Resolution Proofs and Skolem Functions in QBF
Evaluation and Applications

Valeriy Balabanov and Jie-Hong R. Jiang

Department of Electrical Engineering / Graduate Institute of Electronics Engineering
National Taiwan University, Taipei 10617, Taiwan
{balabasik@gmail.com, jhjiang@cc.ee.ntu.edu.tw}

Abstract. Quantified Boolean formulae (QBF) allow compact encod-
ing of many decision problems. Their importance motivated the devel-
opment of fast QBF solvers. Certifying the results of a QBF solver not
only ensures correctness, but also enables certain synthesis and verifica-
tion tasks particularly when the certificate is given as a set of Skolem
functions. To date the certificate of a true formula can be in the form of
either a (cube) resolution proof or a Skolem-function model whereas that
of a false formula is in the form of a (clause) resolution proof. The res-
olution proof and Skolem-function model are somewhat unrelated. This
paper strengthens their connection by showing that, given a true QBF,
its Skolem-function model is derivable from its cube-resolution proof of
satisfiability as well as from its clause-resolution proof of unsatisfiabil-
ity under formula negation. Consequently Skolem-function derivation can
be decoupled from Skolemization-based solvers and computed from stan-
dard search-based ones. Fundamentally different from prior methods, our
derivation in essence constructs Skolem functions following the variable
quantification order. It permits constructing a subset of Skolem functions
of interests rather than the whole, and is particularly desirable in many
applications. Experimental results show the robust scalability and strong
benefits of the new method.

1 Introduction

Quantified Boolean formulae (QBF) allow compact encoding of many decision
problems, for example, hardware model checking [6], design rectification [17],
program synthesis [18], two-player game solving [13], planning [15], and so on.
QBF evaluation has been an important subject in both theoretical and practical
computer sciences. Its broad applications have driven intensive efforts pursu-
ing effective QBF solvers, despite the intractable PSPACE-complete complexity.
Approaches to QBF evaluation may vary in formula representations, solving
mechanisms, data structures, preprocessing techniques, etc. As a matter of fact,
the advances of DPLL-style satisfiability (SAT) solving make search-based QBF
evaluation [5] on prenex conjunctive normal form (PCNF) formulae the most
popular approach.

As QBF evaluation procedures are much more complicated than their SAT
solving counterparts, validating the results of a QBF solver is more critical than

that of a SAT solver. The commonly accepted certificate formats to date are
mainly resolution proofs and Skolem-function models. More precisely, for a true
QBF, a certificate can be in the syntactic form of a cube-resolution proof (e.g.,
available in solvers QUBE-CERT [12] and YQUAFFLE [20]) or in the semantic
form of a model consisting of a set of Skolem functions (e.g., available in sK1zz0o
[1,2], sSQUOLEM [9], and EBDDRES [9]); for a false QBF, it can be in the syntactic
form of a clause-resolution proof (e.g., available in all the above solvers except
for sKi1zz0). Despite some attempts towards a unified QBF proof checker [9],
resolution proofs and Skolem-function models remain weakly related. Moreover,
the asymmetry between the available certificate formats in the true and false
QBF may seem puzzling.

From the application viewpoint, Skolem functions are more directly useful
than resolution proofs. The Skolem-function model in solving a true QBF may
correspond to, for example, a correct replacement in design rectification, a code
fragment in program synthesis, a winning strategy in two-player game solving,
a feasible plan in robotic planning, etc. Unfortunately, Skolem-function models
are currently only derivable with Skolemization-based solvers, such as sKi1zzo,
SQUOLEM, and EBDDRES. Moreover, the derivation can be expensive as evi-
denced by empirical experience that Skolemization-based solvers usually take
much longer time on solving true instances than false ones. In contrast, search-
based solvers, such as QUBE-CERT, can be more efficient and perform more
symmetrically in terms of runtime on true and false instances.

This paper takes one step closer to a unified approach to QBF validation by
showing that, for a true QBF, its Skolem-function model can be derived from
its cube-resolution proof of satisfiability and also from its clause-resolution proof
of unsatisfiability under formula negation, both in time linear with respect to
proof sizes. Consequently, the aforementioned issues are addressed. Firstly, the
connection between resolution proofs and Skolem functions is strongly estab-
lished. Secondly, it practically conceives Skolem-function countermodels for false
QBF, and thus yielding a symmetric view between satisfiability and unsatisfia-
bility certifications. Finally, Skolem-function derivation can be decoupled from
Skolemization-based solvers and achieved from the more popular search-based
solvers, provided that resolution proofs are maintained. A key characteristic of
the new derivation is that Skolem functions are generated for variables quantified
from outside in, in contrast to the inside-out computation of Skolemization-based
solvers. This feature gives the flexibility of computing some Skolem functions of
interests, rather than all as in Skolemization-based solvers.

Experimental results show that search-based QBF solver QUBE-CERT cer-
tifies more QBFEVAL instances' than Skolemization-based solvers sKizzo and
SQUOLEM. Almost all of the Skolem-function models (respectively countermod-
els) are computable, under resource limits, from the cube-resolution proofs of the
true cases (respectively clause-resolution proofs of the false cases). On the other

! Since negating the QBFEVAL formulae using Tseitin’s conversion [19] may suffer
from variable blow up, the Skolem functions are only derived with respect to the
original formulae.

hand, for the relation determinization instances (all satisfiable), whose negations
are concise by Tseitin’s conversion from the circuit structures, their Skolem func-
tions are obtained both from the cube-resolution proof of the original formulae
and also from the clause-resolution proof of the negated formulae to compare.
The latter tends to be much more robust and shows the unique value of the
proposed method.

