
Functional Dependency
for Verification Reduction�

Jie-Hong R. Jiang and Robert K. Brayton

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Abstract. The existence of functional dependency among the state vari-
ables of a state transition system was identified as a common cause of
inefficient BDD representation in formal verification. Eliminating such
dependency from the system compacts the state space and may signifi-
cantly reduce the verification cost. Despite the importance, how to de-
tect functional dependency without or before knowing the reachable state
set remains a challenge. This paper tackles this problem by unifying
two closely related, but scattered, studies — detecting signal correspon-
dence and exploiting functional dependency. The prior work on either
subject turns out to be a special case of our formulation. Unlike previ-
ous approaches, we detect dependency directly from transition functions
rather than from reached state sets. Thus, reachability analysis is not a
necessity for exploiting dependency. In addition, our procedure can be
integrated into reachability analysis as an on-the-fly reduction. Prelimi-
nary experiments demonstrate promising results of extracting functional
dependency without reachability analysis. Dependencies that were un-
derivable before, due to the limitation of reachability analysis on large
transition systems, can now be computed efficiently. For the application
to verification, reachability analysis is shown to have substantial reduc-
tion in both memory and time consumptions.

1 Introduction

Reduction [12] is an important technique in extending the capacity of formal ver-
ification. This paper is concerned with property-preserving reduction [7], where
the reduced model satisfies a property if and only if the original model does.
In particular, we focus on reachability-preserving reduction for safety property
verification using functional dependency.

The existence of dependency among state variables frequently occurs in state
transition systems at both high-level specifications and gate-level implementa-
tions [17]. As identified in [11], such dependency may cause inefficient BDD [6]
representation in formal verification. Moreover, it can be used in logic minimiza-
tion [13, 17]. Its detection, thus, has potential impact on formal verification and
logic synthesis, and has attracted extensive research in both domains (e.g., see
� This work was supported in part by NSF grant CCR-0312676, California Micro

program, and our industrial sponsors, Fujitsu, Intel and Synplicity.

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 268–280, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Functional Dependency for Verification Reduction 269

[2, 13, 11, 8, 17]). The essence of all prior efforts [2, 13, 8, 17] can be traced back
to functional deduction [5], where variable dependency is drawn from a single
characteristic function. Thus, as a common path, the variable dependency was
derived from the characteristic function of a reached state set. However, state
transition systems of practical applications are often too complex to compute
their reachable states, even though these systems might be substantially reduced
only after variable dependency is known. An improvement was proposed in [8]
to exploit the dependency from the currently reached state set in every iteration
of a reachability analysis. The computation, however, may still be too expensive
and may simplify subsequent iterations very little.

To avoid such difficulty, we take a different path to exploit the dependency.
The observation is that the dependency among state variables originates from
the dependency among transition functions1. In consideration of efficiency, some
variable dependency can better be concluded directly from the transition func-
tions rather than from the characteristic function of a reached state set. There-
fore, the computation requires only local image computation. As the derived
dependency is an invariant, it can be used by any BDD- or SAT-based model
checking procedure to reduce the verification complexity. Since not all depen-
dency can be discovered this way due to the imperfect information about state
reachability, this method itself is an approximative approach. To complete the
approximative computation, our procedure can be embedded into reachability
analysis as an on-the-fly detection. Reachability analysis is thus conducted on a
reduced model in each iteration. Our formulation leads to a unification of two
closely related, but scattered, studies on detecting signal correspondence [10, 9]
and exploiting functional dependency [11, 8].

2 Preliminaries and Notations

As a notational convention, a vector (or, an ordered set) v = 〈v1, . . . , vn〉 is
specified in a bold-faced letter while its unordered version is written as {v} =
{v1, . . . , vn}. In this case, n is the cardinality (size) of both v and {v}, i.e., |v| =
|{v}| = n. Also, when a vector v is partitioned into k sub-vectors v1, . . . ,vk,
the convention 〈v1; . . . ;vk〉 denotes that v1, . . . ,vk are combined into one vector
with a proper reordering of elements to recover the ordering of v.

This paper assumes, without loss of generality, that multi-valued functions
are replaced with vectors of Boolean functions. The image of a Boolean functional
vector ψ over a subset C of its domain is denoted as Image(ψ, C); the range
of ψ is denoted as Range(ψ). Let ψ : B

n → B be a Boolean function over
variables x1, . . . , xn. The support set of ψ is Supp(ψ) = {xi | (ψ|xi=0 xor
ψ|xi=1) �= false}. For a characteristic function F (x) over the set {x} of Boolean

1 As state transition systems are often compactly representable in transition functions
but not in transition relations, this paper assumes that transition functions are the
underlying representation of state transition systems. Consequently, our formulation
is not directly applicable to nondeterministic transition systems. The corresponding
extension can apply the MOCB technique proposed in [11].

