ < i,
in addition to definitely strengthening Fi+1. That clauses are formed through
inductive generalization is what distinguishes this algorithm from SAT-based
symbolic model checking [15], and it is also what makes the algorithm effective.

(In practice, because c may actually be inductive relative to Fj for some j > i

even though ¬s is not, we attempt to push it forward as far as possible, that is,
until Fj ∧ c∧ T ⇒ c′ but Fj+1 ∧ c∧ T 6⇒ c′. However, this variation complicates
the discussion, so we do not consider it here or in Section 6.)

If i ≥ k − 1, then c was conjoined to Fk, eliminating s as an Fk-state.
Subsequent queries of Fk ∧ T ⇒ P ′ must either indicate that the implication
holds or produce different states than s.

But it is of course possible that i < k − 1. In this case, s is still an Fk-state.
How, then, can we proceed?

Consider this question: Why is ¬s inductive relative to Fi but not relative
to Fi+1? There must be a predecessor, t, of s that is an Fi+1-state but not an
Fi-state. Now if i = 0, t may have an I-state as a predecessor, in which case P

would not be invariant. But if i > 0, then because of property (4), ¬t must be
inductive relative to at least Fi−1. (Otherwise there would exist an Fi−1-state u

that is a predecessor to t; but by (4), t would then have to be an Fi-state.) And
even if i = 0, t may nevertheless be inductive relative to some Fj , 0 ≤ j ≤ k.

Hence we recur on t. The new goal is to produce a clause that is inductive
relative to Fk and that eliminates t. And indeed, unless P is not invariant, a
clause is eventually added to Fi+1 that eliminates t, possibly after considering
one or more predecessors of t. Then both s and t can be considered with respect
to the now stronger over-approximation Fi+1. This process of considering pre-
decessors recursively continues until ¬s is finally inductive relative to Fk (unless
a counterexample trace is discovered first). In practice, it is also worthwhile to
find subclauses inductive relative to Fk for every other state considered dur-
ing the recursion, as the resulting clauses may be mutually inductive but not
independently inductive. Doing so benefits the next major iteration.

With s no longer an Fk-state, Fk ∧ T ⇒ P ′ is considered again.

5 Related Work

SAT-based unbounded model checking constructs clauses via quantifier elimi-
nation; additionally, for a safety property P , it computes the weakest inductive



strengthening of P [15]. In our algorithm, induction is a means not only for gen-
eralizing from states but also for abstracting the system based on the property.

Our algorithm can be seen as an instance of predicate abstraction/refinement
[13, 5]: the minor iterations generate new predicates (clauses) while the major
iterations propagate them. If the current clauses are insufficient for convergence
to an inductive strengthening assertion, the next major iteration generates new
clauses that enable propagation to continue at least one additional step.

The stepwise over-approximation structure of F0, F1, F2, . . . , Fk is similar to
that of interpolation-based model checking (ITP), which uses an interpolant
from an unsatisfiable K-step BMC query to compute the post-image approxi-
mately [16]. All states in the image are at least K − 1 steps away from violating
the property. A larger K refines the image by increasing the minimum distance
to violating states. In our algorithm, if the frontier is at level k, then Fi, for
0 ≤ i ≤ k, contains only states that are at least k − i + 1 steps from violating
the property. As k increases, the minimum number of steps from Fi-states to
violating states increases. In both cases, increasing k (in ours) or K (in ITP)
sufficiently for a correct system yields an inductive assertion. However, the algo-
rithms differ in their underlying “technology”: ITP computes interpolants from
K-step BMC queries, while our algorithm uses inductive generalization of cubes,
which requires only 1-step BMC queries for arbitrarily large k.

Our work could in principle be applied as a method of strengthening k-
induction [19, 18, 1, 20]. However, k-induction would simply eliminate the states
that are easiest to inductively generalize — since they have short predecessor
chains — so we do not recommend this combination.

6 Formal Presentation and Analysis

We present the algorithm and its proof of correctness simultaneously with an-
notated pseudocode in Listings 1.1-1.4 using the classic approach to program
verification [12, 14]. In the program text, @pre and @post introduce a function’s
pre- and post-condition, respectively; @assert indicates an invariant at a location;
and @rank indicates a ranking function represented as the maximum number of
times that the loop may iterate. As usual, a function’s pre-condition is over its
parameters while its post-condition is over its parameters and its return value,
rv. For convenience, the system S : (x̄, I, T ) and property P are assumed to be
in scope everywhere. Also, some assertions are labeled and subsequently refer-
enced in annotations. All assertions are inductive, but establishing the ranking
functions requires additional reasoning, which we provide below.

