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Abstract. Models of biochemical systems presented as a set of formal
reaction rules with kinetic expressions can be interpreted with differ-
ent semantics: as either deterministic Ordinary Differential Equations,
stochastic continuous-time Markov Chains, Petri nets or Boolean tran-
sition systems. While the formal composition of reaction models can be
syntactically defined as the (multiset) union of the reactions, the hybrid
composition of models in different formalisms is a largely open issue. In
this paper, we show that the combination of reaction rules with condi-
tional events, as the ones already present in SBML, does provide the
expressive power of hybrid automata and can be used in a non standard
way to give meaning to the hybrid composition of heterogeneous models
of biochemical processes. In particular, we show how hybrid differential-
stochastic and hybrid differential-Boolean models can be compiled and
simulated in this framework, through the specification of a high-level
interface for composing heterogeneous models. This is illustrated by a
hybrid stochastic-differential model of bacteriophage T7 infection, and
by a reconstruction of the hybrid model of the mammalian cell cycle
regulation of Singhania et al. as the composition of a Boolean model of
cell cycle phase transitions and a differential model of cyclin activation.

1 Introduction

Systems biology aims at elucidating the high-level functions of the cell from their
biochemical basis at the molecular level [24]. A lot of work has been done for col-
lecting genomic and post-genomic data, making them available in databases [5,25],
and organizing the knowledge on pathways and interaction networks into models of
cell metabolism, signaling, cell cycle, apoptosis, etc. now published in model reposi-
tories (e.g. http://biomodels.net/). In particular, the Systems Biology Markup
Language (SBML) [23] provides a common exchange format for biochemical reaction
models and is nowadays supported by a majority of modeling tools.

According to the knowledge available on the system and to the nature of the queries
that will be asked to the model, e.g. qualitative or quantitative predictions, these
reaction rule-based models can be interpreted (and simulated) under different semantics
as either:

– ordinary differential equations (differential semantics),
– continuous-time Markov chains (stochastic semantics),
– Petri nets (discrete semantics),

http://biomodels.net/


– Boolean transition systems (Boolean semantics),
– and many variants.

Some modeling tools support several of these different interpretations which can also
be related by approximation [16,17,18] or abstraction [11] relationships.

In the perspective of applying engineering methods to the analysis and control of
biological systems, the issue of building complex models by composition of elementary
models is a central issue. While reaction rule-based models can be formally composed
simply by the multiset union of reaction rules, and interpreted by one common se-
mantics, there is also a need to compose models with different semantics. What we
call a hybrid model is a model obtained by composition of models with heterogeneous
semantics (differential, stochastic, Boolean, etc.), and hybrid simulation is the topic of
simulating such hybrid models.

Hybrid simulation is a classical topic in physics on the one hand, e.g. for numeri-
cally solving equations describing stochastic systems using ordinary differential equa-
tions whenever possible in place of stochastic equations in order to speed-up simula-
tions [3,31], and on the other hand, in computer science for programming and verifying
hybrid systems which have both discrete and continuous dynamics [9,4,21]. Hybrid
modeling is also used in systems biology for reducing the complexity of many modeling
task, e.g. [29,4,13,6,26,1,33], or for speeding up stochastic simulations [32,19,22].

In this paper, we show that the combination of reaction rules with conditional
events, as the one already present in SBML, does provide the expressive power of
hybrid automata and can be used in a non standard way to give meaning to the hy-
brid composition of heterogeneous reaction models. In particular, we show how hybrid
differential-stochastic and hybrid differential-Boolean models can be compiled and sim-
ulated in this formal framework of reactions plus events, through the specification of a
high-level interface for composing reaction models.

This interface for composing models has been implemented as a preprocessor for
Biocham [7,10]. This preprocessor transforms stochastic reaction models in events that
implement Gillespie’s direct method for stochastic simulation and that can be combined
with the simulation of differential reaction models. Similarly, it transforms Boolean
state transition models in events with extra conditions that express the links to the
continuous variables and parameters of the differential reaction model.

This approach is illustrated through the hybrid stochastic-differential composition
and simulation of bacteriophage T7 infection [3], and a reconstruction of the hybrid
model of the mammalian cell cycle regulation of Singhania et al. [33] as the composition
of a Boolean model of cell cycle phase transitions and a differential model of cyclin
activation.