2 Preliminaries

A literal in a Boolean formula is either a variable (i.e., positive-phase literal)
or the negation of the variable (i.e., negative-phase literal). In the sequel, the
corresponding variable of a literal [is denoted wvar(l). A clause is a Boolean
formula consisting of a disjunction of a set of literals; a cube is a Boolean formula
consisting of a conjunction of a set of literals. In the sequel, we may alternatively
specify a clause or cube by a set of literals. A formula in conjunctive normal form
(CNF) is a conjunction of a set of clauses whereas a disjunctive normal form
(DNF) formula is a disjunction of a set of cubes. A (quantifier-free) formula ¢
over variables X subject to some truth assignment o : X’ — {0, 1} on variables
X’ C X is denoted as ¢|,.

2.1 Quantified Boolean Formulae

A quantified Boolean formula (QBF) @ over variables X = {x1,..., 2} in the
prenex conjunctive normal form (PCNF) is of the form

lela"'7Qkxk'¢7 (1)

where Qqz1,...,Qrxk, with Q; € {3,V} and variables z; # z; for ¢ # j, is
called the prefiz, denoted @prefi, and ¢, a quantifier-free CNF formula in terms
of variables X, is called the matriz, denoted @,,,¢z. We shall assume that a
QBF is in PCNF and is totally quantified, i.e., with no free variables. So the
set X of variables of @ can be partitioned into existential variables X3 = {z; €
X | Q; = 3} and universal variables Xy = {x; € X | Q; = V}. A literal [is
called an existential literal and a universal literal if var(l) is in X3 and Xy,
respectively.

Given a QBF, the quantification level £ : X — N of variable x; € X is defined
to be the number of quantifier alternations between 3 and V from left (i.e., outer)
to right (i.e., inner) plus 1. For example, the formula 3z, 3xs, Va3, Ix4.¢ has
L(x1) = l(x2) = 1, l(xz3) = 2, and £(z4) = 3. For convenience, we extend the
definition of ¢ to literals, with £(1) for some literal I meaning ¢(var(l)).

A clause C with literals {l1,...,l;} in a QBF & over variables X is called
minimal if

ziecﬂﬁ’i)exv{g(m} < g{lgg{ﬁ(li)}-

Otherwise, it is non-minimal. A non-minimal clause C' can be minimized to a
minimal clause C’ by removing the literals

{leC | var(l) € Xy and £(]) = gnagj({ﬁ(li)}}
i€
from C'. This process is called V-reduction. For a clause C' of a QBF, we denote
its V-reduced minimal clause as MIN(C'). Replacing C with MIN(C) in a QBF
does not change the formula satisfiability.

2.2 Q-Resolution

A clause is tautological if it contains both literals x and —z of some variable x.
Two non-tautological clauses C; and Cy are of distance k if there are k variables
{z1,...,zr} appearing in both clauses but with opposite phases. The ordinary
resolution is defined on two clauses C; and Cy of distance 1. If ¢y = C{ V z
and Cy = C4 V —z, then resolving C; and Cs on the pivot variable x yields the
resolvent C7 v C4.

Q-resolution [11] extends the ordinary resolution on CNF to PCNF formulae
with two rules: First, only existential variables can be the pivot variables for res-
olution. Second, V-reduction is applied whenever possible. Unless otherwise said,
“Q-resolution” is shortened to “resolution” in the sequel. In fact (Q-)resolution
is a sound and complete approach to QBF evaluation.

Theorem 1 ([11]). A QBF is false (unsatisfiable) if and only if there exists a
clause resolution sequence leading to an empty clause.

By duality, cube resolution can be similarly defined, and is also sound and
complete for QBF evaluation.

Theorem 2 ([8]). A QBF is true (satisfiable) if and only if there exists a cube
resolution sequence leading to an empty cube.

Modern search-based QBF solvers are equipped with conflict-driven learn-
ing, which performs resolution in essence. A tautological clause containing both
positive and negative literals of a (universal) variable may result from resolution
[21]. Since the clause is resolved from two clauses with distance greater than
1, it is referred to as long-distance resolution. Unlike the case in propositional
satisfiability, such a clause is not totally redundant as it facilitates implication
in QBF evaluation. Nevertheless, long-distance resolution is not essential, and
can always be replaced by distance-1 resolution [8].

2.3 Skolemization and Skolem Functions

Any QBF @ can be converted into the well-known Skolem normal form in math-
ematical logic, which consists of only two quantification levels, first existential
and second universal. In the conversion, every existential variable z; of @ is re-
placed in @440, by its respective fresh function symbol, denoted F[z;], which

refers only to the universal variables z; of ¢ with ¢(z;) < ¢(x;). These function
symbols, corresponding to the so-called Skolem functions [16], are then exis-
tentially quantified in the first quantification level before the second level of
universal quantification over the original universal variables. This conversion,
called Skolemization, is satisfiability preserving. Essentially a QBF is true if and
only if the Skolem functions of its Skolem normal form exist. (Skolemization was
exploited in [1] for QBF evaluation.)

In the sequel, we shall extend the notion of Skolem functions in their dual
form, also known as the Herbrand functions. That is, the Skolem normal form
(in the dual) contains two quantification levels, first universal and second exis-
tential. For a QBF &, in the new notion the Skolem function F[z;] of a universal
variable z; of @ refers only to the existential variables x; of ¢ with {(z;) < ¢(x;).
Essentially a QBF is false if and only if the Skolem functions of its Skolem normal
form (in the dual) exist.