Listing 1.1 presents the top-level function prove, which returns true if and
only if P is S-invariant. First it looks for 0-step and 1-step counterexample traces.
If none are found, F0, F1, F2, . . . are initialized to assume that P is invariant,
while their clause sets are initialized to empty. As a formula, each Fi for i > 0 is
interpreted as P ∧

∧
clauses(Fi). Then it constructs the sequence of k-step over-

approximations starting with k = 1. On each iteration, it first calls check(k)
(Listing 1.2), which strengthens Fi for 1 ≤ i ≤ k so that Fi-states are at least



Listing 1.1. The main function

1{@post : rv i f f P i s S−i n va r i an t }
2boo l prove ( ) :
3i f sat (I ∧ ¬P ) or sat (I ∧ T ∧ ¬P ′ ) :
4return fa l se
5F0 := I , clauses(F0) := ∅
6Fi := P , clauses(Fi) := ∅ for a l l i > 0
7for k := 1 to . . . :

8{@rank : 2|x̄| + 1
9@assert (A ) :
10(1) ∀ i ≥ 0, I ⇒ Fi

11(2) ∀ i ≥ 0, Fi ⇒ P

12(3) ∀ i > 0, clauses(Fi+1) ⊆ clauses(Fi)
13(4) ∀ 0 ≤ i < k, Fi ∧ T ⇒ F ′

i+1

14(5) ∀ i > k, |clauses(Fi)| = 0 }
15i f not check (k ) :
16return fa l se
17propagate (k )
18i f clauses(Fi) = clauses(Fi+1) for some 1 ≤ i ≤ k :
19return true

k− i+1 steps away from violating P . Next it calls propagate(k) (Listing 1.2) to
propagate clauses forward through F1, F2, . . . , Fk+1. If this propagation yields
any adjacent levels Fi and Fi+1 that share all clauses, then Fi is an inductive
strengthening of P , proving P ’s invariance.

While the assertions are inductive, an argument needs to be made to justify
the ranking function. By A(3), the state sets represented by F0, F1, . . . , Fk are
nondecreasing with level. Given propagate’s post(2), avoiding termination at line
19 requires that they be strictly increasing with level, which is impossible when
k exceeds the number of possible states. Hence, k is bounded by 2|x̄| + 1, and,
assuming that the called functions always terminate, prove always terminates.

For a given level k, check(k) (Listing 1.2) iterates until Fk excludes all states
that can lead to a violation of P in one step. Suppose s is one such state.
It is eliminated by, first, inductively generalizing ¬s relative to Fn (for some
0 ≤ n ≤ k) through a call to inductive(s, k − 2, k) (Listing 1.3) and, second,
pushing for a generalization at level k through a call to push({(n + 1, s)}, k)
(Listing 1.4). At the end of the iteration, Fk excludes s (assertion C). This
progress implies that the loop can iterate at most as many times as there are
possible states, yielding check’s ranking function.

The functions in Listing 1.3 perform inductive generalization relative to some
Fi. If min < 0, s might have an I-state predecessor; hence the check at line 69.

The push algorithm (Listing 1.4) is the key to “pushing” inductive generaliza-
tion to higher levels. The insight is simple: if a state s is not inductive relative to
Fi, apply inductive generalization to its Fi-state predecessors. The complication
is that this recursive analysis must proceed in a manner that terminates despite
the presence of cycles in the system’s state graph. To achieve termination, a set



Listing 1.2. The check and propagate functions

20{@pre :
21(1) A

22(2) k ≥ 1
23@post :
24(1) A.1−3
25(2) i f rv then ∀ 0 ≤ i ≤ k, Fi ∧ T ⇒ F ′

i+1

26(3) ∀ i > k + 1, |clauses(Fi)| = 0
27(4) i f ¬rv then there e x i s t s a counterexample t race }
28boo l check (k : l e v e l ) :
29try :
30while sat (Fk ∧ T ∧ ¬P ′ ) :