2 The Expressive Power of Events with Kinetic Reactions

2.1 Reactions rules with Kinetics

In the spirit of the Chemical Reaction Network Theory [12], we define our systems of
study as sets of reaction rules ri, however as in SBML [23] any function can be used as
reaction rate. In the following this will be represented using Biocham syntax [10] as:
vi for

∑
j lij×Sj ⇒

∑
rij×Sj , where vi is a continuous function1 of parameters of the

1 It would be possible to admit non-continuous functions as rates (e.g., conditional
statements in vi), and that is actually the case in many tools, however the same
result can be obtained with the event mechanism described in the next section.



system and of species concentrations defining the rate of reaction i (mass action kinetics
of parameter k are abbreviated as MA(k)), lij and rij are stoichiometric coefficients,
and the Sj are the species of the model.

According to the data available on the system and to the nature of the queries
that will be asked to the model, e.g. qualitative or quantitative predictions, these reac-
tion models can be interpreted (and simulated) under different semantics: differential,
stochastic, discrete or boolean. We recall here the basics of these semantics. An Or-
dinary Differential Equation (ODE) system can be defined from a reaction model as
follows: d[Sj ]

dt
=

∑
i(rij − lij)× vi

The differential semantics corresponds to the limit of the Continuous-Time Markov
Chain defined using the vi as propensities, and realizing the solution of the Chemical
Master Equation [16]. The differential semantics usually leads to numerical integration,
whereas the stochastic semantics is either used for exact or approximate simulation, or
for stochastic Model-checking (see for instance [27]).

The discrete semantics forgets about the rates vi but keeps the stoichiometric in-
formation, for instance as weights in a Petri net representation [8,14].

Finally, the Boolean semantics forgets about precise stoichiometry and keeps only
information about whether or not a species is active. It can be defined as an abstraction
of the previous discrete semantics [11].

2.2 Semantics of Events

In this section, we present a generic notion of events compatible with the differential
semantics of reaction models and then describe how it relates to existing concepts,
most notably the events of SBML and Biocham.

An event is basically twofold, it is built by a condition, determining when it fires,
and by an action, i.e., its influence on the current state (parameters, concentrations). If
one wants to enforce the continuity of concentration variables, they can simply exclude
them from the variables that can be modified by the action part of the events.

Following Biocham syntax, we will write an event as follows: event(condition,
[s1, . . . , sn], [f1, . . . , fn]), where the si indicate the state variables that are modified
by the event, the fi are functions of the state that give the new value to si.

There are many possible semantics for events but the basic idea is that an event
fires when its condition changes from false to true. This induces however several issues:

- what happens at the start of the simulation?
- how to find the precise time when a condition becomes true?
- what happens if some events are enabled simultaneously?
The first point is easy to settle, it is an arbitrary decision but does not have a big

impact. The simplest choice is to avoid the firing of events at the initial point of the
simulation and to reflect initial events by modifying accordingly the initial state.

The second point has been solved in practical tools for a long time: since numer-
ical integration goes by steps, one detects changes in conditions only in the interval
of a simulation step. One can simply go back in time until one finds—with a given
precision—the first time point where a condition becomes true. Note however that if
arbitrarily complex conditions appear in the events, a numerical integrator unaware
of the events can hide inside a single step that a condition went from false to true
and back to false again. Therefore, a cautious implementation is necessary, and often,
fixed step size integration methods are recommended to use, instead of more efficient
adaptive step size methods in presence of events.



The final point is again a question with multiple possible answers. Generally, the
set of events that are enabled simultaneously at a given time will all be fired, whatever
the actions of the events are, but what if several events modify the same variable? It
is possible to assume a synchronous semantics, where the simultaneous events execute
their actions in parallel, but then one must forbid events with conflicting actions, i.e.,
events that would modify in different ways the same variable at the same time point.
The more common choice is an asynchronous semantics, that will fire all the events
enabled at a given time one after the other, even if some actions invalidate the condition
of other enabled events. Conflicts in actions are then solved by the ordering of events,
which can be either random, i.e. non-deterministic, or given by the modeller, e.g. by
the order of writing or by priorities.

The SBML choice is to keep a very flexible semantics, with asynchronous events,
that may be ordered by priorities, and that can use either the values at the time they
were enabled, or the current values at the time they are actually executed, after the
execution of the simultaneous events with higher priority.

