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Abstract—We present SATSEQ, a timing-aware ATPG system
for small-delay faults in non-scan circuits. The tool identifies
the longest paths suitable for functional fault propagation and
generates the shortest possible sub-sequences per fault. Based
on advanced model-checking techniques, SATSEQ provides de-
tection of small-delay faults through the longest functional paths.
All test sequences start at the circuit’s initial state; therefore,
overtesting is avoided. Moreover, potential invalidation of the
fault detection is taken into account. Experimental results show
high detection and better performance than scan testing in terms
of test application time and overtesting-avoidance.

I. INTRODUCTION

In the test of sequential circuits, deterministic sequential
test pattern generation has long been considered too hard and
hence has not been employed in most practical applications.
Thus, despite the hardware overhead introduced by scan-based
techniques, these have become the standard methodology.

However, scan-based techniques bear more drawbacks than
just the hardware overhead introduced by the use of scan chains.
For instance, scan-based testing in general is expensive in
power consumption due to the large number of shift operations,
which result in excessive circuit activity during the scan-in and
scan-out phases. In fact, the application of scan patterns may
consume up to thirty times as much power as the functional
mode’s peak power, which can lead to damage or to yield
loss due to power droop that would not occur in functional
mode [1]. Peak power and toggling rates can be reduced by
using gated scan cells [2], thus precluding switching activity
during scan shifting phases, by partitioning the scan chains [3],
or by using dedicated low-power scan operations [4]; yet these
techniques either lead to increased hardware costs or increase
test application time.

Furthermore, power consumption is an issue not only during
test application, but also in functional mode, as the test circuitry
(e.g. scan flip-flops – these are bigger and draw more power
than normal flip-flops) remains active after the testing has taken
place. Additionally the non-functional scan enable signal needs
to be routed to all scan flip-flops requiring considerable routing
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area. These issues are becoming critical in extra low power
designs such as implantable medical devices.

The gain in importance of security concerns [5], [6],
especially in the context of cryptochips [7], has identified
the security threat posed by the scan infrastructure as another
serious shortcoming of scan-based test. For instance, [8] shows
that scan chains can be used as a side channel to recover
keys from a hardware implementation of the Data Encryption
Standard. Existing countermeasures like making the scan
circuitry unusable after the production test [9], [10], as well
as more sophisticated protection techniques like scan-chain
scrambling [11] or permission-based security [12], [13], bring
about additional hardware overhead that makes them impracti-
cal for large designs in which area is a concern. Furthermore,
diagnosis may be compromised by these techniques. Some
approaches rely on partial scan only [14], but the security
threat is still present.

For all these reasons, several authors have worked on
methods that do not require scan. [15] presents a modification
of the D-algorithm [16] where the forward propagation is
replaced by predictions based on the so-called driveability
of the primary outputs. Similarly, [17] combines elements of
PODEM [18] and FAN [19] with learning techniques that
allow the application of the algorithm to several time frames.
[20] extends PODEM by an initial estimation of the number
of required time frames, and it considers the targeted fault’s
effects during the initialization phase.

Later approaches adopt the use of heuristic optimization
algorithms, including genetic optimization [21], [22], in order
to cope with the complexity of the sequential-ATPG problem.
The test generation system MIX [23] combines deterministic,
state-driven and genetic-optimization-based test generation in
order to achieve higher fault coverages, while the ATPG method
PROPTEST [24] uses a combination of static test sequence
compaction and several sequence extension techniques. In [25],
a symbolic fault simulator is successfully integrated into a
genetic-algorithm environment, thus producing shorter test
sequences than those generated by other similar approaches.
In [26], so-called spectral techniques are used. First, a set
of random test patterns is generated. Then, in an iterative
process, unsuitable patterns are filtered out by simulation and
new patterns are constructed by transformations applied to the
remaining patterns based on a mathematical analysis of their
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characteristics. In [27], this approach is enhanced by the use of
a selfish-gene algorithm, i.e. a variation of genetic optimization.
Similar spectral techniques based on the wavelet transform are
also employed in [28].

All these works have in common that they consider only
stuck-at faults. However, timing-related fault models are partic-
ularly important for the test of cryptochips, as one important
type of attack consists in reducing VDD to induce such faults.