2.4 QBF Certificates

To validate the results of a QBF solver, resolution proofs and Skolem functions
are commonly accepted certificates [12]. For a true QBF, either a cube-resolution
proof or a collection of Skolem functions can certify the satisfiability. For a
false QBF, a clause-resolution proof can certify the unsatisfiability. In theory,
a false QBF can be negated to a true QBF, whose Skolem functions can then
be used as a countermodel to the original false QBF. In practice, however, such
a countermodel is hardly derivable because negation may result in substantial
increase in the formula size or variable count [9]. In contrast, we show that a
countermodel can be obtained without formula negation, and thus practical for
certifying a false QBF.

3 Model/Countermodel Construction from Resolution
Proofs

This section shows a sound and complete approach to construct Skolem func-
tions for existential (respectively universal) variables as the model (respectively
countermodel) of a true (respectively false) QBF in time linear with respect to
a cube (respectively clause) resolution proof. Since cube and clause resolutions
both obey similar deduction rules, we keep attention on the latter only and omit
the former.

We consider (Q-)resolution proofs of QBF unsatisfiability that involve no
long-distance resolution. As long-distance resolution can always be avoided and
replaced by distance-1 resolution [8], our discussion is applicable in general.

Before delving into the main construction, we first define the following for-
mula structure.

Definition 1. A Right-First-And-Or (RFAO) formula ¢ is recursively defined
by
@ = clause | cube | clause A ¢ | cube V @, (2)

as “or”.

where the symbol “:="is read as “can be” and symbol “|”

Note that the formula is constructed in order from left to right. Due to the
particular building rule of an RFAO formula with priority going to the right, we
save on parentheses to enhance readability. For example, formula

@ = clause; A clauses A cubes V clausey N cubes V cubeg

= (clause; A (clauses N (cubes V (clauseyq A (cubes V cubeg))))).

We sometimes omit expressing the conjunction symbol “A” and interchangeably
use “+”7 for “V” in a formula.

In our discussion we shall call a clause/cube in an RFAO formula a node
of the formula, and omit a node’s subsequent operator, which can be uniquely
determined. Note that the ambiguity between a single-literal clause and a single-
literal cube does not occur in an RFAO formula as the clause-cube attributes
are well specified in our construction.

The RFAO formula has two important properties (which will be crucial in
proving Theorem 3):

1. If node; under some (partial) assignment of variables becomes a validated
clause (denoted 1-clause) or falsified cube (denoted 0-cube), then we can
effectively remove node; (if it is not the last) from the formula without
further valuating it.

2. If node; becomes a falsified clause (denoted 0-clause) or validated cube (de-
noted 1-cube), then we need not further valuate (namely, can remove) all
other nodes with index greater than 1.

Below we elaborate how to construct the countermodel expressed by the
RFAO formula from a clause-resolution proof IT of a false QBF &. We treat the
proof IT as a directed acyclic graph (DAG) G (Vyr, Err), where a vertex v € Vg
corresponds to a clause v.clause obtained in the resolution steps of I and a
directed edge (u,v) € E C Vi x Vi from the parent u to the child v indicates
that v.clause results from u.clause through either resolution or V-reduction. The
clauses of IT can be partitioned into three subsets: those in @44z, those re-
sulting from resolution, and those from V-reduction. Let Vi, Vg, and Vp denote
their respective corresponding vertex sets. So Vi; = Vi U Vs U Vp. Note that in
G a vertex in Vjs has no incoming edges and is a source vertex; a vertex in
Vs has two incoming edges from its two parent vertices; a vertex in Vp has one
incoming edge from its parent vertex. On the other hand, there can be one or
many sink vertices, which have no outgoing edges. Since the final clause of IT is
an empty clause, the graph G 7 must have the corresponding sink vertex.

The intuition behind our construction stems from the following observations.
Firstly, if Vp = (), then the quantifier-free formula @,,4, iS unsatisfiable by
itself, and so is @. Since there exists an ordinary resolution proof, which involves
no V-reduction, any functional interpretation on the universal variables forms a
countermodel to &.

Secondly, if Vg = 0, then @,,.4r; must contain a clause consisting of only
universal variables. With only V-reduction, @ can be falsified. Without loss of

generality, assume this clause is (I; V- -V lg). Then letting the Skolem function
of var(l;) be

0 ifl; = war(l;), and

Flvar(l;)] = { 1 if I; = —war(l;),

for i = 1,...,k, forms a countermodel of @. (The Skolem functions of the uni-
versal variables not in the clause are unconstrained.)

Finally, we discuss the general case where Vp and Vg are non-empty. Every
clause w.clause of Il with w € Vg is implied by the conjunction w.clause A
v.clause with (u,w), (v,w) € Ep. (That is, the clause resulting from resolution
is unconditionally implied by the conjunction of its parent clauses.) Even if the
pivot variable of the corresponding resolution were universally quantified, the
implication would still hold. So the implication is regardless of ®@p,ef;. On the
other hand, a clause v.clause of II with v € Vp is not directly implied by u.clause
with (u,v) € Ep. (That is, the clause resulting from V-reduction is conditionally
implied by its parent clause.) Nevertheless @,,44ric and @oatriz A v.clause are
equisatisfiable under @pyefiz -

To characterize the conditions for an implication (especially between the two
clauses involved in a V-reduction step) to hold, we give the following definition.

Definition 2. Let oo : X — {0,1} be a full assignment on variables X. Given
two (quantifier-free) formulae ¢1 and ¢o over variables X, if the implication
@1 — ¢2 holds under a, then we say that ¢o is a-implied by ¢ .