In Biocham, there are no priorities, the events that are enabled simultaneously are
executed in the order of their writing using current values. An event with n assignments
of fi to si is therefore equivalent to the sequence of n events with the same condition
for each assignment fi to si. The semantics of events implemented in Biocham can thus
be defined in SBML using the current value option and priorities corresponding to the
order of writing.

2.3 Representation of Hybrid Automata by Reactions and Events

A hybrid automaton (HA) is a dynamical system containing both continuous and dis-
crete components [20]. They are therefore commonly used to formalize real-life safety-
critical systems and have led to various works on the verification of their different
semantics and on their composition (e.g. with Hytech [21]).

Formally, a hybrid automaton is defined by a set of continuous variables, a control
graph where edges are labelled by jump conditions and events, defining the discrete
state changes with some labels, and vertices are labelled by initial, invariant and flow
conditions defining the continuous change in each state. Figure 1 (left) shows the
traditional thermostat example.

Off
ẋ = −0.1x
x ≥ 18

On
ẋ = 5−0.1x

x ≤ 22x = 20

x < 19

x > 21

Off/On
ẋ = 5s − 0.1x

(s = 0∧x ≥ 18)∨
(s = 1 ∧ x ≤ 22)

x = 20
s = 0

x < 19
s ← 1

x > 21
s ← 0

Fig. 1. The classical thermostat example encoded in a single state hybrid automaton.

Since the jumps describe the possible transitions with a complete description of
the resulting state, there are no issues similar to what was described in the previous
section to handle conflicting updates.



Note that, it is enough to restrict oneself to hybrid automata with a single state
(vertex) with a big parametric system of ODEs corresponding to all the ODEs of the
initial states, multiplied by a parameter that is non null only when the corresponding
state is active. Then the jumps and event labels can remain the same, except that they
go from the single state to itself, and change the state variable according to the initial
state change. The invariants have as additional condition that the corresponding state
must be active to be enforced. One obtains Figure 1 (right) where the ODE system
has been factorized for readability.

Now to represent an hybrid automaton in the framework of reaction and events
described above, one can first note that the initial and flow conditions simply define
an ODE system. Such a system can be represented with reactions, for instance as a
synthesis for each variable with rate corresponding to the variable’s derivative in the
corresponding state.

The jumps can easily be represented as events, however since they do not represent
events that should fire, but, unless it violates an invariant, events that may fire, they
should be accompanied by another event allowing the state not to change. This event
will have as condition the fact that the current invariant is true and that a condition
to leave is true. This second part is not necessary but avoids useless firings of events
that do not change anything. This event will also need to be able to fire repeatedly, it
will thus have a supplementary condition can_fire that it will itself make false, another
event will always make it true again when it is false.

Note that this encoding relies on a non-deterministic asynchronous semantics for
events, as discussed in Section 2.2. Here is the thermostat example as reactions and
events:

5*s for _ => x. 0.1*[x] for x => _.

present(x, 20). parameter(enabled1, 0).
parameter(enabled2, 0).

parameter(s, 0). parameter(can_fire, 1).

event(s = 1 and [x] > 21 and can_fire = 1, [s, can_fire], [0, 0]).
event(s = 1 and [x] > 21 and [x] =< 22 and can_fire = 1,

[s, can_fire], [1, 0]).

event(s = 0 and [x] < 19 and can_fire = 1, [s, can_fire], [1, 0]).
event(s = 0 and [x] < 19 and [x] >= 18 and can_fire = 1,

[s, can_fire], [0, 0]).

event(can_fire = 0, [can_fire], [1]).

3 Hybrid Differential-Stochastic Semantics

Chemical reactions, originated from random collisions of particles, are discrete and
stochastic in nature. Although there is no way to predict the exact state of a chemical
system at a specific time point, its statistical behavior can be effectively calculated
from known probabilistic properties. A well-mixed, non-linear chemical system can be
described by a set of master equations, which in turn can be completely solved by
Gillespie’s stochastic simulation algorithm (SSA) [15], to be detailed in Section 3.1.



Essentially the computation cost of an SSA grows proportional to the number of re-
action occurrences. Simulating a system of chemical reactions can be especially slow if
one or more of the reactions have fast reaction rates (or high event occurrences) be-
cause the next reaction time will be very short due to the high probability of selecting
(one of the) fast reactions for firing.