270 Jie-Hong R. Jiang and Robert K. Brayton

variables, its projection on {y} ⊆ {x} is defined as F [{y}/{x}] = ∃xi ∈
{x}\{y}.F (x). Also, we denote the identity function and its complement as �
and �†, respectively.

A state transition system M is a six-tuple (S, I,Σ,Ω, δ,λ), where S is a finite
set of states, I ⊆ S is the set of initial states, Σ and Ω are the sets of input
and output alphabets, respectively, and δ : Σ × S → S (resp. λ : Σ × S → Ω)
is the transition function (resp. output function). As symbols and functions are
in binary representations in this paper, M will be specified, instead, with a
five-tuple (I, r, s, δ,λ), where r (resp. s) is the vector of Boolean variables that
encodes the input alphabets (resp. states).

3 Functional Dependency

We formulate functional dependency for state transition systems in two steps.
First, combinational dependency among a collection of functions is defined.
Second, the formulation is extended to sequential dependency.

3.1 Combinational Dependency

Given two Boolean functional vectors φ : B
l → B

m and ϕ : B
l → B

n over
the same domain, we are interested in rewriting φ in terms of a function of ϕ.
The condition when such a rewrite is feasible can be captured by a refinement
relation, 	 ⊆ (Bl → B

m) × (Bl → B
n), defined as follows.

Definition 1. Given two Boolean functional vectors φ : B
l → B

m and ϕ :
B

l → B
n, ϕ refines φ in C ⊆ B

l, denoted as φ 	C ϕ, if φ(a) �= φ(b) implies
ϕ(a) �= ϕ(b) for all a, b ∈ C.

In other words, ϕ refines φ in C if and only if ϕ is more distinguishing than
φ in C. (As the orderings within φ and ϕ are not a prerequisite, our definition
of refinement relation applies to two unordered sets of functions as well.) In the
sequel, the subscription C will be omitted from the refinement relation 	 when
C is the universe of the domain. Based on the above definition, the following
proposition forms the foundation of our later development.

Proposition 1. Given φ : B
l → B

m and ϕ : B
l → B

n, there exists a functional
vector θ : B

n → B
m such that φ = θ ◦ ϕ = θ(ϕ(·)) over C ⊆ B

l if and only if
φ 	C ϕ. Moreover, θ is unique when restricting its domain to the range of ϕ.

For φ = θ ◦ϕ, we call φ1, . . . , φm ∈ φ the functional dependents (or, briefly,
dependents), ϕ1, . . . , ϕn ∈ ϕ the functional independents (or, briefly, inde-
pendents), and θ1, . . . , θn ∈ θ the dependency functions.

Problem Formulation. The problem of detecting (combinational) functional
dependency can be formulated as follows. Given a collection of Boolean functions
ψ, we are asked to partitionψ into two parts φ andϕ such thatφ = θ(ϕ). Hence,

Functional Dependency for Verification Reduction 271

the triple (φ,ϕ,θ) characterizes the functional dependency of ψ. We call such a
triple a dependency triplet. Suppose ϕ cannot be further reduced in (φ,ϕ,θ)
by recognizing more functional dependents fromϕ with all possible modifications
of θ. That is, |ϕ| is minimized; equivalently, |φ| is maximized. Then the triplet
maximally characterizes the functional dependency of ψ. In this paper, we are
interested in computing maximal functional dependency. (Although finding a
maximum dependency might be helpful, it is computationally much harder than
finding a maximal one as it is the supremum over the set of maximal ones.)

The Computation. In the discussion below, when we mention Boolean func-
tional vectors φ(x) and ϕ(x), we shall assume that φ : B

l → B
m and ϕ : B

l →
B

n with variable vector x : B
l. Notice that Supp(φ) and Supp(ϕ) are subsets of

{x}. The following properties are useful in computing dependency.

Theorem 1. Given functional vectors φ and ϕ, φ 	 ϕ only if Supp(φ) ⊆
Supp(ϕ).

Corollary 1. Given a collection of Boolean functions ψ1(x), . . . , ψk(x), if, for
any xi ∈ {x}, ψj is the only function such that xi ∈ Supp(ψj), then ψj is a
functional independent.

With the support set information, Theorem 1 and Corollary 1 can be used as a
fast screening in finding combinational dependency.

Theorem 2. Given functional vectors φ and ϕ, φ 	 ϕ if and only if |Range(ϕ)|
= |Range(〈φ,ϕ〉)|.
Theorem 3. Let θi ∈ θ be the corresponding dependency function of a depen-
dent φi ∈ φ. Let Θ0

i = {ϕ(x)|φi(x) = 0} and Θ1
i = {ϕ(x)|φi(x) = 1}. Then

φi 	 ϕ if and only if Θ0
i ∩ Θ1

i = ∅. Also, θi has Θ0
i , Θ

1
i , and B

n\{Θ0
i ∪ Θ1

i }as
its off-set, on-set, and don’t-care set, respectively. That is, θi(ϕ(x)) = φi(x) for
all valuations of x.