31{@rank : 2|x̄|

32@assert (B ) :
33(1) A.1−4
34(2) ∀ c ∈ clauses(Fk+1), Fk ∧ T ⇒ c′

35(3) ∀ i > k + 1, |clauses(Fi)| = 0 }
36s := the predecessor extracted from the witness
37n := inductive (s , k − 2 , k )
38push ({(n + 1, s)} , k )
39{@assert (C ) : s 6|= Fk }
40return true
41except Counterexample :
42return fa l se
43

44{@pre :
45(1) A.1−3
46(2) ∀ 0 ≤ i ≤ k, Fi ∧ T ⇒ F ′

i+1

47(3) ∀ i > k + 1, |clauses(Fi)| = 0
48@post :
49(1) pre
50(2) ∀ 0 ≤ i ≤ k, ∀c ∈ clauses(Fi) , i f Fi ∧ T ⇒ c′ then c ∈ Fi+1 }
51vo i d propagate (k : l e v e l ) :
52for i := 1 to k :
53{@assert : ∀ 0 ≤ j < i, ∀c ∈ clauses(Fj) , i f Fj ∧ T ⇒ c′ then c ∈ Fj+1 }
54for each c ∈ clauses(Fi) :
55{@assert : pre }
56i f not sat (Fi ∧ T ∧ ¬c′ ) :
57clauses(Fi+1) := clauses(Fi+1) ∪ {c}

states of pairs (i, s) is maintained such that each pair (i, s) ∈ states represents
the knowledge that (1) s is inductive relative to Fi−1, and (2) Fi excludes s.
The loop in push always selects a pair (n, s) from states such that n is minimal
over the set. Hence, none of the states already represented in states can be a
predecessor of s at level n.

Formally, termination of push is established by the inductive assertions D(2),
which asserts that the set of states represented in states does not decrease



Listing 1.3. Stepwise-relative inductive generalization

58{@pre :
59(1) B

60(2) min ≥ −1
61(3) i f min ≥ 0 then ¬s i s i nduc t i v e r e l a t i v e to Fmin

62(4) there i s a t race from s to a ¬P−s t a t e
63@post :
64(1) B

65(2) min ≤ rv ≤ k , rv ≥ 0
66(3) s 6|= Frv+1

67(4) ¬s i s i nduc t i v e r e l a t i v e to Frv }
68l e v e l inductive (s : s t a t e , min : l e v e l , k : l e v e l ) :
69i f min < 0 and sat (F0 ∧ T ∧ ¬s ∧ s′ ) :
70raise Counterexample
71for i := max(1 , min + 1) to k :
72{@assert :
73(1) B

74(2) min < i ≤ k

75(3) ∀ 0 ≤ j < i , ¬s i s i nduc t i v e r e l a t i v e to Fj }
76i f sat (Fi ∧ T ∧ ¬s ∧ s′ ) :
77generate (s , i − 1 , k )
78return i − 1
79generate (s , k , k )
80return k

81

82{@pre :
83(1) B

84(2) i ≥ 0
85(3) ¬s i s i nduc t i v e r e l a t i v e to Fi

86@post : (1) B , (2) s 6|= Fi+1 }
87vo i d generate (s : s t a t e , i : l e v e l , k : l e v e l ) :
88c := subclause of ¬s that is inductive relative to Fi

89for j := 1 to i + 1 :
90{@assert : B }
91clauses(Fj) := clauses(Fj) ∪ {c}

(statesprev represents states’s value on the previous iteration or, during the first
iteration, upon entering the function); E, which asserts that the new state p is
net yet represented in states; and F , which asserts that the level associated with
a state can only increase. Given that each iteration either adds a new state to
states or increases a level for some state already in states and that levels peak
at k + 1, the number of iterations is bounded by the product of k + 1 and the
size of the state space.

Listings 1.1-1.4 and the termination arguments yield total correctness:

Theorem 1. For finite transition system S : (x̄, I, T ) and safety property P ,

the algorithm terminates, and it returns true if and only if P is S-invariant.