In this work, we present the timing-aware ATPG framework
SATSEQ (SAT-based SEQuential test generator) for small-
delay faults in non-scan circuits. To the best of our knowledge,
this is the first sequential ATPG for small-delay-faults; previ-
ous approaches considered only stuck-at faults. Furthermore,
SATSEQ relies solely on deterministic algorithms for path
initialization and propagation, without using randomness-based
or other heuristic methods. The tool benefits from the tight
integration between two approaches. The first one is a SAT-
based approach for the search of longest sensitizable paths
(PHAETON) [29]. It relies on powerful learning techniques
that have recently been successfully employed not only in
test generation for hard-to-detect faults in traditional fault
models [30], [31], but also in complex test-generation scenarios,
even including additional optimization constraints [32], [33],
[34]. The second is an advanced model checker that relies
on the theory of Craig interpolation [35], [36] in order to
reduce the number of time steps that need to be considered to
solve a model-checking instance (Craig Interpolation Prover –
CIP) [37].

A first straightforward combination of these two techniques
was used for reachability analysis of pre-defined sensitizable
paths [38]. In contrast, SATSEQ identifies the longest paths
suitable for functional fault activation and propagation to an
observable output. Then, connecting test sequences guaranteed
to be as short as possible are generated, such that the resulting
concatenated test sequence sensitizes all found paths at least
once. The test application is fully functional and hence can be
combined with at-speed testing and prevents over-testing.

Furthermore, we define a categorization of the possible
causes that invalidate the detection of a fault. Based on this
categorization, we developed the concept of immunity. A test
sequence is defined to be immune to a certain type of detection
invalidation if that kind of invalidation does not occur when
applying that sequence. This concept is different from the
widely-used concept of robustness [39]. As an example, in
combination with robustness, the generated test sequences are
guaranteed to detect the fault independently of timing variations
that may occur on off-paths in any of the modeled time frames.

Detailed experimental results on circuits from the ISCAS 89
and ITC 99 benchmark suites demonstrate the applicability of
the flow. Additionally, the high fault efficiency and quality of
the test sequence is demonstrated.

The remainder of the paper is structured as follows. An
overview of the method is given in Section II. Craig-interpolant-
based model checking is briefly explained in Section III. The
details of the flow are given in Section IV. Experimental results
are reported in Section V. Section VI concludes the paper.
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Fig. 1. General flow of “SATSEQ”

II. GENERAL FLOW OF THE METHOD

This section provides an overview of the general flow (see
Figure 1). Detailed information about the implementation of
the various steps can be found in Section IV.

We consider small-delay faults in synchronous sequential
digital circuits without scan. First, a synchronization sequence
is calculated, i.e. a sequence that brings the circuit into a fully-
specified state starting at the all-X-state. If such a synchronizing
sequence can not be detected, the approach restarts to the all-
0-state. All gates are assumed to have fixed pin-to-pin delays,
i.e. the delays may differ for individual input-output-pairs of
a gate and for rising and falling transitions. The small-delay
faults are associated to the outputs of logic gates. The fault
effect is assumed to be detected if a path of sufficient length
(calculated as the sum of the appropriate delays of the on-path
gates) is sensitized and ends at a primary output of the circuit.
If such a path ends at a flip-flop, the fault effect is captured
in the flip-flop and has to be propagated to a primary output
in subsequent clock cycles.
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The test generation phase results in a test sequence that
consists of several sub-sequences as displayed in Figure 2.
Each sub-sequence targets a small-delay fault (but may detect
further small-delay faults) and is composed of the initialization
portion, the test-pair portion and the propagation portion. The
initialization portion includes several primary-input vectors that
justify required values in the flip-flops; the test pair sensitizes
the longest path through the fault location; and the propagation
portion propagates the faulty effect from the flip-flops to a
primary output.

Our method generates shortest possible sub-sequence por-
tions; if detection is possible at a primary output, no propa-
gation portion is generated. Note that only functional states
reachable from the synchronized or restart state are visited,
and therefore no over-testing occurs. Also, SATSEQ is not
limited to a single initialization state. If multiple initialization
sequences exist, the method utilizes the initialization sequence
that leads to the shortest sub-sequence. If no sub-sequence
exists to detect the fault starting at the synchronized or restart
state, then the fault cannot manifest itself during functional
operation; hence, detecting it, e.g. using scan or other DFT
mechanisms, would constitute over-testing.

