
Quanti�er Elimination via Functional
Composition

Jie-Hong R. Jiang

Department of Electrical Engineering / Graduate Institute of Electronics Engineering
National Taiwan University, Taipei 10617, Taiwan

jhjiang@cc.ee.ntu.edu.tw

Abstract. This paper poses the following basic question: Given a quan-
ti�ed Boolean formula ∃x.ϕ, what should a function/formula f be such
that substituting f for x in ϕ yields a logically equivalent quanti�er-
free formula? Its answer leads to a solution to quanti�er elimination in
the Boolean domain, alternative to the conventional approach based on
formula expansion. Such a composite function can be e�ectively derived
using symbolic techniques and further simpli�ed for practical applica-
tions. In particular, we explore Craig interpolation for scalable computa-
tion. This compositional approach to quanti�er elimination is analyzably
superior to the conventional one under certain practical assumptions.
Experiments demonstrate the scalability of the approach. Several large
problem instances unsolvable before can now be resolved e�ectively. A
generalization to �rst-order logic characterizes a composite function's
complete �exibility, which awaits further exploitation to simplify quan-
ti�er elimination beyond the propositional case.

1 Introduction

Quanti�er elimination is a way of transforming a formula with quanti�ers to an
equivalent one without quanti�ers. Eliminating quanti�ed variables often yields
desirable reduction of some sort, and applies to constraint solving, e.g., Gauss
elimination for solving systems of linear equations, Fourier-Motzkin elimina-
tion for systems of linear inequalities, cylindrical algebraic decomposition [4, 2]
for systems of polynomial inequalities, and so on. It plays important roles in
computation theory, mathematical logic, mathematical programming, scienti�c
computing, and other �elds. Its applications are pervasive and profound. This
paper is concerned about quanti�er elimination in propositional logic as well as
�rst-order logic.

Quanti�er elimination in propositional logic augmented with quanti�ers over
propositional variables is a well-studied subject. There are several approaches to
this problem:

Formula expansion. A conventional approach to quanti�er elimination is based
on formula expansion, ∃x.ϕ = ϕ[x/0]∨ϕ[x/1], where formula ϕ is expanded
under all truth assignments on x by substituting 0 and 1 for x in ϕ. Binary

decision diagrams (BDDs), and-inverter graphs (AIGs), and other data struc-
tures for Boolean function representation and manipulation can be adopted
for the computation. BDDs tended to be a popular approach to such compu-
tation, the so-called image computation [3]. BDD-based computation how-
ever has its intrinsic memory-explosion limitation. On the other hand, recent
progress in AIG packages [14, 13] has made AIG-based quanti�cation a viable
alternative to BDD-based one. For example, AIGs have been directly used
in unbounded model checking [17]. Our approach to quanti�er elimination
also uses AIGs extensively.

Normal-form conversion. Eliminating the existential (respectively universal)
quanti�er of formula ∃x.ϕ (respectively ∀x.ϕ) is easy1 when ϕ is in dis-
junctive normal form (DNF) (respectively conjunctive normal form (CNF)).
Thereby the normal-form conversion between CNF and DNF can be ex-
ploited for quanti�er elimination, as was suggested in [15] in application to
unbounded model checking.

Satis�ability solving. Using a decision procedure, the quanti�er-free equiva-
lent of ∃x.ϕ can be generated by searching through all satisfying assignments
to the non-quanti�ed variables. By collecting these satisfying assignments,
one can construct an equivalent quanti�er-free formula. A detailed exposition
of this method can be found, e.g., in [7] and the references therein.

Despite these existing approaches, there is not a single best one to quanti�er
elimination for all problem instances. Di�erent approaches may have their own
strengths and weaknesses.

This paper adds to the above list a new item, a compositional approach
to quanti�er elimination, which is by nature closer to the formula-expansion
approach. We ask, given a quanti�ed Boolean formula ∃x.ϕ, what should a func-
tion/formula f be such that substituting f for x in ϕ, denoted as ϕ[x/f], yields
a logically equivalent quanti�er-free formula. This paper characterizes the com-
plete �exibility of such a composite function f . Furthermore, an e�ective and
scalable derivation of f with reasonable quality is proposed using Craig inter-
polation. An analysis shows that, under the sparsity assumption of ϕ (which is
common in certain practical applications), the new compositional approach is
superior to the conventional one based on formula expansion. Practical expe-
rience suggests that the new approach often yields much more compact AIGs
than the conventional one when the sparsity condition holds. Several problem in-
stances that su�er from exponential blow-up by formula expansion are e�ectively
resolvable by functional composition.

Quanti�er elimination in �rst-order logic is much more complicated and rel-
atively less explored. In fact, exhaustive formula expansion does not work in
�rst-order logic as variables can take on in�nite values. Moreover, not every
1 When ϕ is in DNF and CNF, respectively, removing every appearance of literals

x, ¬x and the so-induced illegal logic connectives from ϕ yields a quanti�er-free
equivalent of ∃x.ϕ and ∀x.ϕ, respectively. So the computation is achievable in linear
time and the size of the resultant quanti�er-free formula is non-increasing compared
to that of ϕ.

�rst-order theory allows quanti�er elimination. One of the earliest attempts at
quanti�er elimination in �rst-order logic is Tarski's work [21], where the �rst
quanti�er-elimination procedure of real closed �elds was demonstrated. Since
then, algorithmic improvements have been achieved, see, e.g., [4, 2]. Also quan-
ti�er elimination has been shown possible in other �rst-order theories, such as
term algebras, Presburger arithmetic, and other theories [20].