Listing 1.4. The push function

92{@pre :
93(1) B

94(2) ∀ (i, q) ∈ states , 0 < i ≤ k + 1
95(3) ∀ (i, q) ∈ states , q 6|= Fi

96(4) ∀ (i, q) ∈ states , ¬q i s i nduc t i v e r e l a t i v e to Fi−1

97(5) ∀ (i, q) ∈ states , there i s a t race from q to a ¬P−s t a t e
98@post :
99(1) B

100(2) ∀ (i, q) ∈ states , q 6|= Fk }
101vo i d push (states : ( l e v e l , s t a t e ) set , k : l e v e l ) :
102while true :

103{@rank : (k + 1)2|x̄|

104@assert (D ) :
105(1) pre
106(2) ∀ (i, q) ∈ statesprev, ∃j ≥ i, (j, q) ∈ states }
107(n, s) := choose from states , minimizing n

108i f n > k : return
109i f sat (Fn ∧ T ∧ s′ ) :
110p := the predecessor extracted from the witness
111{@assert (E ) : ∀ (i, q) ∈ states , p 6= q }
112m := inductive (p , n − 2 , k )
113states := states ∪ {(m + 1, p)}
114else :
115m := inductive (s , n , k )
116{@assert (F ) : m + 1 > n }
117states := states \ {(n, s)} ∪ {(m + 1, s)}

A variation exists that is perhaps more satisfying conceptually. Recall that
inductive and generate (Listing 1.3) together generate a subclause of ¬s that
is inductive relative to Fi, where i is the greatest level for which ¬s is inductive
relative to Fi. It is possible to find the highest level j ≥ i for which ¬s has
a subclause that is inductive relative to Fj even if ¬s is not itself inductive
relative to Fj (in which case j > i). However, in practice, this variation requires
more time on designs with many latches. Whereas the unsatisfiable core of the
query Fi−1 ∧ T ∧ ¬s ∧ s′ at line 76 can be used to reduce s, often significantly,
before applying inductive generalization (see Section 7), no such optimization is
possible for the variation.

7 Single-Core Implementation

Our submission to HWMCC’10, ic3, placed third in the “unsatisfiable” cate-
gory, third overall, and solved 37 more benchmarks than the 2008 winner [3].
The data are publicly available at http://fmv.jku.at/hwmcc10. The competi-
tion version of ic3 is available at http://ecee.colorado.edu/~bradleya. The
interested reader may use the -v option to generate verbose output that includes



all generated clauses and their levels as well as runtime statistics. We discuss
the implementation details of ic3 in this section.

We implemented the algorithm, AIG sweeping [7], and conversion of the
transition relation to CNF based on technology mapping [9] in O’Caml. The
preprocessor of MiniSAT 2.0 is applied to further simplify the transition relation
[8, 9]. The time spent in preprocessing the transition relation is amortized over
thousands to millions of 1-induction SAT instances in a typical analysis.

One implementation choice that may seem peculiar is that we used a modi-
fied version of ZChaff for SAT-solving [17]. The most significant modification was
to change the main data structure and algorithm for BCP to be like MiniSAT
[10]. Why did we use such an outdated library? ZChaff offers full incremental
functionality: clauses can be pushed and popped, which is necessary for find-
ing an inductive subclause. While this functionality can be simulated in more
recent solvers [11], each push/pop iteration requires a new literal. Given that
hundreds to thousands of push/pop cycles occur per second in our analysis, each
involving clauses, it seems that the amount of garbage that would accumulate in
the simulated approach would be prohibitive. Thus we elected to use a library
with full incremental capability. The consequence is that ZChaff caused timeouts
on the following benchmarks during HWMCC’10: bobaesdinvdmit, bobsmfpu,
bobpcihm, and bobsmminiuart. Otherwise, the percentage of time spent in SAT
solving varies from as low as 20% to as high as 85%. Benchmarks on which SAT
solving time dominates would clearly benefit from a better incremental solver.

We highlight important implementation decisions. The most significant opti-
mization is to extract the unit clauses of an unsatisfiable core whenever possible.
If d is a subclause of c and F ∧ c ∧ T ⇒ d′, then d is an inductive subclause
as long as it also satisfies initiation. If the initial state is defined such that all
latches are 0 (as in HWMCC’10 [3]) and d does not satisfy initiation, simply
restore a negative literal from c. This situation occurs in the following contexts:
(1) in the inductive algorithm, from the unsatisfiable query that indicates that
¬s is inductive relative to Fi when ¬s is not inductive relative to Fi+1; (2) in the
down algorithm [4], from the (final) unsatisfiable query indicating an inductive
subclause; (3) in the up algorithm; and (4) in propagate, during propagation of
clauses between major iterations.