We assume that only one gate in the circuit is affected
by the small-delay fault. Due to the sequential nature of the
test application, the presence of the fault in the circuit may
invalidate the test due to one of the following three reasons:
F-invalidation—Our method explicitly sensitizes one path

to one flip-flop. However, additional flip-flops may be
sensitized to the fault and consequently capture the fault
effect, which may invalidate the propagation portion of
the sub-system and corrupt the starting state of the next
sub-sequence.

I-invalidation—The fault may manifest itself during the
initialization portion of the sub-sequence, resulting in
corrupted values in the flip-flops during the test pair
application.

P-invalidation—The fault may manifest itself during the
propagation portion of the sub-sequence, thus preventing
the propagation of the captured fault effect to the primary
outputs.

Note that these invalidation mechanisms do not result in
loss of detection in most practical cases. On the contrary, they

introduce additional fault effects which amplify the fault under
consideration and make it easier to observe. Nevertheless, a
small possibility of test invalidation still exists. If the circuit is
known not to contain static or gross-delay faults, then I- and
P-invalidation could be ruled out by applying the initialization
and propagation portions of each sub-sequence with sufficiently
slow speed. We are also able to apply generation strategies
to obtain sequences that detect the fault even in the presence
of invalidation mechanisms. This is achieved by enforcing
the X-value (unknown) on locations potentially affected by
the invalidation. For example, one possibility to avoid F-
invalidation is to enforce X on all off-path flip-flops sensitized
to the fault; such sequences are called F-immune. Analogously,
enforcing X on the fault locations during the initialization and
the propagation portion, respectively, leads to sequences that
tolerate I- and P-invalidation. We call such sequences I-immune
and P-immune. We denote a sequence that is both F-immune
and P-immune by FP-immune, and so on. Sequences which
are immune with respect to many invalidation mechanisms
are less prone to invalidation, but on the other hand some
faults become untestable when the immunity is enforced using
X-values.

The main objective of the third phase (sequence connection)
in Fig. 1 is to combine the various sub-sequences in order
to form a connected sequential test sequence. Upon the first
application, the sequence will start with the initial state,
i.e. either the final state of the initialization sequence or the all-
0-state. Then, a connection sequence is generated that starts in
the initial state and ends in the first state of the “nearest” sub-
sequence. The last state of the newly connected sub-sequence
is then used as initial state and so forth. If no sub-sequence
can be found from that state, the synchronization sequence or
restart are re-applied. After all faults and their sensitization
paths are connected, the complete test sequence is returned.
Note that the sequence connection step is intended for testing
all target faults with as little restarts as possible. However, this
phase can be skipped for applications where individual test
sequences are preferred.

III. CRAIG-INTERPOLANT-BASED MODEL CHECKING

In order to ease the understanding of the algorithmic details
in the next section, this section briefly reviews Bounded Model
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Checking (BMC) [40], Craig interpolants [35] and McMillan’s
work on SAT-based model checking [36].

Among other applications, BMC is employed to derive
error traces in sequential circuits that are required to satisfy a
certain property P . The structure of the circuit and the problem
conditions are encoded as a propositional formula of the form

BMCk = I0 ∧ T0,1 ∧ . . . ∧ Tk−1,k ∧ Pk (1)
I0 encodes the initial state of the circuit. The terms of

the form Ti,i+1 represent the so-called transfer function or
transition relation that defines one system step from time point
i to time point i+1. The last predicate Pk stands for a desired
property whose satisfiability after k steps has to be checked.
If the property never holds independently of the value of k,
BMCk is unsatisfiable for all k, whereas BMCk is satisfiable
if there exists a k and a path in the transition system that starts
at I0 and, after k transition steps, reaches a state in which Pk

holds.
A classical BMC approach solves a series of problem

instances. The first one is BMC0 = I0 ∧ P0 (cf. Equation 1).
It is satisfiable if the property holds in the initial state. If
the instance is not satisfiable, BMC checks whether taking
one more step into consideration will satisfy the property,
i.e. whether the formula BMC1 = I0 ∧T0,1 ∧P1 is satisfiable.
This is repeated until Pk holds for some k, or until a user-
defined maximal bound is reached [40].

