
Bi-Decomposing Large Boolean Functions via
Interpolation and Satisfiability Solving ∗

Ruei-Rung Lee, Jie-Hong R. Jiang, and Wei-Lun Hung

Department of Electrical Engineering/Graduate Institute of Electronics Engineering
National Taiwan University, Taipei 10617, Taiwan

ABSTRACT
Boolean function bi-decomposition is a fundamental opera-
tion in logic synthesis. A function f(X) is bi-decomposable
under a variable partition XA, XB , XC on X if it can be
written as h(fA(XA, XC), fB(XB , XC)) for some functions
h, fA, and fB . The quality of a bi-decomposition is mainly
determined by its variable partition. A preferred decomposi-
tion is disjoint, i.e. XC = ∅, and balanced, i.e. |XA| ≈ |XB |.
Finding such a good decomposition reduces communication
and circuit complexity, and yields simple physical design
solutions. Prior BDD-based methods may not be scalable
to decompose large functions due to the memory explosion
problem. Also as decomposability is checked under a fixed
variable partition, searching a good or feasible partition may
run through costly enumeration that requires separate and
independent decomposability checkings. This paper pro-
poses a solution to these difficulties using interpolation and
incremental SAT solving. Preliminary experimental results
show that the capacity of bi-decomposition can be scaled up
substantially to handle large designs.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—automatic synthesis

General Terms
logic synthesis, algorithms

Keywords
bi-decomposition, variable partition, satisfiability, Craig in-
terpolation

1. INTRODUCTION
Functional decomposition [1, 6] is a fundamental opera-

tion on Boolean functions that decomposes a large function

∗This work was supported in part by NSC grants 95-2218-
E-002-064-MY3 and 96-2221-E-002-278-MY3.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008,June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM ACM 978-1-60558-115-6/08/0006 ...$5.00.

f on variables X into a set of small subfunctions h, g1, . . . , gm

with f(X) = h(g1(X), . . . , gm(X)), often m < |X|. It plays
a pivotal role in the study of circuit and communication com-
plexity, and has important applications on multi-level and
FPGA logic synthesis. Extensive research has been pub-
lished on this subject, see e.g. [15] for an introduction.

When m = 2, the decomposition is known as bi-decomposition
[3, 14, 16, 11, 4], the simplest nontrivial case, yet the most
widely applied since a logic netlist is often expressed as a net-
work of two-fanin gates. A primary issue of bi-decomposition
is variable partition. For f(X) = h(fA(XA, XC), fB(XB , XC)),
the variable partition {XA, XB , XC} on X (i.e. XA, XB , XC

are pairwise disjoint and XA∪XB ∪XC = X) mainly deter-
mines the decomposition quality. A particularly desirable
bi-decomposition is disjoint, i.e., |XC | = 0, and balanced,
i.e., |XA| ≈ |XB |. An ideal bi-decomposition reduces circuit
and communication complexity, and in turn simplifies phys-
ical design. Effective approaches to bi-decomposition can be
important not only in large-scale circuit minimization, but
also in early design closure if combined well with physical
design partitioning.

Modern approaches to bi-decomposition, such as [11], were
based on BDD data structure for its powerful capability sup-
porting various Boolean manipulations. They are however
not scalable to handle large Boolean functions due to the
common memory explosion problem. Furthermore, the vari-
able partition problem can not be solved effectively. Because
decomposability is checked under a fixed variable partition,
searching a good or even feasible partition may run through
costly enumeration that requires separate and independent
decomposability checkings.

To overcome these limitations, this paper proposes a so-
lution based on satisfiability (SAT) solving. The formu-
lation is motivated by the recent work [9], where a SAT-
based formulation made the computation of functional de-
pendency scalable to large designs. Our main results in-
clude 1) a pure SAT-based solution to bi-decomposition,
2) subfunction derivation by interpolation and cofactoring,
and 3) automatic variable partitioning by incremental solv-
ing under unit assumptions. Thereby the scalability of bi-
decomposition and the optimality of variable partition can
be substantially improved. Experiments show promising re-
sults on the scalability of bi-decomposition and the optimal-
ity of variable partitioning.

In comparison with the closest work [11], aside from the
scalability and variable partitioning issues, this paper fo-
cuses on strong decomposition (namely, XA and XB cannot
be empty), whereas [11] gave a more general approach allow-

ing weak decomposition (namely, XA or XB can be empty).
Moreover, as don’t cares are better handled in BDD than in
SAT, they were exploited in [11] for logic sharing.

This paper is organized as follows. Section 2 gives the
preliminaries. Our main theoretical results are presented in
Section 3, and implementation issues are discussed in Sec-
tion 4. The proposed methods are evaluated with experi-
mental results in Section 5. Finally Section 6 concludes the
paper and outlines future work.