Extending the results of propositional logic, this paper characterizes the com-
plete �exibility of composite functions for quanti�er elimination in �rst-order
logic. Unlike most prior e�orts, which gave concrete quanti�er-elimination pro-
cedures for some speci�c theories, we rather present a generic viewpoint and
show the potential usefulness of the complete �exibility in simplifying quanti�er
elimination.

One of the common practices to quanti�er elimination of �rst-order theories
is based on the principle of virtual substitution with elimination sets [23]. To
eliminate a quanti�er, a �nite set of solution terms with their validity condi-
tions is identi�ed for substitution. Our characterized complete �exibility may be
exploited to reduce elimination sets.

This paper is organized as follows. After preliminaries are given in Section 2,
Section 3 presents the main results on quanti�er elimination in propositional
logic. Section 4 extends the results to �rst-order logic. Experimental results and
discussions are given in Section 5. Section 6 compares our results with some
related work. Finally, Section 7 concludes this paper and outlines future work.

2 Preliminaries

Predicate logic. We closely follow the de�nitions and notation of [6] about
�rst-order logic. A �rst-order language may consist of logical symbols (including
parentheses, sentential connectives, variables, and the (optional) equality sym-
bol) and parameters (including quanti�er symbols, constant symbols, predicate
symbols, and function symbols). Given a language, terms are �nite expressions
representing names of objects, whereas (well-formed) formulas are �nite expres-
sions representing assertions about objects. Given a formula, variables not in
the scope of any quanti�er are called free variables, otherwise bound variables.
Formulas without free variables are called sentences.

As a notational convention, substituting a term t for some variable x in a
formula ϕ is denoted as ϕ[x/t]. We say that t is substitutable for x in ϕ if every
variable y in t is not captured by some quanti�er ∀y or ∃y in ϕ. Substitutability
can be achieved through proper renaming of bound variables. By writing ϕ[x/t],
this paper assumes that t is substitutable for x in ϕ.

A structure (or called an interpretation) A of some �rst-order language L
is a tuple specifying the domain (or universe), denoted |A|, of the variables,
and associating the constant, predicate, and function symbols with meanings. A
sentence σ of L is true in structure A is denoted as |=A σ.

Propositional logic can be seen as a special case of �rst-order logic, where
functions and predicates are interchangeable, so are terms and formulas. Also

there is a unique structure B with |B| = {0, 1}. In propositional logic, the
positive and negative cofactors of formula ϕ with respect to variable x are ϕ[x/1]
and ϕ[x/0], respectively.

Propositional satis�ability and Craig interpolation. A brief introduc-
tion to SAT solving and circuit-to-CNF conversion, essential to our development,
can be found in [16]. To introduce terminology and convention for later use, we
restate the following theorem.
Theorem 1 (Craig Interpolation Theorem). [5]
Given two Boolean formulas φA and φB, with φA ∧ φB unsatis�able, then there
exists a Boolean formula ψA referring only to the common variables of φA and
φB such that φA → ψA and ψA ∧ φB remains unsatis�able.
The Boolean formula ψA is referred to as the interpolant of φA with respect
to φB . Modern SAT solvers can be extended to construct interpolants from
resolution refutations [16]. In the sequel, we shall assume that Boolean functions,
circuits, and interpolants are represented using AIGs, which can be converted
to CNF formulas in polynomial time.

3 Propositional Logic
In this section we consider quanti�er elimination of propositional logic aug-
mented with quanti�ers over propositional variables.

3.1 Composability for Quanti�er Elimination
Putting propositional logic in the context of �rst-order logic, we note that it
has a unique structure/interpretation. Under this unique structure, terms, func-
tions, predicates, and formulas all coincide. This simplicity is crucial to the
following development for propositional logic, and will become apparent when
we encounter �rst-order logic.

Theorem 2. A quanti�ed Boolean formula ∃y.ϕ(x, y) is logically equivalent to
the quanti�er-free formula ϕ(x, f(x)) for some function f : Bn → B if and only
if every pair a ∈ Bn, b ∈ B with f(a) = b satis�es ϕ(a, b) ∨ ∀y.¬ϕ(a, y).

Proof. (=⇒) For f(a) = b, then ϕ(a, f(a)) = ϕ(a, b). If ϕ(a, b) is true, then
∃y.ϕ(a, y) is true. On the other hand, if ¬ϕ(a, b) is true, then ¬∃y.ϕ(a, y) is true
due to the logical equivalence between ϕ(x, f(x)) and ∃y.ϕ(x, y). Hence every
pair a ∈ Bn, b ∈ B with f(a) = b satis�es ϕ(a, b) ∨ ∀y.¬ϕ(a, y).

(⇐=) For the sake of contradiction, assume ∃y.ϕ(x, y) and ϕ(x, f(x)) are
not logically equivalent. Then there exists some a ∈ Bn such that ¬∃y.ϕ(a, y) ∧
ϕ(a, f(a)) or ∃y.ϕ(a, y) ∧ ¬ϕ(a, f(a)). The former is trivially unsatis�able; the
latter contradicts with the premise, ϕ(a, f(a)) ∨ ∀y.¬ϕ(a, y).

In essence the above theorem answers the following question: Given a quanti�ed
Boolean formula ∃y.ϕ(x, y), what should a function f be such that the compo-
sition ϕ(x, f(x)) equals ∃y.ϕ? It also implies the existence of such a function.