In the implementation of inductive generalization (algorithm MIC [4]), we
use a threshold to end the search for a minimal inductive subclause. If down is
applied to three subclauses of c, each formed by removing one randomly chosen
literal, without success, then c is returned. While c may not be minimal — that
is, some d ⊂ c may also be inductive — it is typically sufficiently strong; and
the search is significantly faster.

We use a stepwise cone of influence (COI) [2] to reduce initial cubes: if a
state s is i steps away from a violating state, the initial clause c ⊆ ¬s is pruned
to contain only the literals corresponding to non-input latches in the i-step COI.
While j such that c is inductive relative to Fj may be less than ℓ such that ¬s is
inductive relative to Fℓ, the generated clause is more relevant in explaining why
states similar to s are unreachable.



We reduce clauses across levels by subsumption between major iterations:
clause c at level i subsumes clause d at level j if c subsumes d and i ≥ j.

To minimize memory usage, a single SAT manager is used for computing
consecution. A level-specific literal is added to each generated clause. Clauses at
and above level i are activated when computing consecution relative to Fi.

An initial set of simulation runs yields candidate equivalences between
latches. These equivalences are then propagated across the k-step approxima-
tions between major iterations. We added this analysis because we found that a
few benchmarks are easily solved once key equivalences are discovered, yet the
pure analysis is poor at discovering these equivalences. The simulations make
this analysis inexpensive when it is not effective. This binary clause analysis fits
well with the overall philosophy of generating stepwise-relative inductive clauses.

When searching for inductive subclauses, the order in which literals are con-
sidered should not be arbitrary and static. An arbitrary static ordering can yield
poor results. We tried various heuristics for dynamically and intelligently order-
ing the literals; none were particularly effective. The one that we used in the
competition version of ic3 orders the literals according to their occurrence in
the states set of push: the negation of literals that appear more frequently are
preferred, as a clause with such literals is relevant to many of the states in states.
That said, the only definite claim is that changing the variable ordering is su-
perior to using an arbitrary static ordering. We have not investigated whether
well-chosen static orderings might yield performance gains.

Besides time and memory data, other interesting attributes include (1) the
maximum k, (2) the number of generated clauses, (3) the number of clauses
in the final proof, and (4) the number of SAT calls. Here are typical approxi-
mate data for several benchmarks, where the benchmarks are ordered according
to increasing runtime and the data are presented in the order specified above:
kenflashp01, 2, 26, 23, 200; intel006, 9, 2K, 760, 27K; intel055, 18, 2K,
350, 27K; pdtvisns3p00, 14, 4K, 1K, 135K; nusmvreactorp2, 140, 18K, 1500,
700K; bjrb07amba10andenv, 6, 450, 260, 11K. Notice how the maximum k for
nusmvreactorp2 is so much greater than for the other benchmarks, suggesting
that long traces must be examined to establish its property inductively. An-
other reason why a benchmark can exhibit a relatively large maximum k is that
the design has a long initialization phase before the actual interesting behav-
ior becomes apparent. Many of the intel benchmarks exhibit this behavior:
the analysis seems to really begin when k reaches 35. The reader is invited to
download ic3 and use the -v option to explore these quantities further.

8 Parallel Implementation

Converting the implementation from sequential to parallel is straightforward.
The overall model is of independent model checkers sharing information. Each
time a process generates a clause c at level i, it informs a central server via
the tuple (c, i) and receives in return a list of clause-level tuples generated since
its last communication. To avoid one source of duplicated effort, it uses the



new information to syntactically prune its states set. During push phases, each
process pushes a subset of the clauses based on hashing modulo the number
of total processes, and the processes proceed in lockstep, level by level. There
are additional communications necessary to handle exceptional situations such
as the discovery of a counterexample. Processes attempt to avoid discovering
the same information simultaneously simply through exploiting the randomness
in the ZChaff implementation, although rediscovery occurs in practice at the
beginning and ending of major iterations.