A chemical system may consist of reactions proceeding with significantly different
rates. Despite the fact that all reactions are innately stochastic, those with large reac-
tant counts and high reaction rates can be accurately approximated in terms of deter-
ministic behavior expressed by ODEs. By incorporating both differential and stochastic
semantics into one simulator, an optimal balance between simulation runtime and accu-
racy can be achieved. This potentially lifts the scalability of simulating large biological
systems. In Section 3.2, we provide an event-based view on the SSA, that serves as
basis to a hybrid differential-stochastic simulator built upon an ODE simulator with
events.

3.1 Gillespie’s Direct Method

A reaction model with kinetic expressions can be interpreted under the stochastic
semantics as a continuous-time Markov chain (CTMC). A CTMC can be simulated
with a stochastic simulation algorithm (SSA), for example, Gillespie’s direct method
[15]. Rather than solving all possible trajectories’ probabilities as in the case of Master
equations, the algorithm generates statistically correct trajectories.

Gillespie’s direct method first calculates when the next reaction will occur, then
decides which reaction should occur with the help of a random number generator.
The probability that a certain reaction µ will take place in the next instant of time is
given by its propensity: αµ = (#combinations of reactants) · kµ where kµ is µ’s rate
coefficient. The algorithm repeats the following steps.

1. Calculate how long from now (4t) the next reaction will occur.

4t = −1∑
j αj

· log(r1),

where r1 is a random number within range (0, 1) and the αj are propensities at
the current state.

2. Choose which reaction will occur according to the probability distribution of re-
actions. This is done by generating a random number r2 within range (0, 1), and
letting the reaction µi be chosen for∑i−1

k=1 αk∑
j αj

< r2 6

∑i
k=1 αk∑
j αj

.

3. Update the numbers of molecules to reflect the execution of reaction µi, and set
current time to t = t+4t.

3.2 Event Model of Stochastic Simulation

By considering every firing of a chemical reaction as one firing of an event, the event se-
mantics of Section 2 enables a direct embedding of stochastic reactions into an intrinsi-
cally differential framework without additional implementation of a separate stochastic



simulation algorithm. Under this framework, time is the only unifying variable to keep
track of current state at each instant. This event-based approach permits the simple
integration of ODE and stochastic simulation as will be elaborated in Section 3.3.

Notice that, in the SSA of Section 3.1, when the next reaction will occur is indepen-
dent of which reaction will occur, and also that only one reaction is chosen each time.
These facts make the complete set of stochastic reaction rules be simulated correctly
with a single event. Essentially the simulation can be accomplished by compiling the
when and which questions Gillespie’s direct method asks into an event. Specifically the
event is triggered by the calculated next reaction time (tau); the event obtains a new
random variable (ran) and then conditionally updates the molecular counts depending
on which reaction is chosen to occur next. To accommodate all stochastic rules in one
event, each update entry is composed of conditional expressions over the propensities
and the random number that decides which reaction occurs.

Example 1 ([15]). Given the stochastic reaction rules A+ 2B
k1−→ C and C k2−→ 2A we

derive their propensities by alpha1 = k1× (#A)× (#B)×(#B−1)
2

, alpha2 = k2× (#C),
where “#” denotes the particle count of a species. Then the next reaction time from
the current time point can be decided by e = −1

alpha_sum
· log(random1) for random1

within (0, 1) and where alpha_sum = alpha1+alpha2. The first reaction is chosen for
the next occurring reaction if 0 < (alpha_sum × random2) 6 alpha1, which leads to
the consumption of one A and two B’s and producing one C:

event(Time>tau, [tau, ran, #A, #B, #C],
[Time + e, random,
if alpha_sum*ran =< alpha1 then #A-1 else #A+2,
if alpha_sum*ran =< alpha1 then #B-2 else #B,
if alpha_sum*ran =< alpha1 then #C+1 else #C-1]).

Note that the update of the particle counts of the first reaction is reflected in the three
then entries, and that of the second reaction is reflected in the three else entries.

This encoding relies on the left to right ordering of the different events associated
to a single trigger (see Section 2.2). This ordering is imposed to three kinds of param-
eters, including the random number for choosing reaction, the lower bound for particle
number, and a reaction’s propensity function, such that possible errors are avoided. Be-
cause these three kinds of parameters all depend on the current number of molecules,
they are listed in front of molecular species. So their values are not changed before the
completion of reaction firing, that is, all species’ counts have been updated according
to the chosen reaction.