For a resolution proof of a false QBF @, when we say a clause is a-implied,
we shall mean it is a-implied by its parent clause or by the conjunction of
its parent clauses depending on whether the clause results from V-reduction or
resolution. A clause resulting from resolution is surely a-implied for any «, but
a clause resulting from V-reduction may not be a-implied for some «. We further
say that a clause C is a-inherited if all of its ancestor clauses (except for the
clauses of the source vertices, which have no parent clauses and are undefined
under a-implication) and itself are a-implied. Clearly, if C' is a-inherited, then
gﬁmatriar:‘a - (ématrix A C)|a~

For a false QBF & over variables X = X3 U Xy, let the assignment o : X —
{0,1} be divided into a3 : X3 — {0,1} and ay : Xy — {0,1}. To construct the
Skolem-function countermodel, our goal is to determine avy for every ag such
that the empty clause of the resolution proof is a-inherited, or there exists an
a-inherited clause C with C|, = 0. Therefore, for every assignment oz, ¢ implies
false. That is, such ay provides a countermodel to @.

Figure 1 sketches the countermodel construction algorithm, where the Skolem
functions for universal variables are computed in RFAO formulae, each of which
is stored as an (ordered) array of nodes. Before proving the correctness of the
algorithm, we take the following example to illustrate the computation.

Countermodel construct
input: a false QBF @ and its clause-resolution DAG G (Vir, Enr)
output: a countermodel in RFAO formulae
begin
01 foreach universal variable x of &
02 RFAO_node_array[z] := 0;
03 foreach vertex v of Gr in topological order

04 if v.clause resulting from V-reduction on w.clause, i.e., (u,v) € En
05 v.cube := —(v.clause);

06 foreach universal variable z reduced from wu.clause to get v.clause
07 if = appears as positive literal in u.clause

08 push v.clause to RFAO_node_array [z];

09 else if x appears as negative literal in wu.clause

10 push v.cube to RFAO_node_array [z];

11 if v.clause is the empty clause

12 foreach universal variable z of @

13 simplify RFAO_node_array [z];

14 return RFAO_node_array’s;

end

Fig. 1. Algorithm: Countermodel Construction

Ezample 1. Let @ be a false QBF and IT be its resolution proof of unsatisfiability
as below.

Dprefic = JaVrIbVyIc
Patriz = (@VOVyVe)lavVaeVvbVyV-ce)(zV-b)(-yVe)(-aV-zVbV-c)
(mx vV =b)(aV bV —y)
1. clauses = resolve(clausey, clauses)
. clauseg = resolve(clauses, clauses)
clause1y = resolve(clausey, clauses)

clausey; = resolve(clauseqy, clauseg)
clause empry = resolve(clauserr, clauseg)

o o

Note that the V-reduction steps are omitted in I7, which however can be eas-
ily filled in as shown in Figure 2, where the clauses are indexed by subscript
numbers, and the V-reduction steps are indexed by the parenthesized numbers
indicating the relative order.

By following the steps of the Countermodel construct algorithm in Figure 1,
the RFAO node-array contents after each V-reduction step in the proof of Fig-
ure 2 are listed in order of appearance in Figure 3. The resultant Skolem functions
for universal variables z and y are

Flz] = (a) A (a) = a, and
Fly] = (—ab) V ((a V z V b) A (az—Dd)),

(a+b+y+c)(a+x+b+y+c),(x+b),(y+c),(a+x+b+c),(x+b) (a+b+y),

N N o

(a+x+b+y) (;+;+b+;)m (a+5)7+
(@) (C)
(a+x+b),, (a+x+b),,
(a2 @+,
®)
(Cl) + -
| /(a)IH
(empty)

Fig. 2. DAG of resolution proof IT

respectively. Note that the computed F[y] depends on variable x, which can
always be eliminated by substituting F[z] for x in F[y]. In fact, keeping such
dependency may be beneficial as the countermodel can be represented in a multi-
level circuit format with shared logic structures. Moreover, observe that clause
7, namely (a V =b V —y), is not involved in the resolution steps leading to the
empty clause. Its existence is optional in constructing the countermodel, and can
be treated as don’t cares for countermodel simplification. It can be verified that,
for any assignment to variables a, b, and ¢, formula @, 44, with variables x and
y substituted with F[z] and F[y], respectively, is false.

The correctness of the Countermodel_ construct algorithm of Figure 1 is as-
serted below.

Theorem 3. Given a false QBF & and a DAG Gy corresponding to its resolu-
tion proof IT of unsatisfiability, the algorithm Countermodel construct (@, G)
produces a correct countermodel for the universal variables of .

Proof. We show that, under every assignment a3 to existential variables of @,
our constructed countermodel always induces some «y such that @,,44riz|a = 0.
There are two possible cases under every such a.

First, assume every clause v.clause with v € Vp is a-implied. Then the empty
clause must be a-inherited because other clauses resulting from resolution are
always a-implied. Thus D417z /o = 0.

Second, assume not every clause v.clause with v € Vp is a-implied. Let
Co wiolate be the set of all such clauses violating a-implication. Suppose v.clause €
Cl wiolate 1S Obtained by V-reduction from wu.clause with (u,v) € E on some
universal variables. Let Ch\v» denote the subclause of u.clause consisting of ex-
actly the reduced literals in the V-reduction leading to v.clause. Then v.clause
must satisfy the criteria

0. xH y:[]

Lo oz:][] y : [cube(—ab)]

) [cube(—ab),
2. w:] v _clause(a\/azvb)}
[cube(—ab),
3. w:[clause(a)] e clause(ay z v b)}
[cube(—ab), |
4. w:[clause(a)] y: | clause(aV z V b),
| cube(ax—b)
[cube(—ab), i
5. : {clabuiega),} y: | clause(aV z V b),
cubera | cube(az—b)

Fig. 3. Contents of RFAO node arrays

1. v.clause|, = 0 (otherwise v.clause would be a-implied), and
2. Cyp\vlay = 1 (otherwise v.clause would have the same value as u.clause and
thus be a-implied).

It remains to show that, even if C, yioiate 1S NnON-empty, there still exists some
a-inherited clause C' with C|, = 0, i.e., an induced empty clause under .