From Theorem 2, we know that the set {ϕ} of functional independents is as
distinguishing as the entire set {φ} ∪ {ϕ} of functions. Theorem 3, on the other
hand, shows a way of computing dependency functions.

Given a collection {ψ} of Boolean functions, its maximal dependency can be
computed with the procedure outlined in Figure 1. First, by Theorem 2, for each
function ψi ∈ {ψ} we obtain the minimal subsets of {ψ} which refine ψi. Let the
minimal refining subsets for ψi be E1

i , . . . , E
k
i . (Notice that k ≥ 1 since ψi refines

itself and, thus, {ψi} is one of the subsets.) The calculation can be done with
local image computation because by Theorem 1 and Corollary 1 we only need
to consider subsets of functions in {ψ} which overlap with ψi in support sets.
Second, we heuristically derive a minimal set of functional independents that
refines all the functions of {ψ}. Equivalently, for each ψi, some Eji

i is selected
such that the cardinality of

⋃|ψ|
i=1E

ji

i is minimized. This union set forms the
basis of representing all other functions. That is, functions in the union set are
the functional independents; others are the functional dependents. Finally, by
Theorem 3, dependency functions are obtained with respect to the selected basis.

272 Jie-Hong R. Jiang and Robert K. Brayton

CombinationalDependency
input: a collection {ψ} of Boolean functions
output: a dependency triplet (φ,ϕ, θ)
begin
01 for each ψi ∈ {ψ}
02 derive minimal refining sets Ei

1, . . . , E
i
k

03 select a minimal basis {ϕ} that refines all ψi ∈ {ψ}
04 compute the dependency functions {θ} for {φ} = {ψ}\{ϕ}
05 return (φ,ϕ, θ)
end

Fig. 1. Algorithm: CombinationalDependency.

A Digression. There were other variant definitions of dependency (see [15] for
more examples). The functional dependency defined in [5] (Section 6.9), which
follows [15], is too weak to be applicable in our application. We, thus, resort to a
stronger definition. As noted below, our definition turns out to be consistent with
functional deduction (see [5], Chapter 8), which is concerned with the variable
dependency in a single characteristic function.

We relate our formulation to functional deduction as follows. In functional
deduction, variable dependency is drawn from a single characteristic function.
Thus, to exploit the dependency among a collection of functions ψ(x), a single re-
lation Ψ(x,y) =

∧
i(yi ≡ ψi(x)) should be built, where yi’s are newly introduced

Boolean variables. In addition, to derive dependency solely among {y}, input
variables {x} should be enforced in the eliminable subset [5]. With the foregoing
transformation, variable dependency in functional deduction coincides with our
defined functional dependency. A similar result of Theorem 3 was known in the
context of functional deduction. Compared to the relational-oriented functional
deduction, our formulation can be understood as more functional-oriented, which
is computationally more practical.

3.2 Sequential Dependency

Given a state transition system M = (I, r, s, δ,λ), we consider the detection of
functional dependency among the set {δ} of transition functions. More precisely,
detecting the sequential dependency of M is equivalent to finding θ such that
δ is partitioned into two vectors: the dependents δφ, and the independents δϕ.
Let {s} = {sφ}∪{sϕ} be such that the valuations of sφ and sϕ are updated by
δφ and δϕ, respectively. Then θ specifies the dependency of M by sφ = θ(sϕ)
and δφ = θ(δϕ), i.e., δφ(r, 〈θ(sϕ); sϕ〉) = θ ◦ δϕ(r, 〈θ(sϕ); sϕ〉).

Sequential dependency is more relaxed than its combinational counterpart
because of the reachability nature of M. The derivation of θ shall involve a fixed-
point computation, and can be obtained in two different ways, the greatest fixed-
point (gfp) and the least fixed-point (lfp) approaches, with different optimality
and complexity. Our discussions start from the easier gfp computation, and
continue with the more complicated lfp one. The optimality, on the other hand,
is usually improved from the gfp to the lfp computation.

Functional Dependency for Verification Reduction 273

Remark 1. We mention a technicality regarding the set I of initial states. In
general, the combinational dependency among transition functions may not hold
for the states in I because I may contain dangling states. (A state is called
dangling if it has no predecessor states. Otherwise, it is non-dangling.) To
overcome this difficulty, a new set I ′ of initial states is defined. Let I ′ be the
set of states which are one-step reachable from I. Now, since all states in I ′ are
non-dangling, the calculated dependency holds for I ′. On the other hand, the set
of reachable states from I is identical to that from I ′ except for some states in I.
In the verification of safety properties, such a substitution is legitimate as long
as states in I satisfy the underlying property to be verified. In our discussion,
unless otherwise noted, we shall assume that the set of initial states consists of
only non-dangling states.