Proposition 1. Given a quanti�ed Boolean formula ∃y.ϕ(x, y), there always
exists a function f(x) such that ∃y.ϕ(x, y) = ϕ(x, f(x)).

Proof. The proposition follows from the fact that, for every a ∈ Bn, there always
exists some b ∈ B such that ϕ(a, b) = 1 if ∃y.ϕ(a, y) is true.

The following proposition characterizes the complete �exibility of a composite
function for quanti�er elimination.
Proposition 2. The equality ∃y.ϕ(x, y) = ϕ(x, f(x)) holds if and only if the
composite function f satis�es (¬ϕ[y/0] ∧ ϕ[y/1]) → f and f → ¬(¬ϕ[y/1] ∧
ϕ[y/0]). That is, ¬ϕ[y/0] ∧ ϕ[y/1] and ¬ϕ[y/1] ∧ ϕ[y/0] are the tightest onset
and o�set of f , respectively.

Proof. There are four possible valuations of ϕ(a, 0) and ϕ(a, 1) for every a ∈ Bn.

For (ϕ(a, 0), ϕ(a, 1)) = (0, 0), a is a don't-care minterm of f because ϕ(a, f(a)) =
0 independent of the value of f(a).

For (ϕ(a, 0), ϕ(a, 1)) = (0, 1), a is an onset minterm of f because ∃y.ϕ(a, y) is
true and f(a) = 1 is the only way to make ϕ(a, f(a)) true.

For (ϕ(a, 0), ϕ(a, 1)) = (1, 0), a is an o�set minterm of f for reason similar to
that of case (0, 1).

For (ϕ(a, 0), ϕ(a, 1)) = (1, 1), a is a don't-care minterm of f for reason similar
to that of case (0, 0).

Hence ¬ϕ[y/0]∧ϕ[y/1] and ¬ϕ[y/1]∧ϕ[y/0] are the tightest onset and o�set of
f , respectively.

Therefore the composite function f can be minimized using the don't-care con-
dition (ϕ[y/1] ∧ ϕ[y/0]) ∨ (¬ϕ[y/1] ∧ ¬ϕ[y/0]).

Since universal quanti�cation can be converted to existential quanti�cation
by the equality ∀x.ϕ = ¬∃x.¬ϕ, the compositional approach can be used in gen-
eral quanti�er elimination of quanti�ed Boolean formulas (QBFs). The quanti-
�ers of a QBF can be removed from inside out.

3.2 Interpolation of Composite Function
By Proposition 2, the composite function f can be obtained using symbolic
methods. Finding a simple implementation of f under the don't-care �exibil-
ity hopefully makes ϕ(x, f(x)) simple and facilitates quanti�er elimination. We
exploit Craig interpolation for scalable computation. It relies on the following
proposition, whose correctness is immediate by Theorem 1.
Proposition 3. The interpolant with respect to

φA = ¬ϕ[y/0] ∧ ϕ[y/1] and (1)
φB = ¬ϕ[y/1] ∧ ϕ[y/0] (2)

is a valid implementation of a composite function f satisfying ∃y.ϕ = ϕ[y/f].

Interpolation can be seen as a way to derive simple functions as long as the
don't-care set is reasonably large. When the don't-care set is large, proving the
unsatis�ability of φA ∧ φB is easy and the corresponding refutation proof is
simple. So the interpolant size (in term of AIG nodes) is likely to be small.

3.3 Analysis of Applicability
We compare expansion- and composition-based quanti�er-elimination procedures
assuming that AIGs are the underlying data structure. The AIG sizes of ϕ[y/0]∨
ϕ[y/1] and ϕ[y/f(x)] are analyzed.

The AIGs of ϕ[y/0] and ϕ[y/1] are obtained from ϕ through constant prop-
agation. From practical experience, the sizes of ϕ[y/0] and ϕ[y/1] are rarely
reduced much, especially for large AIGs. It is possible to apply aggressive mini-
mization using don't cares. Speci�cally, in building ϕ[y/0]∨ϕ[y/1], ϕ[y/0] can be
used as the don't-care condition to minimize ϕ[y/1], or vice versa (but simultane-
ous minimization of ϕ[y/0] and ϕ[y/1] is forbidden). For instance, in minimizing
ϕ[y/1] using don't-care condition ϕ[y/0], the optimization is constrained by

φA = ϕ[y/1] ∧ ¬ϕ[y/0] and (3)
φB = ¬ϕ[y/1] ∧ ¬ϕ[y/0] (4)

being the tightest onset and o�set, respectively. Notice that interpolation or
other symbolic techniques can be applied here to extract a function, say f ′,
hopefully simpler than ϕ[y/1]. So ϕ[y/0]∨f ′ can be simpler than ϕ[y/0]∨ϕ[y/1]
for quanti�er elimination. (With interpolation, such simpli�cation however was
not empirically observed in our experiments. It may be due to the small size of
the don't-care set, which results in ine�ective interpolation.)2

Observe that Equations (1) and (3) are identical, whereas Equations (2) and
(4) di�er only in the second term. This slight di�erence in fact makes substantial
impact on interpolation. When ϕ is a sparse function (with relatively few onset
minterms), ϕ[y/0] is very likely a sparse function as well. In this case, the o�set
corresponding to φB of Equation (2) is much smaller than that of Equation (4).
Accordingly, proving the unsatis�ability of φA ∧ φB of Equations (1) and (2) is
easier to establish than that of Equations (3) and (4). The derived interpolant
with respect to Equations (1) and (2) can be much smaller. On the contrary, for
dense function ϕ the derived interpolant with respect to Equations (3) and (4)
can be smaller.