Notice that algorithm Countermodel construct processes G in a topologi-
cal order, meaning that a clause in the resolution proof is processed only after all
of its ancestor clauses are processed. Now we consider all clauses v.clause with
v € Vp in the topological order under the assignment «. Let v’.clause be the
first clause encountered with v’.clause|, = 0. (If there is no such v’.clause under
«, then it corresponds to the situation analyzed in the first case.) For every uni-
versal variable x being reduced from the parent clause u’.clause of v'.clause, i.e.,
(u',v") € Ery, we examine its corresponding RFAO_node_array[z]. Suppose v’
is the ith enumerated vertex that results from V-reduction involving the reduc-
tion of variable xz. By the aforementioned two properties of the RFAO formula
and by the way how RFAO_node_arrayl[z] is constructed, we know that the
Skolem function value of F[z] under « is not determined by the first s — 1 nodes,
but by the ¢th node of RFAO_node_array[z]. In addition, the function value
F[z] makes the literal of variable 2 in clause Cyn\,s valuate to false. Because
every literal in C,n,/ is valuated to false, we have u'.clause|, = 0 and thus
v'.clause is a-implied. Moreover, since v’.clause is the first clause encountered
with v'.clause|, = 0, all its ancestor clauses must be a-implied. So v'.clause is
a-inherited, and thus @,,4triz|a = 0.

Because every assignment ag together with the corresponding induced as-
signment ay makes D417z |o = 0, the Skolem functions computed by algorithm
Countermodel__construct form a correct countermodel to &. |

Proposition 1. Given a false QBF @ and its resolution proof of unsatisfiability,
let F|x] be the Skolem function computed by algorithm Countermodel construct
for the universal variable x in . Then F[z] refers to some variable y in & only

if L(y) < 4(x).

Note that, by the above strict inequality, Proposition 1 asserts that no cyclic
dependency arises among the computed Skolem functions.

In fact algorithm Countermodel_ construct of Figure 1 can be easily modified
to compute the Skolem functions for some (not all) of the universal variables of a
given QBF. Let k be the maximal quantification level among the universal vari-
ables whose Skolem functions are of interests. Then, by Proposition 1, algorithm
Countermodel_ construct only needs to maintain RFAO node arrays for univer-
sal variables with quantification level no greater than k. For Skolemization-based
solvers, this partial derivation is not possible because Skolem functions (for ex-
istential variables) are constructed on-the-fly during QBF solving, whereas our
construction is performed after the entire proof is done.

Proposition 2. Given a false QBF and its resolution proof of unsatisfiability,
algorithm Countermodel construct computes the countermodel in time linear
with respect to the proof size.

Proposition 3. The RFAO formula size (in terms of nodes) for each universal
variable computed by algorithm Countermodel construct is upper bounded by
the number of V-reduction steps in the resolution proof.

The resolution proofs provided by search-based QBF solvers often contain
(redundant) resolution steps unrelated to yielding the final empty clause. Al-
gorithm Countermodel construct works for resolution proofs with and without
redundant steps. Since a highly redundant proof may degrade the performance
of the algorithm, it may be desirable to trim away redundant parts before coun-
termodel construction. On the other hand, as illustrated in Example 1, it may
be possible to exploit the redundancy for countermodel simplification.

The above discussion, concerned about countermodel construction, can be
straightforwardly extended under the duality principle to model construction
of a true QBF from its cube-resolution proof of satisfiability. We omit similar
exposition.

4 Applications to Boolean Relation Determinization

We relate Skolem functions to the problem of Boolean relation determiniza-
tion, which is useful in logic and property synthesis [9,10]. A Boolean rela-
tion over input variables X and output variables Y is a characteristic function
R : {0, 13X+ — 0,1} such that assignments a € {0,1}/X! and b € {0, 1}"

make R(a,b) = 1if and only if (a,b) is in the relation. Relations can be exploited
to specify the permissible (non-deterministic) behavior of a system, by restrict-
ing its allowed input X and output Y combinations. To be implemented with
circuits, a relation has to be determinized in the sense that each output variable
y; € Y can be expressed by some function f; : {0,1}XI — {0,1}. Formally
it can be written as a QBF VX,3Y.R(X,Y), and the determinization problem
corresponds to finding the Skolem functions of variables Y.

Often the formula R(X,Y) is not in CNF, but rather in some circuit struc-
ture. By Tseitin’s transformation, it can be rewritten in CNF ¢r(X,Y, Z) with
the cost of introducing some new intermediate variables Z. Therefore the QBF
is rewritten as VX,3Y,3Z.0r(X,Y, Z). By our model construction, the Skolem
functions can be computed from its cube-resolution proof of satisfiability. Al-
ternatively, we may compute the Skolem functions by finding the countermodel
of 3X,VY.—R(X,Y), which can be again by Tseitin’s transformation translated
into PCNF 3X,VY,37".¢_r(X,Y, Z") with Z’ being the newly introduced inter-
mediate variables in the circuit of =R(X,Y"). Note that after the negation, the
number of quantification levels increases from two to three; on the other hand,
¢r and ¢_ g can be simplified to have the same number of clauses and |Z| = |Z'|.
The above two approaches are to be studied in the experiments.

It is interesting to note that, since the quantification order of a QBF affects
the support variables of a Skolem functions, QBF prefix reordering may be ex-
ploited to synthesize Skolem functions with some desired variable dependencies.
Moreover, in addition to the relation determinization application, the duality be-
tween model and countermodel construction may be useful in other applications
whose original formulae are in circuit representation.