The Greatest Fixed-Point Calculation. In the gfp calculation, state vari-
ables are treated functionally independent of each other initially. Their depen-
dency is then discovered iteratively. Combinational dependency among transition
functions is computed in each iteration. The resultant dependency functions are
substituted backward in the subsequent iteration for the state variables of their
corresponding functional dependents. Thereby, the transition functions and pre-
viously derived dependency functions are updated. More precisely, let θ(i) be
the set of derived dependency functions for δ(i) at the ith iteration. For j from
i− 1 to 1, the set θ(j)(s(i−1)

ϕ) of dependency functions is updated in order with
θ(j)(s(i)

ϕ) = θ(j)(〈θ(j+1)(s(i)
ϕ); . . . ;θ(i)(s(i)

ϕ); s(i)
ϕ 〉). After the updates of θ(j)’s,

δ(i+1) is set to be δ(i)
ϕ (r, 〈θ(1)(s(i)

ϕ); . . . ;θ(i)(s(i)
ϕ); s(i)

ϕ 〉), where {δ(i)
ϕ } ⊆ {δ} cor-

responds to the functional independents of δ(i). At the (i + 1)st iteration, the
combinational dependency among δ(i+1) is computed. The iteration terminates
when the size of the set of functional independents cannot be reduced further.
The termination is guaranteed since |δ(i)| decreases monotonically. In the end of
the computation, the final θ is simply the collection of θ(i)’s, and the final set of
functional independents is δ(k)

ϕ , where k is the last iteration. The computation is
summarized in Figure 2, where the procedure CombinationalDependencyRestore
is similar to CombinationalDependency with a slight difference. It computes the
dependency among the set of functions given in the first argument in the same
way as CombinationalDependency. However, the returned functional dependents
and independents are the corresponding functions given in the second argument
instead of those in the first argument.

Notice that the final result of the gfp calculation may not be unique since,
in each iteration, there are several possible choices of maximal functional depen-
dency. As one choice has been made, it fixes the dependency functions for state
variables that are declared as dependents. Thereafter, the dependency becomes
an invariant throughout the computation since the derivation is valid for the
entire set of non-dangling states. For the same reason, the gfp calculation may
be too conservative. Moreover, the optimality of the gfp calculation is limited
because the state variables are initially treated functionally independent of each
other. This limitation becomes apparent especially when the dependency to be

274 Jie-Hong R. Jiang and Robert K. Brayton

SequentialDependencyGfp
input: a state transition system M = (I,r, s, δ,λ)
output: a dependency triplet (δφ , δϕ , θ) for δ
begin

01 i := 0; δ(1) := δ
02 repeat
03 if i ≥ 2
04 for j from i− 1 to 1

05 θ(j)(s
(i)
ϕ) := θ(j)(〈θ(j+1)(s

(i)
ϕ); . . . ; θ(i)(s

(i)
ϕ); s

(i)
ϕ 〉)

06 if i ≥ 1

07 δ(i+1)(r, s
(i)
ϕ) := δ

(i)
ϕ (r, 〈θ(1)(s

(i)
ϕ); . . . ; θ(i)(s

(i)
ϕ); s

(i)
ϕ 〉)

08 i := i+ 1

09 (δ
(i)
φ , δ

(i)
ϕ , θ(i)) := CombinationalDependencyRestore(δ (i), δ)

10 until |δ(i)| = |δ(i)
ϕ |

11 return (〈δ(1)
φ ; . . . ; δ

(i−1)
φ 〉, δ(i−1)

ϕ , 〈θ(1); . . . ; θ(i−1)〉)
end

Fig. 2. Algorithm: SequentialDependencyGfp.

discovered is between two state transition systems (e.g., in equivalence check-
ing). To discover more dependency, we need to adopt a least fixed-point strategy
and refine the dependency iteratively.

The Least Fixed-Point Calculation. In the lfp calculation, unlike the gfp
one, the initial dependency among state variables is exploited maximally based
on the set of initial states. The dependency is then strengthened iteratively
until a fixed point has been reached. The set of functional independents tend to
increase during the iterations, in contrast to the decrease in the gfp calculation.

Consider the computation of initial dependency. For the simplest case, when
|I| = 1, any state variable sϕ can be selected as the basis. Any other variable
is replaced with either �(sϕ) or �†(sϕ), depending on whether its initial value
equals that of sϕ or not. For arbitrary I, the initial variable dependency can be
derived using functional deduction on the characteristic function of I. (As noted
in Remark 1, excluding dangling states from I reveals more dependency.)