3.3 Preprocessor for Composing Differential and Stochastic Models

The purpose of our preprocessor for composing heterogeneous biochemical models is
to provide a user-friendly interface to allow users of various backgrounds to conduct
hybrid simulation without knowing algorithmic details. The only work required is to
decide the semantic model for each of the reactions under simulation.

In classical work on hybrid simulation [3,26], chemical reactions are divided accord-
ing to their propensities and reactants’ concentrations into two groups: one consisting
of reactions to be simulated stochastically using SSAs, and the other consisting of
reactions to be simulated deterministically using ODEs. The former is referred to as



the stochastic reactions and the latter differential reactions. While differential reac-
tions simply advance with the pass of time, stochastic reactions fire discretely in time
with frequency in accordance with their propensities. When the reactant concentra-
tions and the propensity of a reaction are sufficiently large, ODE simulation can be
faithfully applied. It avoids frequent simulation updates within a small time interval,
thus accelerating simulation speed.

Hybrid species are referred to as those involved in both stochastic and differential
rules. This kind of species requires special attention because they are influenced by two
different mechanisms: ODEs that govern differential behavior by continuously chang-
ing related concentrations, and events that regulate stochastic behavior by modifying
molecule counts discretely whenever triggered. So a hybrid species is under two kinds
of modification: one targets at the evolution of macroscopic concentrations and the
other targets at the changes in microscopic particle counts.

In our implementation, a fresh new variable is introduced for each hybrid species to
represent its quantity (the summation of the numbers of particles from both differential
and stochastic models). In all kinetic expressions, the hybrid species are expressed by
the corresponding new variables. It is then a simple matter to put together the ODEs
for the continuous part and the events corresponding to the encoding of the stochastic
part as described in the previous section.

Fig. 2. Gene Regulation Network

Example 2. Let us consider the single gene regulatory model shown in Figure 2. Let the
reactions for protein generation and degradation, namely, mRNA

k2−→ mRNA+protein
and protein

r−→ ∅ be under the differential interpretation, and all other reactions,
namely, A

c−⇀↽−
b
B, B h−→ mRNA + B and mRNA

k1−→ ∅ be under the stochastic in-

terpretation.

% Differential rules % Stochastic rules
MA(k2) for mRNA => mRNA + protein. (MA(c), MA(b)) for A <=> B.
MA(r) for protein => _. MA(h) for B => mRNA + B.

MA(k1) for mRNA => _.

Our preprocessor generates a hybrid model composed of reactions and events. Due
to the stochastic nature of the reactions, there is no way to check the results point
by point. Nevertheless, comparison of mean values and standard deviations shows very
good agreement with purely stochastic simulations. The following table shows the CPU
time improvement in this example. The number of fired events is about six times smaller
and the runtime on a Macbook Pro is about four times faster.



step size = 0.01 step size = 0.02
method #fired_event CPU time (sec) #fired_event CPU time (sec)

stochastic 89066 63.2 83856 51.5
hybrid 14258 15.1 14183 12.9
ratio 0.16 0.24 0.17 0.25

Example 3. The reaction model of bacteriophage T7 infection described in [3] is an
interesting example that can be similarly hybridized by partitioning the reactions with
differential semantics for protein synthesis and with stochastic semantics for gene ac-
tivation, as follows:

% Differential reaction rules % Stochastic reaction rules
MA(c5) for tem => tem + struc. MA(c1) for gen => tem.
MA(c6) for struc => _. MA(c2) for tem => _.

MA(c3) for tem => tem + gen.
MA(c4) for gen + struc => virus.

In this example, tem and struc are hybrid species, while gen and virus are purely
stochastic. The following table shows that the hybrid simulation improves by three
orders of magnitude the simulation time over a time horizon of 100 hours with a step
size of 0.01:

method #fired_event CPU time (sec)
stochastic 276556 218.7
hybrid 832 0.75
ratio 0.003 0.003

It is worth noting that in these examples, the user is responsible for a partition
of reactions into differential and stochastic groups, that is fixed for the rest of simula-
tion. This restriction may lead to inaccurate or inefficient simulation if the propensity
and/or reactants’ counts of a reaction change substantially over time and violate the
underlying assumptions of differential and stochastic semantics. It is therefore desirable
to dynamically adjust the reaction partition along the progress of simulation.