How well does the parallel implementation scale with available cores? To
investigate this question, we selected eight benchmarks from the competition
that are difficult but possible for the non-parallel version: Intel benchmarks 20,
21, 22, 23, 24, 29, 31, and 34. We ran the non-parallel and parallel implementa-
tions on four Quad Core i5-750/2.66GHz/8MB-cache machines with 8GB, DDR3
non-ECC SDRAM at 1333MHz, running 64-bit Ubuntu 9.10. One process was
arranged as a single process on an otherwise mostly idle machine; four processes
were arranged as one process per machine; eight processes were arranged as two
processes per machine; and twelve processes were arranged as three processes per
machine. Unfortunately, memory latency increased significantly with the num-
ber of processes per machine so that the twelve-process configuration was not
necessarily an improvement on the eight-process configuration in terms of the
system-wide number of SAT problems solved per second.

Each benchmark was analyzed eight times by each configuration, with a
timeout of two hours (7200 seconds). Figure 1 presents the results in eight graphs
that plot running times against the number of processes. The numbers adjacent
to dots at 7200 indicate the number of timeouts.

Every benchmark benefits from additional cores. One explanation, however,
is simply that the parallelism reduces variance. The high variability of the single-
process implementation may be a result of “lucky” discoveries of certain clauses
that yield major progress toward proofs. Runs that fail to make these discoveries
early can take significantly longer than those that do. To explore this possibil-
ity, we set up the following configuration: eight non-communicating processes,
where the first to finish causes the others to terminate. In other words, the min-
imum time is taken from eight independent runs, except that all are executed
simultaneously, thus experiencing the memory latency of the eight-process com-
municating configuration. The results are shown in Figure 2(a).

The data show that some performance gain can indeed be attributed to a
reduction in variance. However, comparing Figures 1 and 2 for each benchmark
indicate that this reduction in variance cannot explain all of the performance
gain. In particular, the standard eight-process parallel version is significantly
faster on benchmarks 23, 24, and 29. Except on benchmark 22, for which the
data are inconclusive, it is faster on the other benchmarks as well.

Unfortunately, saturation is also possible: at some number of processes, the
rate of co-discovery of (redundant) information is such that additional processes
do not improve runtime. For example, the performance that benchmarks 31 and



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  2  4  6  8  10  12

intel020

  4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  2  4  6  8  10  12

intel021

  6   3   1   1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  2  4  6  8  10  12

intel022

  8   6   6   6

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  2  4  6  8  10  12

intel023

  7   1   1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  2  4  6  8  10  12

intel024

  4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  2  4  6  8  10  12

intel029

  8   1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  2  4  6  8  10  12

intel031

  1

 0

 500

 1000

 1500

 2000

 2500

 0  2  4  6  8  10  12

intel034

Fig. 1. Number of communicating processes vs. time (in seconds)

34 gain from the four-process configuration is not improved upon with additional
processes. Fortunately, the additional processes did not yield worse performance.

Given these results, we ran the twelve-process communicating configuration
on the benchmarks that ic3 failed to solve during HWMCC’10. Of those, we
extracted the benchmarks that were proved to be unsatisfiable and analyzed



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

20 21 22 23 24 29 31 34

8 independent processes

  1   7   7   8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

bob05
bob1u05cu

bobsmi2c

bobsmoci

mentorbm1p05

mentorbm1p07

pdtswvqis10x6p1

pdtswvqis8x8p1

pdtswvroz10x6p1

pdtswvroz8x8p2

pdtswvtma6x4p2

pdtswvtma6x6p1

nusmvqueue

pdtpmsns3

pdtvissfeistel

cmudme1

unsolved by ic3

  1   2   1   3   1   1

(a) (b)

Fig. 2. Benchmarks vs. time

them four times each with a timeout of one hour (3600 seconds), producing the
data in Figure 2(b) (which excludes data for the Intel benchmarks). Figures 1
and 2(b) indicate that simply providing more cores to ic3 would likely yield at
least twelve additional proofs within the competition time limit.

We do not provide data for satisfiable benchmarks because the algorithm is
not particularly suited for finding counterexamples. We are investigating ideas
based on inductive clause generation for addressing the satisfiable case.

9 Conclusion

The performance of ic3 in HWMCC’10 shows that the incremental generation
of stepwise-relative inductive clauses is a promising new approach to symbolic
model checking. It is amenable to simple yet effective parallelization (Section 8).