For the iterative computation, transition functions are updated in every it-
eration by eliminating dependent state variables with the latest dependency
functions. Combinational dependency is then obtained for the new set of tran-
sition functions. Unlike the gfp iterations, the obtained functional dependency
in the ith iteration may not be an invariant for the following iterations because
the derived dependency may be valid only in the state subspace spanned by
{s(i−1)
ϕ }. As the state subspace changes over the iterations due to different selec-

tions of independent state variables, the dependency may need to be rectified.
Notice that the set of functional independents may not increase monotonically
during the iterations. This non-convergent phenomenon is due to the existence
of the don’t-care choices of θ(i) in addition to the imperfect information about
the currently reachable state set. Therefore, additional requirements need to be

Functional Dependency for Verification Reduction 275

SequentialDependencyLfp
input: a state transition system M = (I,r, s, δ,λ)
output: a dependency triplet (δφ , δϕ , θ) for δ
begin

01 i := 0; (s
(0)
φ , s

(0)
ϕ , θ(0)) := InitialDependency(I)

02 repeat
03 i := i+ 1

04 δ(i) := δ(r, 〈θ(i−1)(s
(i−1)
ϕ); s

(i−1)
ϕ 〉)

05 (δ
(i)
φ , δ

(i)
ϕ , θ(i)) := CombinationalDependencyReuse(δ(i), θ(i−1))

06 until θ(i) = θ(i−1)

07 return (δ
(i)
φ , δ

(i)
ϕ , θ(i))

end

Fig. 3. Algorithm: SequentialDependencyLfp.

imposed to guarantee termination. Here we request that, after a certain number
of iterations, the set of independent state variables increase monotonically until
θ(i) can be reused in the next iteration, that is, the fixed point is reached. The
algorithm is outlined in Figure 3. To simplify the presentation, it contains only
the iterations where {s(i)

ϕ } increases monotonically. Procedure CombinationalDe-
pendencyReuse is the same as CombinationalDependency except that it tries to
maximally reuse the dependency functions provided in its second argument.

In theory, the optimality of the lfp calculation lies somewhere between that of
the gfp calculation and that of the most general computation with reachability
analysis. Since not all dependency in M can be detected by the lfp procedure
due to the imperfect information about the reachable states, the algorithm is
incomplete in detecting dependency. To make it complete, reachability analysis
should be incorporated. We postpone this integration to the next section and
phrase it in the context of verification reduction.

Remark 2. Notice that when θ(i)’s are restricted to consisting of only identity
functions and/or complementary identity ones, refinement relation 	 among
transition functions reduces to an equivalence relation; the lfp calculation of
sequential dependency reduces to the detection of equivalent state variables.
Hence, detecting signal correspondence [9] is a special case of our formulation.

4 Verification Reduction

Here we focus on the reduction for safety property verification, where reacha-
bility analysis is the core computation. The verification problem asks if a state
transition system M = (I, r, s, δ,λ) satisfies a safety property P , denoted as
M |= P , for all of its reachable states.

Suppose that (δφ, δϕ,θ) is a dependency triplet of δ; let sφ and sϕ be
the corresponding state variables of δφ and δϕ, respectively. To represent the
reachable state set, either s or sϕ can be selected as the basis. Essentially,
R(s) = Expand(R⊥(sϕ), (sφ, sϕ,θ)) = R⊥(sϕ) ∧ ∧

i(sφi ≡ θi(sϕ)), where R
and R⊥ are the characteristic functions representing the reachable state sets in

276 Jie-Hong R. Jiang and Robert K. Brayton

ComputeReachWithDependencyReduction
input: a state transition system M = (I,r, s, δ,λ)
output: the set R of reachable states of M
begin

01 i := 0; (s
(0)
φ , s

(0)
ϕ , θ(0)) := InitialDependency(I)

02 I⊥0 := I [{s(0)
ϕ }/{s}]

03 R⊥0 := I⊥0 ; F⊥0 := I⊥0

04 repeat
05 i := i+ 1

06 δ(i) := δ(r, 〈θ(i−1)(s
(i−1)
ϕ); s

(i−1)
ϕ 〉)

07 (δ
(i)
φ , δ

(i)
ϕ , θ(i)) := CombinationalDependencyReach(δ(i), θ(i−1), R⊥i−1)

08 T⊥i := Image(δ
(i)
ϕ , F⊥i−1)

09 sν := s
(i)
ϕ \s(i−1)

ϕ ; θν := sν ’s corresponding functions in θ(i−1)

10 R⊥i−1 := Expand(R⊥i−1 , (sν , s
(i−1)
ϕ , θν))

11 R⊥i−1 := R⊥i−1 [{s(i)
ϕ }/{s(i)

ϕ ∪ s(i−1)
ϕ }]

12 F⊥i := simplify T⊥i with R⊥i−1 as don’t care

13 R⊥i := R⊥i−1 ∪ T⊥i

14 until R⊥i = R⊥i−1

15 return Expand(R⊥i , (s
(i)
φ , s

(i)
ϕ , θ(i)))

end

Fig. 4. Algorithm: ComputeReachWithDependencyReduction.

the total space and, respectively, in the reduced space spanned by sϕ. Let P (s)
denote the states that satisfy P . Checking whether R(s) ⇒ P (s) is equivalent to
checking whether R⊥(sϕ) ⇒ P⊥(sϕ), where P⊥(sϕ) = P (〈θ(sϕ); sϕ〉). Hence,
the verification problem can be carried out solely over the reduced space. As
noted in Remark 1, the set I of initial states might require special handling.