The above sparsity condition commonly holds in practical applications. For
instance, the transition relation built up from a set of transition functions of a
sequential system appears to be sparse. In fact, the more the transition functions
2 Practical experience suggests that the size of an interpolant can be sensitive to the
amount of don't cares. It was observed that, for a function f , the AIG size of the
interpolant of φA = f and φB = ¬f (i.e., interpolation without don't cares) is typi-
cally much (e.g., two orders of magnitude) larger than that of f . Therefore, quanti�er
elimination of ∃y.ϕ(x, y) by interpolating φA = ϕ(x, y) and φB = ¬∃y.ϕ(x, y) is
ine�ective.

are, the sparser the transition relation is. Under this sparsity assumption, quan-
ti�er elimination using functional composition is superior to that using formula
expansion.

By a qualitative comparison, expansion- and composition-based quanti�er-
elimination methods show di�erent characteristics:

Manipulation complexity. The former requires cofactoring and disjunction
operations; the latter requires interpolation (which invokes SAT solving)
and composition operations. In addition to the above operations, for both
methods AIG minimization also plays an important role in the entire quan-
ti�cation e�ort.

Circuit level. The circuit depth of a resultant AIG is shallower for the former
and deeper for the latter. On the other hand, the circuit width of a resultant
AIG is thicker for the former and thinner for the latter.

Circuit size. The AIG resulted from the former is often larger than that of
the latter in certain applications. This phenomenon can be related to the
sparsity assumption and due to the amount of achieved logic sharing.

3.4 Application to Circuit Optimization
In addition to quanti�er elimination, a potential application of (the �if�-part of)
Theorem 2 is to reduce circuit levels. Consider a circuit C implementing some
function f(X). Suppose t is an intermediate signal in the circuit with function
g(X) and f(X) = h(X, t) = h(X, g(X)). If g(X) satis�es Theorem 2, then the
circuit can be reexpressed by h[t/0]∨h[t/1], whose circuit level can be potentially
smaller than that of h[t/g(X)].

4 Predicate Logic
We study quanti�er elimination in predicate logic with the following principle.
Proposition 4. Given a language L in predicate logic and a structure A, then

|=A ∀x.(∃y.ϕ(x, y) = ∃F.ϕ(x, F (x))),

where ϕ is a formula, F is an n-place function symbol, and x = (x1, . . . , xn) and
y are variable symbols of L.
Proof. By the axiom of choice, such a function can be obtained by letting f(a) =
b for every a with some b satisfying ϕ(a, b) or some arbitrary b if ∀y.¬ϕ(a, y).

Note that the above proof characterizes the complete �exibility of the composite
function in predicate logic.

The equality of Proposition 4 suggests an equivalence-preserving transfor-
mation (with respect to some structure), and should be distinguished from the
satis�ability-preserving Skolemization [18] of

∀x, ∃y.ϕ(x, y) |==| ∃F, ∀x.ϕ(x, Fx).

Unlike propositional logic, the nice coincidence of terms, functions, predi-
cates, and formulas no longer holds in predicate logic. In fact all of them are
distinct. Terms are built up from constant symbols, variables, and function sym-
bols. They represent names of objects and should be distinguished from func-
tions. Substituting terms for variables is legitimate, but substituting functions
or formulas for variables is not. Quanti�er elimination through substitution is
achievable only when a function can be conditionally expressed by a �nite set of
terms. Therefore quanti�er elimination by exhaustive formula expansion does not
work in predicate logic. Di�erent from propositional logic, a function in predicate
logic may not be always expressible with a single term, and sometimes not even
�nitely expressible. With these di�erences in mind, we generalize Theorem 2 in
the context of predicate logic as Theorems 3 and 4.

Theorem 3. Given a �rst-order language L and a structure A, if a formula
∃y.ϕ(x, y) is equivalent to

ϕ[yi/tf] = ϕ(x, tf),

by substituting for y some term tf (�nitely expressible in the language) that
represents f(x) for some function f : |A|n → |A|, then ϕ(a, b) ∨ ¬∃y.ϕ(a, y) is
satis�ed for any a ∈ |A|n, b ∈ |A| with f(a) = b.

Unlike the necessary and su�cient condition of Theorem 2, the converse of Theo-
rem 3 is not true because in general the composite function f may not be �nitely
expressible in the language. For �nitely expressible f , however, the converse holds
by Theorem 4.

Theorem 4. Given a formula ϕ(x, y) of some �rst-order language L and a
structure A, if a function f : |A|n → |A| with f(a) = b satisfying ϕ(a, b) ∨
¬∃y.ϕ(a, y) is �nitely expressible in the language with

f =





f1 if γ1

...
fm if γm

such that each fi can be expressed with some term tfi , where guard γi is the
predicate de�ning the applicability of fi over |A|n, then the quanti�ed formula
∃y.ϕ(x, y) is equivalent to ∨

i

γi ∧ ϕ(x, tfi).

The above theorems can be applied for universal quanti�er elimination by
∀x.ϕ = ¬∃x.¬ϕ, and thus work for nested quanti�er elimination.

With the following examples, we illustrate the usefulness of the complete
�exibility of a composite function to simplify quanti�er elimination.