In order to prove that a certain state of a transition system
cannot be reached independently of k, i.e. that the desired
property never holds, the circuit could be unfolded until
reaching its diameter. However, very large k-values may
be necessary. Hence, there are several approaches to find a
fixed point sooner, including k-induction [41] and BDD-based
approaches [42]. One particilarly efficient method based on
the theory of Craig interpolation [36] is employed by the
CIP-solver [37] used in this work.

Formally, Craig interpolants [35] are defined as follows:
Theorem 1 (Craig): Let A and B be two propositional

formulas such that their conjunction is unsatisfiable. Then,
a formula C with the following properties exists:

1) C contains only variables which occur in both A and B.
2) A→ C
3) C → ¬B

C is called a Craig interpolant of A and B. 2

Craig interpolants represent over-approximations of all
reachable system states after a certain number of transition
steps. These over-approximations are used in additional fixed-
point checks to detect whether all reachable system states have
already been checked or not. If a fixed point is found the
procedure has proven that the given property P never holds.

Figure 3 illustrates the Model Checking procedure (MC
procedure) which combines BMC and Craig interpolation. As
in classical BMC, the first step consists in testing whether the
property holds in the initial state I0, i.e. whether BMC0 is
satisfiable. The next problem instance to be tested is BMC1 =
I0 ∧ T0,1 ∧ P1. If this instance is unsatisfiable, by Craig’s
theorem, there is a formula C1 such that I0 ∧ T0,1 → C1

and C1 → ¬P1. Moreover, C1 contains only variables that
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Fig. 3. BMC and Craig interpolation

occur in both sub-formulas, i.e. it contains only variables that
represent the flip-flop contents. Given that I0 ∧ T0,1 → C1, all
flip-flop assignments (states in the sequential circuit) reachable
after one transition step starting at the initial state, are over-
approximated by C1. Then, a fixed-point check is performed
by evaluating whether the Craig interpolant implies the initial
state, i.e. whether the set of states that are reachable after one
transition step are initial states themselves. If so, the algorithm
terminates as no new states can be reached starting at the
current step.

If the fixed-point check fails, the next problem to solve is
not BMC2, but a variation of BMC1 in which the initial state
is replaced by the found Craig interpolant. If this instance is
also not satisfiable, a new Craig interpolant is computed and
used for a new iteration of the algorithm. In contrast, if the
formula is satisfiable, verification is performed by solving the
original BMCi formula corresponding to the current unfolding
depth, since the Craig interpolant is an over-approximation
and may therefore contain non-reachable states. In case that
the verification formula BMCi is unsatisfiable, the overall
algorithm restarts by computing a new Craig interpolant starting
from BMCi. See [36] for details.

IV. GENERATION OF THE MC-INSTANCE

In this section, we explain in detail the construction of the
MC-instance MC(I0, Ti,i+1, P ). It consists of three predicates,
namely the initial state I0, the transfer function Ti,i+1, and a
target property P . Each predicate is given as a SAT-formula
in conjunctive normal form (CNF) and encodes the different
requirements for each individual step of the flow.

Figure 4 illustrates how these predicates are connected. The
initial state I0 defines the starting state of the sequence and
corresponds to the initial logical values of the flip-flops.

Each application of the transfer function Ti,i+1 defines one
arbitrary step of the sequential circuit from time point i to
time point i+ 1. A Boolean formula encoding multiple time
frames of a sequential circuit is obtained by connecting the
transfer function multiple times, i.e. T0,1 ∧ T1,2 ∧ . . .∧ Tk,k+1.
With each application of Ti,i+1 we extend the sequence by an
additional time frame and therefore extend the search space.

The target property P describes the justification requirements
that need to hold at the end of the sequence. Note that our
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method supports justification conditions for internal circuit
lines over multiple time frames. Therefore, unlike in traditional
BMC we can not only require certain target states, but also
impose very specific requirements like the sensitization of a
path with certain properties.