For given dependency, reachability analysis can be carried out solely upon
the reduced basis. The validity of the given dependency can be tested in every
iteration of the reachability analysis as was done in [11]. Below we concentrate on
the cases where dependency is not given. We show how the detection of functional
dependency can be embedded into and simplify the reachability analysis.

To analyze the reachability of a transition system with unknown dependency,
two approaches can be taken. One is to find the sequential dependency with the
forementioned gfp and/or lfp calculation, and then perform reachability analysis
on the reduced state space based on the obtained dependency. The other is to
embed the dependency detection into the reachability analysis as an on-the-fly
reduction. Since the former is straightforward, we only detail the latter. Figure 4
sketches the algorithm. Procedure CombinationalDependencyReach is similar to
CombinationalDependencyReuse with two exceptions: First, the derived depen-
dency is with respect to the reached state set provided in the third argument.
Second, the set of independent state variables needs not increase monotonically
since the termination condition has been taken care of by the reached state sets.
In each iteration of the state traversal, the previously reached state set R is
adjusted (by the expansion and projection operations) to a new basis according
to the derived dependency triplet.

Functional Dependency for Verification Reduction 277

5 Experimental Results

The forementioned algorithms have been implemented in the VIS [4] environ-
ment. Experiments were conducted on a Sun machine with a 900-MHz CPU
and 2-Gb memory. Three sets of experiments have results shown in Tables 1, 2,
and 3, respectively. Table 1 demonstrates the relative power of exploiting depen-
dency by the detection of signal correspondence, the gfp, and lfp calculations
of sequential dependency. Table 2 compares their applicabilities in the equiv-
alence checking problem. Finally, Table 3 shows how reachability analysis can
benefit from our computation of functional dependency. In the experiments, all
the approaches under comparison use the same BDD ordering. In addition, no
reordering is invoked.

Table 1. Comparisons of Capabilities of Discovering Dependency.

Signal Corr. [9] Seq. Dep. Gfp Seq. Dep. Lfp
mem. time mem. time mem. time

Circuit State Var. indp. iter. (Mb) (sec) indp. iter. (Mb) (sec) indp. iter. (Mb) (sec)

s298-rt 34 (14) 31 5 10 0.3 23 2 23 1.6 24 10 41 6.2
s499-rt 41 (22) 41 21 13 1.6 29 1 23 11.6 29 22 23 8.2
s510-rt 34 (6) 32 4 13 0.4 21 2 51 17.5 23 6 58 81.1
s526n-rt 64 (21) 55 4 13 1.0 37 2 60 104.2 40 14 58 26.8
s635-rt 51 (32) 50 16 13 0.6 34 2 13 2.8 34 33 21 7.4

s838.1-rt 73 (32) 48 20 13 1.5 33 1 22 3.7 33 46 21 18.3
s991-rt 42 (19) 24 2 13 0.5 21 2 21 1.4 20 2 21 1.4

mult16a-rt 106 (16) 66 6 13 0.9 75 2 13 1.0 61 8 13 4.6
tbk-rt 49 (5) 49 2 49 6.8 13 4 62 264.1 21 3 59 48.4
s3271 116 114 6 29 2.1 116 0 29 3.0 114 6 45 12.6
s4863 104 81 3 47 4.7 81 1 69 178.7 75 3 47 14.5
s5378 179 163 12 37 6.5 155 2 51 15.9 154 14 51 43.1

s9234.1 211 188 18 99 79.5 189 2 97 250.2 184 38 99 967.6
s13207 669 303 16 138 95.6 460 5 111 384.6 263 37 100 836.0
s15850 597 431 24 142 221.7 569 3 134 1487.1 315 32 142 1441.0
s35932 1728 1472 31 281 599.8 1728 0 146 34091.5 – – – > 105

s38584 1452 869 17 303 525.5 1440 1 155 4103.3 849 25 303 22001.1
8085 193 91 15 65 28.9 193 0 70 42.4 79 17 63 64.3

Compared in Table 1 are three approaches: the computation of signal corre-
spondence [9], the gfp, and lfp calculations of sequential dependency. The first
two columns list the benchmark circuits and their sizes in state variables. The
original sizes of retimed circuits (for timing optimization) are listed in the follow-
ing parentheses. For each compared approach, four columns in order list the sizes
of the computed independent state variables, the required numbers of iterations,
memory usage, and CPU time. Among these three approaches, the minimum
sizes of independent variables are highlighted in bold. It is evident from Table 1
that the lfp calculation of sequential dependency subsumes the detection of sig-
nal correspondence in both generality and optimality. On the other hand, the
powers of the lfp and gfp calculations are incomparable in practice. They have
different directions of approximating reachable state sets. For the gfp calculation,
the unreachable state set is gradually pruned each time dependency functions
are substituted backward. For the lfp one, the reachable state set grows with the
iterative computation. It turns out that the gfp computation is very effective