Example 1. Consider the �rst-order language LG with equality, 1-place function
symbol S, 2-place predicate symbol R. Let structure A = ({0, . . . , 4}; S (successor

0 1 2 3 4

Fig. 1. Graph de�ned by the �rst-order language LG

function modulo 5), R = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (0, 2), (1, 3), (3, 0), (4, 1)}).
The graph induced by the structure A is shown in Figure 1, where every element
of the universe {0, . . . , 4} is represented as a vertex, and every (u, v) ∈ R is
represented as a directed edge from u to v. Let ϕ be

∃y.((y 6= x) ∧R(x, y) ∧R(y, y)).

Then the (x, y)-values satisfying ((y 6= x) ∧R(x, y) ∧R(y, y)) have the property
that vertex x connects to a di�erent vertex y that has a self-loop. So (x, y)-values
are as follows.

x y

0 1, 2
1 3
2 ∅
3 0
4 1

By Theorem 4, a solution function f can be as follows.

x f(x)
0 2
1 3
2 4
3 0
4 1

In this case, f can be expressed in terms of S as f(x) = S(S(x)). So ϕ can be
transformed into the equivalent quanti�er-free formula

(S(S(x)) 6= x) ∧R(x, S(S(x))) ∧R(S(S(x)), S(S(x))).

Example 2. Consider the following formula ϕ in the language of number theory
under structure N = (N; 0, S, S−1, <, +, ·, E), where S−1 is the inverse of the
successor function S with S−1(0) = 0.

(S(0) < x) ∧ (x < y) ∧ (∀a, ∀b.(y = a · b → (a = S(0) ∨ b = S(0)))
→ ∀a,∀b.(x = a · b → (a = S(0) ∨ b = S(0))))

ϕ asserts that x is greater than 1, y is greater than x, and, if y is prime, then x
is prime. By the property of Mersenne numbers, the quanti�cation of ∃y.ϕ can
be eliminated by substituting 2x − 1, shorthand for S−1(S(S(0))Ex), for y in ϕ
as

(S(0) < x) ∧ (x < (2x − 1)) ∧ (∀a,∀b.((2x − 1) = a · b → (a = S(0) ∨ b = S(0)))
→ ∀a,∀b.(x = a · b → (a = S(0) ∨ b = S(0)))),

which can be further simpli�ed to

(S(0) < x) ∧ (∀a, ∀b.((2x − 1) = a · b → (a = S(0) ∨ b = S(0)))
→ ∀a,∀b.(x = a · b → (a = S(0) ∨ b = S(0)))).

Example 3. Consider the following �rst-order formula over real closed �elds.
(The notation and symbols are used in the conventional arithmetic sense.)

∃x.(a · x2 + c = 0) (5)

Let
f(a, c) =

{√
−c/a if c/a < 0 or c/a = 0

0 if 0 < c/a
.

(For 0 < c/a, the value of f(a, c) can be arbitrary and is set to 0.) Quanti�er
elimination by substituting f(a, c) for x in Equation (5) yields

((c/a < 0 ∨ c/a = 0) ∧ a · (
√
−c/a)2 + c = 0) ∨ (0 < c/a ∧ a · 02 + c = 0),

which can be simpli�ed to c/a < 0 ∨ c/a = 0. Alternatively, let

f(a, c) =
√√

(−c/a)2.

The corresponding quanti�er-free formula becomes

a ·
(√√

(−c/a)2
)2

+ c = 0.

As this paper focuses on the characterization of the complete �exibility of
a composite function, how to e�ectively exploit such �exibility in simplifying
quanti�er elimination in predicate logic remains an open problem. In fact inter-
polation is not directly extensible to generate composite functions due to the
di�erence between formulas and functions in predicate logic.

5 Experimental Results

The proposed compositional approach to quanti�er elimination was implemented
in the ABC package [1]; the experiments were conducted on a Linux machine
with Xeon 3.4GHz CPU and 6Gb RAM.

We showed the e�ectiveness of quanti�er elimination by constructing the
transition relations of circuits taken from ISCAS and ITC benchmark suites. In
the transition relation of a circuit, its primary-input variables were existentially
quanti�ed.

Despite recent advances in AIG packages, it was observed that AIG mini-
mization may not be e�ective when AIG sizes reach tens of thousands of nodes.
Hence it is bene�cial to perform AIG minimization whenever possible before
the sizes get too large to be reduced. So in the experiments AIGs were con-
stantly minimized throughout the computation. Speci�cally, for expansion-based
quanti�cation, minimization was applied after the disjunction of two cofactored
circuits; for composition-based quanti�cation, minimization was applied before
circuit-to-CNF conversion for SAT solving, at interpolant simpli�cation, and
after functional composition.3

As quanti�cation scheduling is crucial to the scalability of quanti�er elimi-
nation, we adopted a simple strategy: By imposing a postponement threshold
(the percentage of AIG-size increase due to quanti�cation), variables whose cor-
responding quanti�cations result in substantial increase in AIG sizes (exceeding
the postponement threshold) are deferred. This threshold is lifted gradually in
the iterative computation until all quanti�ers are eliminated. In the following
experiments, the threshold starts at and increases by 10%. The same scheduling
strategy is applied for both expansion- and composition-based quanti�cations.

Table 1 compares the two quanti�cation methods based on formula expansion
(denoted QE-Exp) and functional composition (denoted QE-Cmp), where an
entry with ��� indicates data unavailable due to time-out at the limit of 90000
seconds. The smaller number of every corresponding pair of AIG sizes (circuit
depths) between QE-Exp and QE-Cmp is highlighted in bold. The ratio shown
in the table is calculated under the exclusion of the 5 unsolvable circuits of
QE-Exp.