The complete MC-instance is passed to the CIP-solver
that returns a Boolean satisfying assignment in case that a
solution is found, or classifies the instance as unsatisfiable
which means that no solution exists. A solution to such an
MC-instance MC(I0, Ti,i+1, P ) is a functional sequence of
length k that starts at an initial state I0 justifying the target
property P . Note that, due to the iterative nature of the CIP-
solver’s algorithm, the returned sequence is guaranteed to have
the shortest possible length. Also, the method is complete and
guaranteed to find a solution if one exists, provided that the CIP-
solver does not exceed the chosen time or memory restrictions.
If the CIP-solver classifies the instances as unsatisfiable, no
such sequence exists regardless of the number of time frames.

By defining I0, Ti,i+1 and P specifically according to the
requirements, we can derive a symbolic problem formulation
for each step.

A. Computation of synchronization sequence

At the start of the method (propagation phase), a syn-
chronization sequence is computed in order to obtain an
initial functional state. To do so, we create an MC-instance
MC(I0, Ti,i+1, P ) using a 3-valued 01X-logic [43] that allows
us to express unknown values.

As the state of the circuit is not known initially, we define
I0 as the all-X-state by adding clauses for each flip-flop that
enforce the logic value ’X’. Analogously, at the end of an
initialization sequence, the final circuit state needs to be well
defined. Therefore, we define the zero-X-state, i.e. the state
where each flip-flop is set to a known value, as target property.

When passed to the CIP-solver, the synchronization se-
quence, i.e. a functional sequence that changes the circuit’s state
to a known pattern starting from any initial state is returned.

B. Computation of longest reachable sensitizable paths

In the path generation step of the flow, the longest sensi-
tizable path that can be reached from the start state of the
flow is searched for every target gate. Just like in a usual
combinational two-pattern delay test, the main task of such
a path is to sensitize the fault location and to propagate the
fault effect to an output. The actual delay of the sensitized
path is one of the key properties influencing the quality of the

small-delay test. Therefore, in order to achieve high small-delay
quality of the test sequence, functional sensitization of each
fault location through the longest sensitizable path is targeted.

In earlier work [32], we proposed a method to search for
such a path in combinational circuits by defining a SAT-
instance SG[≥ l]. Such an instance SG[≥ l] is only satisfiable
if and only if a sensitizable path through a target gate G with
length greater or equal to l exists. This was done by encoding
sensitization rules and path-length computations symbolically
as a SAT-instance. Using a binary search over l, the longest
combinational path can be found. In addition, further quality
requirements (e.g. robustness conditions) are encoded into
the instance. However, as the earlier method was intended
for combinational circuits only, it potentially generated non-
functional pattern pairs and relied on the use of scan to apply
them.

In order to search for the longest functionally sensitizable
path, we embed such a SAT-instance SG[≥ l] into the target
property of the MC-instance MC(I0, Ti,i+1, P ). This is done
by generating a SAT-instance SG[≥ l] first, which encodes the
path search in the combinational case using two time frames.
In order to be compatible with P , a new SAT-instance S′G[≥ l]
is generated by renaming each literal in SG[≥ l], such that its
literal space does not overlap with the rest of the MC-instance.
Therefore the complete SAT-instance S′G[≥ l] can be added as
P . In order to connect S′G[≥ l] with the rest of the MC-instance,
additional constraints are added to the target property. Using
those additional constraints, we require each flip-flop to have
identical values, both in P and in the initial state of S′G[≥ l].
Therefore, each solution for the combined instance needs to
satisfy both, the requirements of the MC-instance, i.e. the final
state must be functionally reachable from the initial state, and
the requirements of SG[≥ l], i.e. to sensitize a path through G
of length ≥ l. Additionally, since the initial state of SG[≥ l] is
identical with the state in P , both parts are connectable with
each other. As SG[≥ l] requires broadside tests, the combined
sequence is functional. This representation allows to search
for sensitizable paths that can be reached from the initial state
while at the same time imposing quality requirements like
length of the sensitized path or robust sensitization. Note that
we do not impose any restrictions on the final output of the path
and therefore also allow sensitized paths to end at a flip-flop.

C. Fault propagation

As we do not impose restrictions on the final output of a
sensitization path, many of the sensitized paths actually end in a
flip-flop, i.e. the fault effects are not directly observable. Hence,
a propagation sequence needs to be computed that propagates
the fault effect from the faulty output to an observable primary
circuit output.