Why does this algorithm work so well? Here we are forced to speculate. Con-
sider a clause c. Predecessors to c-states are likely to look similar to c-states — or
even be c-states. If not all predecessors are c-states, they are perhaps sufficiently
similar that dropping a few literals from c will yield an inductive clause d. This
reasoning motivates the inductive generalization algorithm (Section 3), and it
succeeds on some benchmarks that are hard for other methods [4]. However, on
state-spaces that violate this observation, the method fails. The framework of
stepwise sets F0, ..., Fk offers a new possibility: if inductive generalization fails
relative to Fi, it can be attempted in the more restricted context of Fi−1. Sub-
sequent discovery of additional clauses can yield a set of mutually (relatively)
inductive clauses that are not independently (relatively) inductive. They are
propagated forward together.

Because the algorithm eschews the unrolling of the transition relation, its
demands on a SAT solver differ from those of other SAT-based methods. Han-
dling many incremental queries well is more important than quickly solving large
problems. A SAT solver ideal for this style of model checking would allow multi-
threaded access. Threads would share a core set of constraints into which clauses
could be added but not removed. Thread-local managers would handle pushes
and pops in thread-local memory.



The current algorithm is most suited for finding proofs. Ongoing research
includes exploring how inductive clause generation can be used to accelerate
finding counterexamples. Another direction for research is to apply the ideas of
stepwise-relative inductive generalization to an infinite-state setting.

References

1. Awedh, M., and Somenzi, F. Automatic invariant strengthening to prove prop-
erties in bounded model checking. In DAC (2006), ACM Press, pp. 1073–1076.

2. Biere, A., Cimatti, A., Clarke, E. M., and Zhu, Y. Symbolic model checking
without BDDs. In TACAS (London, UK, 1999), Springer-Verlag, pp. 193–207.

3. Biere, A., and Claessen, K. Hardware model checking competition. In Hardware
Verification Workshop (2010).

4. Bradley, A. R., and Manna, Z. Checking safety by inductive generalization of
counterexamples to induction. In FMCAD (2007).

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM 50, 5 (2003),
752–794.

6. Clarke, E., Grumberg, O., and Peled, D. Model Checking. MIT Press, 2000.
7. Eén, N. Cut sweeping. Tech. rep., Cadence, 2007.
8. Eén, N., and Biere, A. Effective preprocessing in SAT through variable and

clause elimination. In SAT (2005).
9. Eén, N., Mishchenko, A., and Sörensson, N. Applying logic synthesis for

speeding up SAT. In SAT (2007), pp. 272–286.
10. Eén, N., and Sörensson, N. An extensible SAT-solver. In SAT (2003).
11. Eén, N., and Sörensson, N. Temporal induction by incremental SAT solving.

In BMC (2003).
12. Floyd, R. W. Assigning meanings to programs. In Symposia in Applied Mathe-

matics (1967), vol. 19, American Mathematical Society, pp. 19–32.
13. Graf, S., and Saidi, H. Construction of abstract state graphs with PVS. In

CAV (June 1997), O. Grumberg, Ed., vol. 1254 of LNCS, Springer, pp. 72–83.
14. Hoare, C. A. R. An axiomatic basis for computer programming. Communications

of the ACM 12, 10 (October 1969), 576–580.
15. McMillan, K. L. Applying SAT methods in unbounded symbolic model checking.

In CAV (2002), vol. 2404 of LNCS, Springer-Verlag, pp. 250–264.
16. McMillan, K. L. Interpolation and SAT-based model checking. In CAV (2003),

vol. 2725 of LNCS, Springer, pp. 1–13.
17. Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S.

Chaff: Engineering an Efficient SAT Solver. In DAC (2001).
18. Moura, L. D., Ruess, H., and Sorea, M. Bounded model checking and induc-

tion: From refutation to verification. In CAV (2003), Springer-Verlag, pp. 14–26.
19. Sheeran, M., Singh, S., and St̊almarck, G. Checking safety properties using

induction and a SAT-solver. In FMCAD (2000), pp. 127–144.
20. Vimjam, V. C., and Hsiao, M. S. Fast illegal state identification for improving

SAT-based induction. In DAC (2006), ACM Press, pp. 241–246.