5 Experimental Results

The proposed method, named RESQU, was implemented in the C++ language.
The experiments were conducted on a Linux machine with a Xeon 2.53 GHz
CPU and 48 GB RAM for two sets of test cases: the QBF evaluation benchmarks
downloaded from [14] and relation determinization ones modified from [3].

We compared various Skolem-function derivation scenarios using QBF solvers
with certification capability, including sKi1zzo [1], SQUOLEM [9], and QUBE-
CERT.2 For true QBF instances, sK1zz0 and SQUOLEM were applied to obtain
Skolem-function models whereas the cube-resolution proofs produced by QUBE-
CERT were converted to Skolem-function models by RESQU. For false QBF in-
stances, SK12Z0 was applied on the negated formulae to obtain Skolem-function
countermodels whereas the clause-resolution proofs produced by SQUOLEM and
QUBE-CERT were converted to Skolem-function countermodels by RESQU.

Table 1 summarizes the results of our first experiment on the QBFEVAL’05
and QBFEVAL’06 test sets, which contain 211 and 216 instances, respectively. In

2 We did not experiment with EBDDRES [9] and YQUAFFLE [20] as the former tends
to generate larger certificates for false QBF compared to sQUOLEM, and the latter
has characteristics similar to QUBE-CERT.

Table 1. Summary for QBFEVAL Benchmarks.

overall sKizzo SQUOLEM-+RESQU QUBE-cERT+RESQU
time time time time time
#sv || #sv (sv) #sv (sv) #md (md) #sv/#pg‘ (sv) #md (md)
05 84 69 [1707.27|| 50 [1490.84| — | — 19/19 |[414.65| 19 |54.73
true| 06 48 29 [295.24 || 25 | 199.79 | — — 44/44] 859.64 | 44 [152.22
total|| 132 98 [2002.51(75 [1690.63| — — 63/63 [1274.29] 63 [206.95
’05 77 0 0 42 [1467.45| 42 [12.60|| 46/25 [2369.91] 25 [12.99
false| 06 29 0 0 9 | 85.96 9]0.80 28/22 |916.57 | 22 | 2.34
total|| 106 0 0 51 [1553.41] 51 [13.40|| 74/47 [3286.48| 47 | 15.33

#sv: number of instances solved; #pg: number of proofs involving no long-distance resolution;
#md: number of (counter)models generated by REsQu; time (sv/md): CPU time in seconds for
QBF evaluation/(counter)model generation; —: data not available due to inapplicability of ResQu

the experiment, all the QBF solvers, including sK1zz0, SQUOLEM, and QUBE-
CERT, are given a 600-second time limit and a 1-GB memory limit for solving
each instance. Under the given resource limits, all solvers, together, solved 132
true and 106 false instances. All the (counter)models produced by RESQU were
verified using MINISAT [7] while the models produced by sKi1zzo and SQUOLEM
were assumed correct without verification.

It should be mentioned that the resolution proofs produced by QUBE-CERT
were not simplified, that is, including resolution steps unrelated to producing
the final empty clause (or empty cube). The unrelated resolution steps were
first removed (with runtime omitted) before the (counter)model construction of
REsQU. Moreover, approximately 20% of all the proofs involved long-distance
resolution, and RESQU did not construct their (counter)models. On the other
hand, the clause-resolution proofs produced by SQUOLEM were simplified already
and involved no long-distance resolution. Hence RESQU had no problems con-
structing their countermodels.

We compared the numbers of instances whose (counter)models generated by
RESQU and by other tools. When models are concerned, RESQU (via the proofs
from QUBE-CERT) covered 63 (19 in QBFEVAL’05 and 44 in QBFEVAL’06),
whereas sK1zz0 and SQUOLEM in combination covered 105 (75 in QBFEVAL’05
and 30 in QBFEVAL’06). When countermodels are concerned, RESQU (via the
proofs from sSQUOLEM and QUBE-CERT) covered 83 (60 in QBFEVAL’05 and 23
in QBFEVAL’06), whereas sK1zz0 covered 0.3 Notably, RESQU circumvents the
DNF-to-CNF conversion problem and is unique in generating countermodels.

While all the (counter)models can be constructed efficiently (for proofs with-
out long-distance resolution), some of them can be hard to verify. In fact, about
84% of the 161 (counter)models constructed by RESQU were verified within 1
second using MINISAT'; there are 5 models of the true instances in QBFEVAL’06
that remained unverifiable within 1000 seconds.

3 In addition to sK1zzo, in theory SQUOLEM can also compute Skolem-function coun-
termodels of false QBF instances by formula negation. We only experimented with
sKi1zzo, which can read in DNF formulae and thus requires no external DNF-to-CNF
conversion, arising due to formula negation. Although SQUOLEM is not experimented
in direct countermodel generation by formula negation, prior experience [9] suggested
that it might be unlikely to cover much more cases than sKizzo.

Table 2. Results for Relation Determinization Benchmarks.