Interestingly, the described framework allows us to easily explore various dynamic
partitioning strategies considering the crucial factors of particle count and propensity
value [3]. All species become potentially hybrid and criteria are imposed such that,
during the simulation run, the reactions interpreted under the differential semantics
are maximized while their current particle counts and propensity values must satisfy
some accuracy requirement with respect to the simulation step size.

4 Hybrid Differential-Boolean Semantics

4.1 Preprocessor for Composing Differential and Boolean Models

In this section, we consider the hybrid composition of differential reaction models with
Boolean transition models. One typical use of this form of composition is for model-
ing the interactions between gene expression and metabolism on different time scales.
Gene networks can be modeled by simple Boolean regulatory models representing the
on/off states of the genes and the possible transitions from one state to another, while
metabolic networks are naturally modeled by ODE systems. Hybrid models of gene
expression and metabolism can thus be naturally built as hybrid Boolean-differential
models, and analyzed and simulated as hybrid automata.

A Differential-Boolean composition necessitates specifying:



– the link between the continuous variables and the Boolean variables, e.g. by fixing
concentration threshold values,

– the relationship between the discrete logical time of the Boolean model and the
continuous real time of the ODE model, e.g. by adding delays on Boolean transi-
tions,

– the integrity constraints between both dynamics.

There is currently no general method for these tasks. As shown in Section 2.3 however,
a set of reactions and events can be interpreted as a hybrid automaton in which there
is a state with a particular ODE for each combination of the trigger values, and there
is a transition from one state to another state when at least one trigger changes value
from false to true in the source state.

This low level mechanism provides all what is necessary to compose differential
models with Boolean models, compile them in reaction rules plus events and execute
them using hybrid simulations. In the following section we illustrate our composition
preprocessor on a hybrid model of the cell cycle.

4.2 Hybrid Composition of Differential-Boolean Cell Cycle Models

In [33], Singhania et al. have proposed a simple hybrid model of the mammalian cell
cycle regulation. This cell cycle model of low dimension has been evaluated in terms
of flow cytometry measurements of cyclin proteins in asynchronous populations of
human cell lines. The few kinetic constants in the model are easier to estimate from
the experimental data that the numerous kinetic constants of a single large ODE model.
Using this hybrid approach, modelers could thus quickly create quantitatively accurate,
computational models of protein regulatory networks in cells.

In this model, Cyclin abundances are tracked by piecewise linear differential equa-
tions for cyclin synthesis and degradation. Cyclin synthesis is regulated by transcription
factors whose activities are represented by discrete variables (0 or 1) and likewise for
the activities of the ubiquitin-ligating enzyme complexes that govern cyclin degrada-
tion. The discrete variables change according to a predetermined sequence, with the
times between transitions determined by the amount of cyclin presented as well as
exponentially distributed random variables.

This model can be reconstructed in our framework as the hybrid composition of a
differential reaction model of cyclin activation and degradation, with a Boolean model
of cell cycle phase transitions. In our high level interface, this composition is specified
by providing as input

1. the differential reaction model of cyclin activation:

k_sa for _ => CycA. MA(k_da) for CycA => _.
k_sb for _ => CycB. MA(k_db) for CycB => _.
k_se for _ => CycE. MA(k_de) for CycE => _.

with initial concentrations and symbolic kinetic expressions

k_sa=5+6*B_tfe+20*B_tfb. k_da=0.2+1.2*B_cdc20a+1.2*B_cdh1.
k_sb=2.5+6*B_tfb. k_db=0.2+1.2*B_cdc20b+0.3*B_cdh1.
k_se=0.02+2*B_tfe. k_de=0.02+0.5*B_scf.