278 Jie-Hong R. Jiang and Robert K. Brayton

in exploiting dependency for retimed circuits. For instance, in circuit tbk-rt,
13 variables are identified as independents by the gfp calculation, compared to
24 by the lfp one. In general, the gfp computation uses much fewer iterations
than the other two approaches. In contrast, the lfp calculation outperforms the
other two approaches in circuits not retimed. The table also reveals that all the
approaches do not suffer from memory explosion. Rather, the time consumption
may be a concern in the gfp and lfp calculations of sequential dependency. This
is understandable because testing the refinement relation is more general and
complicated than testing the equivalence relation used in the detection of signal
correspondence. Fortunately, the tradeoff between quality and time can be easily
controlled, for example, by imposing k-substitutability, which uses up to k func-
tions to substitute a dependent function. With our formulation, dependencies
that were underivable before, due to the limitation of reachability analysis on
large transition systems, can now be computed efficiently.

Table 2. Comparisons of Capabilities of Checking Equivalence.

Signal Corr. [9] Seq. Dep. Gfp Seq. Dep. Lfp
mem. time mem. time mem. time

Circuit State Var. indp. iter. (Mb) (sec) indp. iter. (Mb) (sec) indp. iter. (Mb) (sec)

s298 14+34 39 5 10 0.5 37 2 21 1.5 30 13 31 4.4
s499 22+41 63 21 14 3.1 43 2 38 7.3 42 22 45 23.6
s510 6+34 38 4 13 0.6 27 2 50 25.9 29 5 36 39.8
s526n 21+64 69 8 13 2.4 58 2 59 121.9 50 12 58 31.8
s635 32+51 66 31 13 7.8 66 1 21 1.4 51 33 25 9.1

s838.1 32+73 78 31 25 16.8 65 2 48 4.2 59 47 37 22.5
s991 19+42 42 2 22 1.5 40 2 38 2.5 39 3 41 5.4

mult16a 16+106 82 6 14 4.6 91 2 14 1.7 77 8 26 5.1
tbk 5+49 54 2 44 5.5 17 4 61 175.6 25 3 59 86.4

With similar layout to Table 1, Table 2 compares the applicabilities of these
three approaches to the equivalence checking problem. Here a product machine
is built upon a circuit and its retimed version. As noted earlier, the gfp calcu-
lation itself cannot prove the equivalence between two systems. It, essentially,
computes the dependency inside each individual system, but not the interdepen-
dency between them. On the other hand, the detection of signal correspondence
can rarely prove equivalence unless the two systems under comparison are almost
functionally identical. In contrast, the lfp calculation of sequential dependency
can easily prove the equivalence between two systems where one is forwardly
retimed from the other, and vice versa. Arbitrary retiming, however, may cause
a failure, although in principle there always exists a lfp calculation that can con-
clude the equivalence. In Table 2, since the retiming operations on the retimed
circuits involve both forward and backward moves, none of the approaches can
directly conclude the equivalences. However, as can be seen, the lfp calculation
can compactly condense the product machines.

Although detecting dependency can reduce state space, it is not clear if the
BDD sizes for the dependency functions and the rewritten transition functions
are small enough to benefit reachability analysis. In Table 3, we justify that
it indeed can improve the analysis. Some hard instances for state traversal are

Functional Dependency for Verification Reduction 279

Table 3. Comparisons of Capabilities of Analyzing Reachability.

R.A. w/o Dep. Reduction R.A. w Dep. Reduction
peak reached mem. time peak reached mem. time

Circuit Iter. (bdd nodes) (bdd nodes) (Mb) (sec) (bdd nodes) (bdd nodes) (Mb) (sec)

s3271 4 28819301 16158242 620 2784.1 18843837 10746053 415 1082.6
s4863 2 18527781 248885 365 404.8 549006 8772 67 13.1
s5378 2 – – > 2000 – 1151439 113522 70 21.5
s15850 15 29842889 9961945 653 21337.4 17667076 6356714 463 8175.0
8085 50 16663749 1701604 390 24280.2 7830602 1338322 212 4640.1

studied. We compare reachability analyses without and with on-the-fly reduc-
tion using functional dependency. In the comparison, both analyses have the
same implementation except switching off and on the reduction option. The sec-
ond column of Table 3 shows the steps for (partial) state traversal. For each
reachability analysis, four columns in order shows the peak number of live BDD
nodes, the size of the BDD representing the final reached state set, memory us-
age, and CPU time. It is apparent that, with the help of functional dependency,
the reachability analysis yields substantial savings in both memory and time
consumptions, compared to the analysis without reduction.