As can be seen from Columns 5 and 9 of Table 1, QE-Cmp is much more
scalable than QE-Exp. The AIG sizes of QE-Cmp after quanti�cation are typ-
ically much smaller than or comparable to those of QE-Exp. Apart from the 5
unsolvable circuits of QE-Exp, s991 is an extreme, where the �nal AIG size of
QE-Cmp is 3 orders of magnitude smaller than that of QE-Exp. On the other
hand, circuit s1196 is an exception, where the result of QE-Cmp is 6 times larger
than that of QE-Exp due to the failure to derive reasonable-sized interpolants.
Despite the e�ectiveness of QE-Cmp, there are still cases b14, ..., b22 of the
ITC benchmark circuits (not shown in Table 1) unsolvable by either of QE-Exp
and QE-Cmp. In these cases, the unsatis�ability of φA∧φB is hard to establish.
Even if an interpolation succeeds, the corresponding interpolant is too large to
be useful. Further breakthroughs are needed to overcome these limitations.

In addition to circuit sizes, we examine the e�ects of QE-Exp and QE-
Cmp on circuit depths. Columns 6 and 10 of Table 1 show the characteristics of
both methods. Compared to Column 4, the transition relations before quanti�er
3 A synthesis script of commands ifraig, rewrite, refactor, balance, rewrite,
refactor, balance of ABC was applied for AIG minimization.

Table 1. Quanti�er elimination with formula expansion and functional composition.
circuit (#in, #reg, #n, #l) rel before QE QE-Exp QE-Cmp

#n #l #n #l time mem #n #l time mem
prolog (36, 136, 1656, 26) 1474 29 � � � � 1088 31 6.27 38.0
s1196 (14, 18, 529, 24) 548 22 3473 21 5.15 37.3 21881 2532 123.15 37.3
s1269 (18, 37, 569, 35) 622 37 31005 39 59.24 37.5 1694 116 41.05 37.5
s13207.1 (62, 638, 8027, 59) 5272 45 � � � � 4741 44 50.60 40.6
s1423 (17, 74, 657, 59) 757 63 17619 59 25.45 38.1 3142 452 6.19 38.1
s1488 (8, 6, 653, 17) 686 19 1269 21 2.90 38.1 515 48 3.82 38.1
s1494 (8, 6, 647, 17) 696 20 1261 21 2.98 38.1 607 42 2.54 38.1
s1512 (29, 57, 780, 30) 697 28 1187 24 2.64 37.7 823 53 3.78 37.7
s15850.1 (77, 534, 9786, 82) 5679 57 � � � � 180597 14247 49409.27 427.4
s208.1 (10, 8, 104, 11) 103 14 65 11 0.08 37.4 49 12 0.06 37.4
s298 (3, 14, 119, 9) 157 15 117 12 0.08 37.4 122 12 0.23 37.4
s3271 (26, 116, 1573, 28) 1565 32 1549 29 3.08 38.0 1604 62 7.11 38.0
s3330 (40, 132, 1789, 29) 1434 29 � � � � 1029 28 6.37 38.0
s3384 (43, 183, 1702, 60) 1801 63 1307 58 6.94 38.3 1276 58 17.29 38.3
s344 (9, 15, 160, 20) 164 19 140 19 0.33 37.1 155 19 0.81 37.1
s349 (9, 15, 161, 20) 168 19 140 19 0.26 37.5 155 19 0.82 37.5
s382 (3, 21, 158, 9) 220 19 179 16 0.10 37.7 189 16 0.27 37.7
s38417 (28, 1636, 22397, 47) 15762 44 15705 40 44.79 48.7 18865 106 149.13 46.8
s38584.1 (38, 1426, 19407, 56) 18094 48 57105 45 1382.97 71.4 38089 1362 268.94 46.0
s386 (7, 6, 159, 11) 189 15 217 16 0.62 37.8 166 25 0.48 37.8
s400 (3, 21, 162, 9) 228 20 180 16 0.13 37.7 190 16 0.27 37.7
s420.1 (18, 16, 218, 13) 223 17 137 19 0.03 37.4 105 20 0.05 37.4
s444 (3, 21, 181, 11) 234 19 179 16 0.09 37.6 191 16 0.24 37.6
s499 (1, 22, 152, 12) 274 25 299 17 0.10 37.4 368 31 0.22 37.4
s510 (19, 6, 211, 12) 236 16 431 21 1.08 37.7 177 13 1.49 37.7
s526 (3, 21, 193, 9) 284 16 188 17 0.09 37.6 210 14 0.27 37.6
s5378 (35, 164, 2779, 25) 1995 25 957759 43 63744.28 49.1 37072 2602 415.18 38.5
s635 (2, 32, 286, 127) 317 42 312 35 0.21 37.6 280 42 0.28 37.6
s641 (35, 19, 379, 74) 221 30 1202 18 4.5 37.5 277 27 5.82 37.5
s6669 (83, 239, 3148, 93) 3218 90 � � � � 2428 79 68.58 39.0
s713 (35, 19, 393, 74) 235 30 1060 18 5.36 37.5 324 39 3.88 37.5
s820 (18, 5, 289, 10) 364 19 1821 19 3.71 37.9 460 49 2.85 37.9
s832 (18, 5, 287, 10) 374 19 1579 20 3.25 37.9 419 37 2.77 37.9
s838.1 (34, 32, 446, 17) 463 22 281 35 0.04 37.7 217 36 0.08 37.7
s9234.1 (36, 211, 5597, 58) 2790 44 109835 45 955.24 39.2 18898 653 119.83 39.2
s938 (34, 32, 446, 17) 463 22 281 35 0.10 37.4 217 36 0.08 37.4
s967 (16, 29, 394, 14) 483 20 9020 27 13.05 37.3 2159 244 12.58 37.3
s991 (65, 19, 519, 59) 372 46 3227475 41 32425.76 90.7 1287 124 33.57 37.8
sbc (41, 27, 1023, 22) 764 21 39023 31 72.07 38.0 2300 213 21.41 38.0
b01 (2, 5, 42, 6) 59 11 61 11 0.23 37.2 75 19 0.26 37.2
b02 (1, 4, 23, 5) 36 9 40 9 0.02 37.3 40 12 0.07 37.3
b03 (4, 30, 127, 10) 247 17 247 16 0.14 37.6 239 16 0.34 37.6
b04 (11, 66, 660, 28) 809 32 33633 46 50.24 38.2 5271 302 9.83 38.2
b05 (1, 34, 963, 55) 965 39 552 37 0.06 38.1 512 35 0.13 38.1
b06 (2, 9, 46, 5) 77 10 80 9 0.11 37.4 92 17 0.29 37.4
b07 (1, 49, 391, 31) 560 35 661 28 0.14 37.6 566 27 0.13 37.6
b08 (9, 21, 153, 16) 238 27 212 18 0.29 37.7 205 18 0.77 37.7
b09 (1, 28, 141, 9) 247 19 237 17 0.03 37.6 237 17 0.08 37.6
b10 (11, 17, 178, 12) 247 17 1510 26 2.12 37.6 353 26 1.23 37.6
b11 (7, 31, 732, 34) 734 35 618 25 0.50 37.9 590 25 0.96 37.9
b12 (5, 121, 952, 19) 1485 26 1740 24 0.65 38.3 1908 41 2.21 38.3
b13 (10, 53, 299, 20) 472 20 435 16 0.49 37.6 423 16 1.15 37.6
ratio 1.000 1.000 1.000 1.000 0.036 8.064 0.013 0.952
�#in�: number of primary inputs; �#reg�: number of registers; �#n�: number of AIG nodes; �#l�:

AIG circuit depth; �time�: CPU time (sec); �mem�: memory (Mb)

elimination, QE-Exp yielded circuits with comparable logic levels as shown in
Column 6, whereas QE-Cmp produced circuits with many more logic levels as
shown in Column 10. QE-Exp (respectively QE-Cmp) can be seen in a sense as
quanti�cation with restricted (respectively unrestricted) increase in logic levels.
QE-Exp and QE-Cmp are analogous to two-level and multi-level logic min-
imization, respectively. QE-Cmp therefore can potentially achieve more logic
sharing and generate smaller circuits. Since logic-level increase is not immaterial
in every application, in this case heavy logic synthesis, e.g., with collapse oper-
ation, can be adopted to reduce logic levels. On the other hand, these extreme
characteristics about logic levels might hint at the potential reduction power of
the proposed optimization method discussed in Section 3.4.

The proposed method can be easily integrated into the framework of un-
bounded model checking as suggested in [17]. Our preliminary experiments on
reachability analysis suggested that sparsity is an important factor for QE-Cmp
to be e�ective. Without taking advantage of sparsity in reachability analysis,
QE-Cmp may not be as good as QE-Exp. How to enforce sparsity in reachabil-
ity analysis using QE-Cmp remains to be done.

6 Prior Work

Propositional logic. There have been intensive e�orts on BDD-based image
computation based on the principle of formula expansion, e.g., [22], and e�orts
on SAT-based computation with solution enumeration, e.g., [7]. The closest to
ours, however, is AIG-based formula expansion [17].

This paper proposes a compositional approach to quanti�er elimination. The
complete �exibility of the composite function is characterized. Although sym-
bolic techniques, such as BDDs, can be applied, we use SAT solving and Craig
interpolation for scalable derivation of the composite function.

Craig interpolation was adopted in [16] to approximate image computation
and in [8] to approximate transition relation. This paper uses interpolation to
compute exact image and exact transition relation.

Under the virtual substitution principle of [23], quanti�er elimination by
formula expansion can be considered as virtual substitution with two terms [19];
quanti�er elimination by functional composition can be considered as virtual
substitution with a single term.

Predicate logic. When generalized to predicate logic, our composite func-
tion is similar to the Skolem function [18] with the following di�erences: Firstly,
the former is used for quanti�er elimination with term substitution, whereas the
latter is used to rewrite formulas in Skolem normal form using Skolem function
symbols. Secondly, quanti�er elimination with composite functions is structure-
speci�c (i.e., with respect to some structure/interpretation), whereas normal
form conversion with Skolem functions is structure-independent (i.e., universal
to all structures/interpretations). Thirdly, quanti�er elimination with composite
functions is equivalence preserving, whereas normal form conversion with Skolem
functions is only satis�ability preserving.

Under predicate logic, our quanti�er elimination is similar to virtual substi-
tution [23] with the following di�erences: In virtual substitution, a �nite elimina-
tion set of terms is identi�ed for quanti�er elimination. The notion of composite
functions is not explicit in [23]. Our emphasis, on the other hand, is on the char-
acterization of the complete �exibility of composite functions. In eliminating a
quanti�ed variable, a single composite function is characterized, rather than a
set of terms of the underlying language. We do not address how to represent a
composite function by terms, but suggest the usefulness of �exibility in reducing
elimination sets.