. sKizzo SQUOLEM—+REsSQU QUBE-cERT+RESQU
(#in, ffout, jte, #C) time| . time . time .
(sv) | 517¢ (sv/md/vf) stze (sv/md/vf) stze
1 (7, 3, 55, 322) 0.09| 377 (0.06 , —, —) 134][(0.03, 0.01, 0.01) 28
2 (20, 10, 963, 5772) 0.86(1311 (0.79, —, —) 1378|| (0.12, 0.03, 0.02) | 118
3 (21, 9, 1280, 7672) NA (NA, —, —) (5.28, 1.74, 1.23) |148883
41| (24, 12, 1886, 11300) || NA (1.23, —, —) 179 || (0.94, 0.11, 0.03) | 1947
51 (28, 14, 1833, 10992) || NA (NA, —, —) (0.35, 0.05, 0.02) 61
61| (32, 16, 3377, 20250) || NA (NA, —, — (1.21, 0.18, 0.04) | 1193
71| (36, 18, 5894, 35354) || NA (NA, —, —) (0.23, 0.15, 0.03) 91
8 || (42, 20, 6954, 41718) || NA (NA, —, —) (0.27, 0.12, 0.03) 3
9| (39, 19, 9823, 58932) || NA (NA, —, —) (3.08, 0.50, 0.01) | 307
10|| (46, 22, 10550, 63294) || NA (NA, —, — (1.89, 0.25, 0.01) | 58
true 11|| (49, 19, 11399, 68384) || NA (NA, —, — (NA, NA, NA)
12|| (32, 18, 13477, 80856) || NA (NA, —, —) (NA, NA, NA)
13|| (50, 24, 14805, 88822) || NA (NA, —, —) (3.14, 0.77, 0.05) | 3458
14|| (53, 25, 16037, 96216) || NA (NA, —, —) (3.41, 0.35, 0.02) | 283
15(|(56, 26, 19700, 118194) || NA (NA, —, — (8.10, 1.10, 0.05) | 905
16(((59, 27, 26117, 156696)|| NA (NA, —, — (3.85, 0.59, 0.03) | 187
17(|(65, 29, 29038, 174222) || NA (NA, —, —) (7.16, 0.88, 0.05) | 232
18]|(62, 28, 30294, 181756) || NA (NA,) (9.29, 1.32, 0.05) | 731
19(|(72, 32, 35806, 214828) || NA (NA, —, —) (NA, NA, NA)
20|/(68, 30, 50513, 303070)|| NA (NA, —, — (2.97, 0.62, 0.05) 11
21||(95, 35, 57717, 346294)|| NA (NA, —, — (NA, NA, NA)
22||(41, 23, 89624, 537738)|| NA (NA, —, —) (NA, NA, NA)
1 (7, 3, 55, 322) NA (0.03, 0.01, 0.01) 6 (0.05, NA, NA)
2 (20, 10, 963, 5772) NA (1.14, 0.02, 0.01) | 53 (0.13, NA, NA)
3 (21, 9, 1280, 7672) NA (0.20, 0.02, 0.01) 4 (1.19, NA, NA)
41| (24, 12, 1886, 11300) || NA (0.31, 0.02, 0.03) 0 (0.30, NA, NA)
51| (28, 14, 1833, 10992) || NA (0.29, 0.02, 0.01) 3 (1.02, NA, NA)
6 || (32, 16, 3377, 20250) || NA (1.95, 0.04, 0.03) 3 (0.95, NA, NA)
71| (36, 18, 5894, 35354) || NA (3.08, 0.06, 0.05) 3 (4.22, NA, NA)
81| (42, 20, 6954, 41718) || NA (3.23, 0.07, 0.06) 3 (9.15, NA, NA)
9 || (39, 19, 9823, 58932) || NA (9.417 0.11, 0.08) 5 (10.01, NA, NA)
10|| (46, 22, 10550, 63294) || NA (9.87, 0.15, 0.07) 3 (3.62, NA, NA)
false| LL|| (49, 19, 11399, 68384) || NA (8.33,0.20, 0.08) | 3 || (14.09, NA, NA)
12|| (32, 18, 13477, 80856) || NA (10.42, 0.23, 0.10) | 3 (10.41, NA, NA)
13|| (50, 24, 14805, 88822) || NA (15.82, 0.25, 0.10) | 4 |[(509.84, NA, NA)
14| (53, 25, 16037, 96216) || NA (23.65, 0.27, 0.11) | 5 (7.19, NA, NA)
15(|(56, 26, 19700, 118194) || NA (30.18, 0.35, 0.14) | 3 (25.33, NA, NA)
16/[(59, 27, 26117, 156696)|| NA (74.19, 0.43, 0.14) | 3 {/(202.80, NA, NA)
17||(65, 29, 29038, 174222)|| NA (46.90, 0.42, 0.21) | 0 || (24.45, NA, NA)
18||(62, 28, 30294, 181756)|| NA (84.48, 0.46, 0.25) | 4 (94.93, NA, NA)
19(|(72, 32, 35806, 214828) || NA (129.84, 0.41, 0.22)| 3 (80.12, NA, NA)
20(/(68, 30, 50513, 303070)|| NA (363.12, 0.70, 7.31)| 3 (26.14, NA, NA)
21||(95, 35, 57717, 346294)|| NA (359.40, 0.96, 8.15)| 2 (86.10, NA, NA)
22||(41, 23, 89624, 537738)|| NA (NA, NA, NA) (142.24, NA, NA)

#in: number of input variables in the relation; #out: number of output variables in the relation; #e:
number of innermost existential variables added due to circuit-to-CNF conversion; #C: number of
clauses in final CNF; size: number of AIG nodes after performing ABC command dc2 with negligible
runtime not shown; time (sv/md/vf): CPU time in seconds for QBF evaluation/(counter)model
generation/verification; NA: data not available due to computation out of resource limit; —: data
not available due to inapplicability of ResQu

Table 3. Summary for Relation Determinization Benchmarks.

overall|[sKizzo SQUOLEM-+RESQU QUBE-cERT+RESQU
time time time time time
sV #SV (o) [|[7Y] (sv) | d‘(md) #SV/#Pg‘ (sv) 7™ (ma)
[true[] 17 [2 JO.95[83 [2.08 [— [— [17/17 [51.32 | 17 [8.77]
[false[[22 [[0 | O [21 [1175.84] 21 [5.20]] 22/0 [1254.28] 0 | 0 |

(Legend same as in Table 1)

Table 2 shows the results of our second experiment on 22 relation deter-
minization benchmarks. All the original 22 instances are true (satisfiable). We
compared their models obtained in two ways: by direct model construction from
the satisfiability proofs of the original formulae and by indirect model construc-
tion from the unsatisfiability proofs of their negations. Unlike the QBFEVAL
cases, negating these formulae by Tseitin’s transformation does not result in
variable- and clause-increase, as discussed in Section 4. The experiment was
conducted under the resource limit same as before. For the original instances,
RESQU could have generated Skolem functions only for the existential variables
of interests (namely, the output variables of a Boolean relation rather than the
intermediate variables), but it generated all for the verification purpose.