6 Comparisons with Related Work

Among previous studies [11, 8] on exploiting functional dependency, the one
closest to ours is [8] while functional dependency in [11] is assumed to be given.
The method proposed in [8] is similar to our reachability analysis with on-the-
fly reduction. However, several differences need to be addressed. First, previous
dependency was drawn entirely from the currently reached state set (using func-
tional deduction) rather than from the transition functions. Thus, in each itera-
tion of their reachability analysis, image computation need to be done before the
detection of new functional dependency. The image computation rarely benefits
from functional dependency. In contrast, our approach is more effective because
the dependency is discovered before the image computation, which is performed
on the reduced basis. Second, as previous dependency was obtained from a cur-
rently reached state set, not from transition functions, it is not as robust as ours
to remain valid through the following iterations. Third, the prior method cannot
compute functional dependency without reachability analysis while our formu-
lation can be used as a stand-alone technique. Also, we identify a new initial set
of non-dangling states. It uncovers more dependency to be exploited.

For related work specific to sequential equivalence checking, we mention [16,
1, 18, 9]. Among them, the work of [9] is the most relevant to ours; it is a special
case of our lfp calculation as noted in Remark 2. While these prior efforts focus
on equivalence checking, ours is more general for safety property checking.

7 Conclusions and Future Work

We formulate the dependency among a collection of functions based on a refine-
ment relation. When applied to state transition systems, it allows the detection of
functional dependency without knowing reached state sets. With an integration

280 Jie-Hong R. Jiang and Robert K. Brayton

into a reachability analysis, it can be used as a complete verification procedure
with the power of on-the-fly reduction. Our formulation unifies the work of [9]
and [8] in the verification framework. In application to the equivalence checking
problem, our method bridges the complexity gap between combinational and se-
quential equivalence checking. Preliminary experiments show promising results
in detecting dependency and verification reduction.

As a future research direction, our results might be reformulated in a SAT-
solving framework. A path similar to that of [3], where van Eijk’s algorithm was
adjusted, could be taken to prove safety properties by strengthened induction.
Because our approach may impose more invariants than just signal correspon-
dence, we believe that SAT-based verification can benefit from our results.

References

1. P. Ashar, A. Gupta, and S. Malik. Using complete-1-distinguishability for FSM
equivalence checking. In Proc. ICCAD, pages 346–353, 1996.

2. C. Berthet, O. Coudert, and J.-C. Madre. New ideas on symbolic manipulations
of finite state machines. In Proc. ICCD, pages 224–227, 1990.

3. P. Bjesse and K. Claessen. SAT-based verification without state space traversal.
In Proc. FMCAD, pages 372–389, 2000.

4. R. K. Brayton, et al. VIS: a system for verification and synthesis. In Proc. CAV,
pages 428–432, 1996.

5. F. M. Brown. Boolean Reasoning: The Logic of Boolean Equations. Dover Publi-
cations, 2003.

6. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Computers, pages 677–691, August 1986.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
8. C. A. J. van Eijk and J. A. G. Jess. Exploiting functional dependencies in finite

state machine verification. In Proc. European Design & Test Conf., pages 9–14,
1996.

9. C. A. J. van Eijk. Sequential equivalence checking based on structural similarities.
IEEE Trans. Computer-Aided Design, pages 814–819, July 2000.

10. T. Filkorn. Symbolische methoden für die verifikation endlicher zustandssysteme.
Ph.D. thesis. Institut für Informatik der Technischen Universität München, 1992.

11. A. J. Hu and D. L. Dill. Reducing BDD size by exploiting functional dependencies.
In Proc. DAC, pages 266–271, 1993.

12. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, 1994.

13. B. Lin and A. R. Newton. Exact redundant state registers removal based on binary
decision diagrams. In Proc. Int’l Conf. VLSI, pages 277–286, 1991.

14. C. E. Leiserson and J. B. Saxe. Optimizing synchronous systems. J. VLSI Com-
puter Syst., vol. 1, no. 1, pp. 41–67, 1983.

15. E. Marczewski. Independence in algebras of sets and Boolean algebra. Fundamenta
Mathematicae, vol. 48, pages 135–145, 1960.

16. S. Quer, G. Cabodi, P. Camurati, L. Lavagno, and R. Brayton. Verification of
similar FSMs by mixing incremental re-encoding, reachability analysis, and com-
binational check. Formal Methods in System Design, vol. 17, pages 107–134, 2000.

17. E. Sentovich, H. Toma, and G. Berry. Latch optimization in circuits generated
from high-level descriptions. In Proc. ICCAD, pages 428–435, 1996.

18. D. Stoffel and W. Kunz. Record & play: A structural fixed point iteration for
sequential circuit verification. In Proc. ICCAD, pages 394–399, 1997.

	1 Introduction
	2 Preliminaries and Notations
	3 Functional Dependency
	3.1 Combinational Dependency
	3.2 Sequential Dependency

	4 Verification Reduction
	5 Experimental Results
	6 Comparisons with Related Work
	7 Conclusions and Future Work
	References