In order to map the fault propagation to the MC-instance,
we encode the circuit by defining two logic values G and B
for each circuit line. While G defines the logic value in the
fault-free case, B defines the faulty value.

We developed several fault propagation modes, depending
on the required type of invalidation immunity. In the basic
case where no immunity is achieved, we assume a small delay
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effect that is large enough to cause a faulty value at the output
of the longest sensitized path, but small enough to cause no
fault effect at any other sensitized output. Therefore, we define
the initial state to have identical values as in the final time
frame of the previous path sensitization pattern for G and B
for all flip-flops but the final flip-flop of the last sensitized
path p. For that flip-flop, G and B are defined to be logic 1
and 0 respectively if p ends with a rising transition. In case
of a fault effect, we assume the rising transition to be delayed
and therefore B is still set to the logic values of the previous
time frame. In case of p ending with a falling transition, G
and B are defined to be logic 0 and 1, respectively.

The transfer function Ti,i+1 also defines G and B for each
line, allowing to symbolically represent both values for each
time frame. We force each primary input to have identical logic
values for G and B, in order to ensure that the fault effect
originates from the start of the propagation sequence.

The target property is defined to guarantee the fault propaga-
tion. This is formulated by requiring a difference of G and B
on a primary output. As the only source of such a difference
is the faulty flip-flop of the sensitized path p, the found
sequence is guaranteed to propagate the fault effect to a primary
output. Therefore, the combination of fault sensitization and
propagation shown in Figure 2 represents a sequential test for
one fault.

When immunity is required, we extend the encoding to
3-valued logic in order to represent unknown values. For F-
immunity, we can not assume fault-free values at each flip-
flops sensitized to the fault. Therefore, each such flip-flop is
set to X in the initial state of the propagation sequence. This
constraint enforces the returned propagation sequence to be
independent of the actual logic value of that flip-flops and the
fault propagation is F-immune.

For P-immunity, the individual logic values of the sen-
sitizable path may be invalidated during fault propagation.
Analogously to F-immunity, we set the output of each gate
on the path to X. Hence, fault propagation does not depend
on the propagation path and therefore a resulting sequence is
P-immune.

D. Sequence connection

The main objective of the final sequence connection step is
to connect each individual sequential test to a combined test
sequence without requiring to restart the circuit after each test.

The problem of finding such a connection sequence has some
similarities to an asymmetric traveling-salesman problem. Each
test sequence can be mapped to a city whereas the number of
time frames needed to connect one test sequence with another
represents the distance. The number of time frames between
two test sequences s1 and s2 can be mapped to an MC-instance
by defining the final state of s1 as initial state and the first
state of s2 as the target property. However, it is not practical
to compute the distance between each test sequence as that
would require (n − 1)2 instances where n is the number of
test sequences. This information would be a prerequisite to
compute the optimal solution of the problem.

To achieve good performance and low global sequence length
at the same time, we solve the sequence connection problem
using a greedy nearest-neighbor strategy. We start the final test
sequence with the initial functional state. Using that start state
as initial state, we define another MC-instance. As the target
property, we require the sensitization of any yet unconnected
test sequence. This is achieved by formulating a special target
property that is satisfied if any test sequence pi holds, i.e. the
final state of connection sequence is identical to the initial state
of pi. Using that formulation, SATSEQ will return a sequence
that sensitizes the nearest unconnected test sequence that can
be reached from the initial state using as few time frames as
possible. It is also possible to utilize initialization sequences
for this step, if that results in a shorter connection sequence.

For the next run, the initial state is defined to be the final state
of the last test sequence and again the nearest unconnected test
sequence is connected. This is iterated until either all remaining
sequences are connected, or no remaining sequences can be
reached from the current state. The latter case can be true, if the
state-space of the circuit has different connected components
and therefore no single combined sequence exists. If such cases
are identified, we allow the sequence to restart again from the
very first functional state.

V. EXPERIMENTAL RESULTS

The flow described in the previous sections was applied
to sequential ITC 99 and ISCAS 89 benchmark circuits. All
experiments were executed on an AMD Opteron computer
using one 2.6 GHz-core and up to 4 GB RAM. In all
experiments, SATSEQ was set to classify an MC-instance as
an abort after a timeout of 5 seconds. All run-times listed in
this section are given in seconds. We used non-robust path
sensitization and targeted the root node of each fanout-free-
region for each circuit.