As summarized in Table 3, for the true cases, SK1zz0 and SQUOLEM in com-
bination can construct models for only 3 instances, whereas from the 17 proofs
of QUBE-CERT, RESQU can generate (and verify) all models. For the negated
cases, all the proofs provided by QUBE-CERT involved long-distance resolution,
so RESQU did not construct their countermodels. Nevertheless, SQUOLEM solved
21 out of 22 instances, and RESQU can generate (and verify) all their counter-
models (i.e., models for the original QBF). It is interesting to see that, in the
relation determinization application, countermodel generation for the negated
formulae can be much easier than model generation for the original formulae. It
reveals the essential value of RESQU.

6 Conclusions and Future Work

A new approach has been proposed to compute Skolem functions in the con-
text of QBF evaluation. As a result, Skolem-function derivation is decoupled
from Skolemization-based solvers, and is available from standard search-based
solvers, provided that proper resolution proofs are given. The approach gives a
balanced and unified view on certifying both true and false QBF using models
and countermodels. Moreover, its practical value has been strongly supported by
experiments. As Skolem functions can be important in various areas, we hope
our results may encourage and enable QBF applications. Our on-going work
is to extract Skolem functions from proofs with the presence of long-distance
resolution.

Acknowledgments

The authors are grateful to Roderick Bloem and Georg Hofferek for providing
the relation determinization benchmarks. This work was supported in part by
the National Science Council under grants NSC 99-2221-E-002-214-MY3 and
NSC 99-2923-E-002-005-MY 3.

References

1. M. Benedetti. Evaluating QBFs via Symbolic Skolemization. In Proc. Int’l Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR), 2004.

2. M. Benedetti. Extracting Certificates from Quantified Boolean Formulas. In Proc.
Int’l Joint Conf. on Artificial Intelligence (IJCAI), 2005.

3. R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer.
Automatic Hardware Synthesis from Specifications: A Case Study. In Proc. Design
Automation and Test in Europe, 2007.

4. Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential
Synthesis and Verification. http://www.eecs.berkeley.edu/~alanmi/abc/

5. M. Cadoli, M. Schaerf, A. Giovanardi, M. Giovanardi. An Algorithm to Evaluate
Quantified Boolean Formulae and Its Experimental Evaluation. Journal of Auto-
mated Reasoning, 28(2):101-142, 2002.

6. N. Dershowitz, Z. Hanna and J. Katz. Bounded Model Checking with QBF. In Proc.
Int’l Conf. on Theory and Applications of Satisfiability Testing (SAT), 2005.

7. N. Eén and N. Sorensson. An Extensible SAT-Solver. In Proc. Int’l Conf. on Theory
and Applications of Satisfiability Testing (SAT), pp. 502-518, 2003.

8. E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause-Term Resolution and
Learning in Quantified Boolean Logic Satisfiability. Artificial Intelligence Research,
26:371-416, 2006.

9. T. Jussila, A. Biere, C. Sinz, D. Kroning, and C. Wintersteiger. A First Step Towards
a Unified Proof Checker for QBF. In Proc. Int’l Conf. on Theory and Applications
of Satisfiability Testing (SAT), pp. 201-214, 2007.

10. J.-H. R. Jiang, H.-P. Lin, and W.-L.. Hung. Interpolating Functions from Large
Boolean Relations. In Proc. Int’l Conf. on Computer-Aided Design (ICCAD), pp.,
779-784, 2009.

11. H. Kleine-Biining, M. Karpinski and A. Flogel. Resolution for Quantified Boolean
Formulas. Information and Computation, 117(1):12-18, 1995.

12. M. Narizzano, C. Peschiera, L. Pulina, and A. Tacchella. Evaluating and Certifying
QBFs: A Comparison of State-of-the-Art Tools. In AT Communications, 2009.

13. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

14. QBF Solver Evaluation Protal. http://www.gbflib.org/qbfeval/

15. J. Rintanen. Constructing Conditional Plans by a Theorem-Prover. Journal of
Artificial Intelligence Research, 10:323-352, 1999.

16. Th. Skolem. Uber die Mathematische Logik. Norsk. Mat. Tidsk., 10:125-142, 1928.
[Translation in From Frege to Gédel, A Source Book in Mathematical Logic, J. van
Heijenoort, Harvard Univ. Press, 1967.]

17. S. Staber and R. Bloem. Fault Localization and Correction with QBF. In Proc.
Int’l Conf. on Theory and Applications of Satisfiability Testing (SAT), pp. 355-368,
2007.

18. A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial
Sketching for Finite Programs. In Proc. Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 404-415, 2006.

19. G. Tseitin. On the Complexity of Derivation in Propositional Calculus. Studies in
Constructive Mathematics and Mathematical Logic, pp. 466-483, 1970.

20. Y. Yu and S. Malik. Validating the Result of a Quantified Boolean Formula (QBF)
Solvers: Theory and Practice. In Proc. Asia and South Pacific Design Automation
Conference, 2005.

21. L. Zhang and S. Malik. Conflict Driven Learning in a Quantified Boolean Satisfia-
bility Solver. In Proc. Int’l Conf. on Computer-Aided Design (ICCAD), pp. 442-449,
2002.