2. the Boolean transition system of the cell cycle [33]:



states (B_tfe,B_scf,B_tfb,B_cdc20a,B_cdc20b,B_cdh1).
(0,0,0,0,0,1) ->2 (1,0,0,0,0,1) ->3 (1,0,0,0,0,0)
->4 (1,1,0,0,0,0) ->5 (1,1,1,0,0,0) ->6 (0,1,1,0,0,0)
->7 (0,1,1,1,0,0) ->8 (0,1,1,1,1,0) ->9 (0,1,0,1,1,1)
->1 (0,0,0,0,0,1)

3. the specification of the interface between both models as a set conditions and
actions associated to the Boolean transitions and macros:

delta_t=lambda*exp(random). tau=Time-delta_t.
masst=mass*exp(0.029*(Time-start_time)).
->2 condition [Time>tau] action [lambda=2,mass=masst/2]
->3 condition [Time>tau and [CycE]*masst>=80] action [lambda=0].
->4 condition [Time>tau and [CycA]>12.5] action [lambda=0.01].
->5 condition [Time>(tau+7)] action[lambda=1].
->6 condition [Time>tau and [CycB]>21.25] action [lambda=0.5].
->7 condition [Time>tau] action [lambda=0.75].
->8 condition [Time>tau] action [lambda=1.5].
->9 condition [Time>tau] action [lambda=0.5].
->1 condition [Time>tau and [CycB]<3] action [lambda=0.025].

The compilation process described in Section 2.2 returns the input differential reaction
model augmented with a set of events for the Boolean transitions from state 1 to 9 and
back to 1, and their synchronization with the differential reaction model. In this form,
the simulation over a time horizon of 100 hours takes 60 ms on a MacBook Pro.

4.3 Related Work on Boolean Regulatory Models with Delays

René Thomas’s discrete modelling of gene regulatory networks (GRN) is a well known
approach to study the logical dynamics of a set of interacting genes. It deals with
a graph of positive and negative influences between genes and logical functions that
determine the possible trajectories in the state space. Those parameters are a priori
unknown, but they may generally be deduced from a large set of biologically observed
behaviors in various conditions. Besides, it neglects the time delays for a gene to pass
from one level of expression to another one. In [1], it is shown that one can account for
time delays depending on the expression levels of genes in a GRN, while preserving pow-
erful enough computer-aided reasoning capabilities. The characteristic of this approach
is that, among possible execution trajectories in the model, one can automatically find
out both viability cycles and absorption in capture basins. Model-checking techniques
developed for hybrid systems are used for this purpose [2]. The authors describe a Hy-
brid model for the mucus production in the bacterium Pseudomonas aeruginosa and
show that they are able to discriminate between various possible dynamics [1,2]. Such a
model can be presented and compiled in a set of reaction rules with events as described
in the previous section.

Time constraints provide another mean to refine Boolean or discrete models which
are often too coarse to be useful. In [28], the authors present a new technique for over-
approximating (in the sense of timed trace inclusion) continuous dynamical systems by
timed automata for the purpose of efficiently checking timed (as well as untimed) prop-
erties. The essence of this technique is the partition of the state space into cubes and
the allocation of a clock for each dimension. This is in contrast with other approaches



which use only one clock. This idea is close in spirit to rectangular hybrid automata in
the sense of separating and bounding the dynamics of each dimension. This makes it
possible to get better approximations of the behavior. The timed automata produced
by these techniques can be directly composed in our preprocessor for simulation.

5 Conclusion

The combination of kinetic reaction rules with conditional events, as already present in
SBML, provides the expressive power of hybrid automata for combining discrete and
continuous dynamics. Although introduced in SBML for handling some discrete events,
such as for instance the division of the mass by two at each cell division in cell cycle
models, SBML events can be used on a large scale as a basic mechanisms allowing for
the composition of heterogeneous models and implementing hybrid simulators.

We have presented a high-level interface for composing hybrid models, compiling
them in reactions plus events, and running hybrid simulations. In particular we have
shown that hybrid differential-stochastic reaction models can be assembled with this
interface, compiled in differential reactions plus events for emulating the stochastic re-
actions, and executed with a de facto hybrid simulator with either static or dynamic
strategies. This has been illustrated with the hybrid model of bacteriophage T7 infec-
tion [3].

We have also shown that hybrid Boolean-differential models can similarly be com-
posed, compiled in reactions plus events, and simulated, through a high-level interface
for specifying the input models, the conditions on the continuous variables, and the
time delays of the Boolean transitions. This has been illustrated by a reconstruction
of the hybrid mammalian cell cycle model of Singhania et al. [33].

This shows the expressive power of SBML events and their possible use as a low-
level implementation language for representing and simulating hybrid models. This also
shows the need for generating such hybrid models with a preprocessor using a high-
level interface as the one prototyped here in Biocham. We are currently improving this
interface to use it on more examples and on hybrid models obtained by model reduction
using tropicalization methods [30].
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