Columns 2, 3 and 4 of Table I report the number of small-
delay faults in the circuit, the number of paths used for
their detection, and the length of the resulting test sequence,
respectively. Column 5 (Test application time – TAT) shows
the duration (in clock cycles) of test application by scan. We
calculate this number as (#FF + 2) · #P + #FF , where
#FF is the number of flip-flops in the circuit and #P is the
number of paths from Column 2. We assume that each path
is tested by a test pair, which is scanned in followed by two
functional cycles and scanned out in parallel with scanning
in the next test pair. It can be seen that test sequences have
reasonable lengths, much shorter than the duration of scan
operations (even though we don’t assume a slower scan clock).
The number of required restarts and the total computation time
are given in the remaining columns. The number of restarts is
low in most cases, indicating that many sub-sequences can be
successfully connected without new synchronization or reset.
The run times are generally high but still reasonable, even
though a much more complex test generation problem (small-
delay fault testing through the longest sensitizable path) than
in existing sequential stuck-at ATPGs is targeted. As usual for
purely sequential ATPG, the number of considered time frames
has a substantial influence on the test generation run times.
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TABLE I
METHOD APPLICATION TO ISCAS 89 AND ITC 99 BENCHMARK CIRCUITS

Circuit Faults Paths Test- Scan- Restarts Time
length TAT

s00027 7 5 22 28 0 0.09
s00208 37 20 1129 208 0 32.70
s00298 54 28 358 462 0 18.62
s00344 57 35 248 610 0 499.18
s00349 58 35 248 610 0 480.64
s00382 76 36 1991 849 0 230.70
s00386 39 24 148 198 0 25.45
s00400 80 38 2183 895 0 214.55
s00420 75 20 499 376 4 308.14
s00444 92 39 2132 918 0 290.12
s00510 86 52 483 422 0 19.18
s00526 81 41 2286 964 0 341.59
s00641 98 50 306 1069 0 34.78
s00713 122 47 276 1006 0 37.76
s00820 63 50 473 355 0 154.25
s00832 63 50 473 355 0 155.80
s00838 151 20 564 712 4 691.73
s00953 210 115 1084 3594 0 55.51
s01196 187 113 628 2278 0 46.64
s01238 197 121 691 2438 0 59.52
s01423 259 139 3149 10638 1 5192.21
s01488 101 55 625 446 0 134.30
s01494 101 55 615 446 0 144.78
s05378 1000 432 4228 78371 0 7880.63
s09234 1263 398 4888 84985 190 22102.10
s13207 1986 316 3759 202878 302 31533.80
s15850 2199 839 10308 450238 694 117108.00

b01 24 16 141 117 0 0.41
b02 11 9 77 58 0 0.17
b03 72 35 401 1150 4 43.23
b04 244 153 1564 10470 105 166.66
b05 276 57 4525 2086 3 2130.78
b06 30 20 133 229 4 0.54
b07 201 41 3245 2140 12 1290.45
b08 69 38 1984 895 4 153.99
b09 81 46 1360 1408 20 15.40
b10 86 45 512 872 18 220.40
b11 203 76 3284 2539 1 968.33
b12 499 37 1325 4672 6 3488.32
b13 160 40 1090 2253 16 806.57
b14 2347 1114 17000 275403 104 43170.50
b15 2919 676 11894 305325 647 100482.00
b17 9086 522 5724 740566 516 191746.00

Detailed results of sequential ATPG are reported in Ta-
ble II. Column 2 reiterates the total number of faults and
columns 3 through 6 show the breakdown according to their
detection status: detected by an F-invalidation-immune sub-
sequence (Column 3); detected by a sub-sequence that is not F-
invalidation-immune (Column 4); untestable by the sequential
ATPG (Column 5); and aborted (Column 6). Average numbers
for ISCAS 89 and ITC 99 benchmarks are shown in a separate
row. Most faults are detected, and F-invalidation immunity can
be ensured for the majority of the detected faults.