7 Conclusions and Future Work

We have presented a compositional approach to quanti�er elimination. The com-
plete �exibility of composite functions was characterized; Craig interpolation
was exploited for e�ective computation. Experiments showed promising results
on extending the capacity of quanti�er elimination when the sparsity assump-
tion holds. For �rst-order logic, our results may shed light on elimination-set
minimization as motivated by the examples of Section 4.

As this paper just showed the �rst step, much work remains to be done.
The e�ectiveness of our method on unbounded model checking and on circuit
optimization suggested in Section 3.4 needs further investigation. Quanti�cation
scheduling under the new compositional approach awaits improvement. More-
over, a hybrid approach to quanti�er elimination by combining the expansion-
and composition-based methods may be pursued to keep both AIG sizes and
depths small. We anticipate applications of the new quanti�cation method in
scalable logic synthesis, where Craig interpolation is evidently gaining impor-
tance [10, 9, 11, 12].

Acknowledgments

This work was supported in part by NSC grants 95-2218-E-002-064-MY3 and
96-2221-E-002-278-MY3.

References

1. Berkeley Logic Synthesis and Veri�cation Group. ABC: A System for Sequential
Synthesis and Veri�cation, 2005. http://www.eecs.berkeley.edu/∼alanmi/abc/

2. B. F. Caviness and J. R. Johnson (editors). Quanti�er Elimination and Cylindrical
Algebraic Decomposition. Springer, 1998.

3. O. Coudert and J. C. Madre. A uni�ed framework for the formal veri�cation of
sequential circuits. In Proc. Int'l Conf. Computer-Aided Design, pp. 126-129, 1990.

4. G. E. Collins. Quanti�er elimination for real closed �elds by cylindrical algebraic
decomposition. In Automata theory and formal languages, Lecture Notes in Comput.
Sci., Vol. 33., Springer, pp. 134-183, 1975.

5. W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen theorem. J. Sym-
bolic Logic, vol. 22, no. 3, pp. 250-268, 1957.

6. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 2nd edition,
2000.

7. M. Ganai, A. Gupta, and P. Ashar. E�cient SAT-based unbounded symbolic model
checking using circuit cofactoring. In Proc. Int'l Conf. Computer-Aided Design, pp.
510-517, 2004.

8. R. Jhala and K. McMillan. Interpolant-based transition relation approximation. In
Proc. Computer Aided Veri�cation, pp. 39-51, 2005.

9. R.-R. Lee, J.-H. R. Jiang, and W.-L. Hung. Bi-decomposing large Boolean functions
via interpolation and satis�ability solving. In Proc. Design Automation Conf., pp.
636-641, 2008.

10. C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko. Scalable exploration
of functional dependency by interpolation and incremental SAT solving. In Proc.
Int'l Conf. on Computer-Aided Design, pp. 227-233, 2007.

11. H.-P. Lin, J.-H. R. Jiang, and R.-R. Lee. To SAT or not to SAT: Ashenhurst
decomposition in a large scale. In Proc. Int'l Conf. Computer-Aided Design, pp.
32-37, 2008.

12. A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, S. Jang. Scalable don't-care-based
logic optimization and resynthesis. In Proc. Int'l Symp. on Field Programmable Gate
Arrays, pp. 151-160, 2009.

13. A. Mishchenko, S. Chatterjee, and R. K. Brayton. DAG-aware AIG rewriting: A
fresh look at combinational logic synthesis. In Proc. Design Automation Conference,
pp. 532-536, 2006.

14. A. Mishchenko, S. Chatterjee, J.-H. R. Jiang, and R. K. Brayton. FRAIGs: A
unifying representation for logic synthesis and veri�cation. Technical Report, EECS
Dept., UC Berkeley, 2005.

15. K. McMillan. Applying SAT methods in unbounded symbolic model checking. In
Proc. Computer Aided Veri�cation, pp. 250-264, 2002.

16. K. McMillan. Interpolation and SAT-based model checking. In Proc. Computer
Aided Veri�cation, pp. 1-13, 2003.

17. F. Pigorsch, C. Scholl, and S. Disch. Advanced unbounded model checking based
on AIGs, BDD sweeping, and quanti�er scheduling. In Proc. Formal Methods on
Computer Aided Design, pp. 89-96, 2006.

18. Th. Skolem. Uber die mathematische Logik. Norsk. Mat. Tidsk., 10:125-142, 1928.
[Translation in From Frege to Gödel, A Source Book in Mathematical Logic, J. van
Heijenoort, Harvard Univ. Press, 1967.]

19. A. Seidl and T. Sturm. Boolean quanti�cation in a �rst-order context. In Proc.
Int'l Workshop on Computer Algebra in Scienti�c Computing, pp. 329-345, 2003.

20. T. Sturm. New domains for applied quanti�er elimination. In Proc. Int'l Workshop
on Computer Algebra in Scienti�c Computing, pp. 295-301, 2006.

21. A. Tarski. A Decision Method for Elementary Algebra and Geometry, University
of California Press, Berkeley, 1951.

22. H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit
enumeration of �nite state machines using BDDs. In Proc. Int'l Conf. on Computer-
Aided Design, pp. 130¡V133, 1990.

23. V. Weispfenning. The complexity of linear problems in �elds. Journal of Symbolic
Computation, 5:3-27, 1988.