The final two columns quantify the impact of the sequential
nature of the circuit on the quality of small-delay faults. The
lengths of all sensitized paths are added to obtain the value L
for the following three scenarios: LSEQ (the sequential circuit
where both initialization and propagation are performed);
LSEQNOPROP (the sequential circuit without the need to
propagate the fault effect); and LCOMB the combinational
circuit where neither initialization nor propagation are done.

TABLE II
DETAILED RESULTS ON FAULT CLASSIFICATION AND OVERTESTING

Circuit Faults Detected Non-Detected Max avg. delay

F-imm. No imm. Untest. Unknown Prop. Init.
s00027 7 7 0 0 0 0.00% 0.00%
s00208 37 34 1 2 0 0.00% 0.00%
s00298 54 44 5 5 0 6.92% 6.92%
s00344 57 47 7 3 0 10.53% 9.96%
s00349 58 47 7 4 0 10.53% 9.96%
s00382 76 40 21 13 2 10.13% 6.69%
s00386 39 36 3 0 0 2.76% 2.76%
s00400 80 44 23 11 2 6.42% 3.21%
s00420 75 34 1 6 34 51.97% 51.97%
s00444 92 48 28 14 2 5.14% 2.30%
s00510 86 57 23 6 0 4.74% 4.74%
s00526 81 39 21 16 5 9.26% 6.09%
s00641 98 82 2 14 0 32.54% 32.54%
s00713 122 106 0 16 0 32.53% 32.53%
s00820 63 39 24 0 0 5.71% 5.71%
s00832 63 39 24 0 0 5.71% 5.71%
s00838 151 33 2 14 102 76.26% 76.26%
s00953 210 196 11 3 0 1.64% 1.64%
s01196 187 187 0 0 0 3.71% 3.68%
s01238 197 195 2 0 0 3.69% 3.42%
s01423 259 155 83 17 4 31.77% 29.61%
s01488 101 68 31 2 0 1.14% 1.14%
s01494 101 68 31 2 0 1.14% 1.14%
s05378 1000 760 67 127 46 19.06% 16.83%
s09234 1263 451 188 208 344 54.13% 33.58%
s13207 1986 489 65 523 909 79.47% 57.80%
s15850 2199 980 286 332 491 44.48% 34.58%

b01 24 21 3 0 0 0.00% 0.00%
b02 11 9 2 0 0 3.23% 3.23%
b03 72 45 5 19 3 35.23% 35.23%
b04 244 236 7 1 0 3.83% 3.83%
b05 276 73 45 126 32 75.76% 69.32%
b06 30 28 2 0 0 1.26% 1.26%
b07 201 56 28 54 63 72.08% 57.64%
b08 69 47 9 9 4 8.70% 2.08%
b09 81 55 8 18 0 4.55% 4.55%
b10 86 59 14 7 6 15.13% 10.04%
b11 203 79 68 53 3 16.60% 12.88%
b12 499 70 14 34 381 82.70% 78.13%
b13 160 60 9 49 42 53.53% 34.40%
b14 2347 1917 104 308 18 5.06% 4.85%
b15 2919 744 611 366 1198 65.83% 62.41%
b17 9086 205 995 4892 2994 91.01% 88.51%

A larger cumulative path length L indicates a larger coverage
of small-delay faults. In Column 7 (Prop.), the propagation
loss is given as 1 − LSEQ/LCOMB . This value quantifies
the additional small-delay fault coverage which would be
achieved if all flip-flops would be observable. The final column
(Init.) shows the number 1−LSEQNOPROP /LCOMB , which
corresponds to the additional coverage achievable by testing
the combinational core. This value quantifies the amount of
overtesting which occurs when the circuit is tested using scan,
as small-delay faults with a small size are detectable by scan
testing but not detectable sequentially. It can be seen that this
amount is significant and sequential ATPG can be useful in
preventing overtesting in many cases.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a versatile technique for the
generation of functional test patterns for small-delay faults in
sequential circuits without the use of scan. The corresponding
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tool SATSEQ is based on model-checking and advanced
SAT-technology. In contrast to other existing approaches, the
presented flow is fully deterministic and guaranteed to produce
the shortest possible sub-sequences of patterns. By means of
extensive experiments, we demonstrated the applicability of the
method and the high quality of the generated test sequence even
under additional immunity requirements. In future we want to
improve scaling and extend the method to yield instruction-
based test sequences for microprocessors.
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