2. PRELIMINARIES
As conventional notation, sets are denoted in upper-case

letters, e.g. S; set elements are in lower-case letters, e.g.
e ∈ S. The cardinality of S is denoted as |S|. A partition of
a set S into Si ⊆ S for i = 1, . . . , k (with Si ∩ Sj = ∅, i 6= j,
and

⋃
i Si = S) is denoted as {S1|S2| . . . |Sk}. For a set X

of Boolean variables, its set of valuations (or truth assign-
ments) is denoted as [[X]], e.g., [[X]] = {(0, 0), (0, 1), (1, 0), (1, 1)}
for X = {x1, x2}.

2.1 Bi-Decomposition

Definition 1. Given a completely specified Boolean func-
tion f , variable x is a support variable of f if fx 6= f¬x,
where fx and f¬x are the positive and negative cofactors of
f on x, respectively.

Definition 2. An incompletely specified function F is a
3-tuple (q, d, r), where the completely specified functions q, d,
and r represent the onset, don’t-care set and offset functions,
respectively.

Definition 3. A completely specified function f(X) is
〈op〉 bi-decomposable, or simply 〈op〉-decomposable, under
variable partition X = {XA|XB |XC} if it can be written
as f(X) = fA(XA, XC) 〈op〉 fB(XB , XC), where 〈op〉 is
some binary operator. The decomposition is called disjoint
if XC = ∅, and non-disjoint otherwise.

Note that bi-decomposition trivially holds if XA ∪ XC or
XB ∪ XC equals X. The corresponding variable partition
is called trivial. We are concerned about non-trivial bi-
decomposition. In the sequel, a binary operator 〈op〉 can
be or2, and2, and xor. Essentially or2-, and2-, and xor-
decompositions form the basis of all types of bi-decompositions
because any bi-decomposition is simply one of the three
cases with some proper complementation on f , fA and/or
fB .

2.2 Propositional Satisfiability
Let V = {v1, . . . , vk} be a finite set of Boolean variables.

A literal l is either a Boolean variable vi or its negation ¬vi.
A clause c is a disjunction of literals. Without loss of gener-
ality, we shall assume there is no repeated or complementary
literals appearing in the same clause. A SAT instance is a
conjunction of clauses, i.e., in the so-called conjunctive nor-
mal form (CNF). In the sequel, a clause set C = {c1, . . . , ck}
shall mean to be the CNF formula c1 ∧ · · · ∧ ck. An assign-
ment over V gives every variable vi a Boolean value either
0 or 1. A SAT instance is satisfiable if there exists a satis-
fying assignment such that the CNF formula evaluates to 1.
Otherwise it is unsatisfiable.

2.2.1 Refutation Proof and Craig’s Interpolation

Definition 4. Assume literal v is in clause c1 and ¬v in
c2. A resolution of clauses c1 and c2 on variable v yields a
new clause c containing all literals in c1 and c2 except for v
and ¬v. The clause c is called the resolvent of c1 and c2,
and variable v the pivot variable.

Theorem 1. [13] For an unsatisfiable SAT instance, there
exists a sequence of resolution steps leading to an empty
clause.

Often only a subset of the clauses of a SAT instance partic-
ipates in the resolution steps leading to an empty clause.

Definition 5. A refutation proof Π of an unsatisfiable
SAT instance C is a directed acyclic graph (DAG) Γ =
(N, A), where every node in N represents a clause which
is either a root clause in C or a resolvent clause having ex-
actly two predecessor nodes, and every arc in A connects a
node to its ancestor node. The unique leaf of Π corresponds
the empty clause.

Modern SAT solvers, (e.g., MiniSat [7]) are capable of pro-
ducing a refutation proof from an unsatisfiable SAT instance.

Theorem 2 (Craig Interpolation Theorem). [5] For
any two Boolean formulas φA and φB with φA ∧ φB unsat-
isfiable, then there exists a Boolean formula φA′ referring
only to the common input variables of φA and φB such that
φA ⇒ φA′ and φA′ ∧ φB is unsatisfiable.

The Boolean formula φA′ is referred to as the interpolant of
φA and φB . We shall assume that φA and φB are in CNF. So
a refutation proof of φA∧φB is available from a SAT solver.
How to construct an interpolant circuit from a refutation
proof in linear time can be found in, e.g., [10].

2.3 Circuit to CNF Conversion
Given a circuit netlist, it can be converted to a CNF for-

mula in such a way that the satisfiability is preserved [17].
The conversion is achievable in linear time by introducing
extra intermediate variables. In the sequel, we shall assume
that the clause set of a Boolean formula φ (similarly ¬φ) is
available from such conversion.

3. MAIN CONSTRUCTS

3.1 OR Bi-decomposition
We show that or2-decomposition can be achieved using

SAT solving. Whenever a non-trivial or2-decomposition
exists, we obtain a feasible variable partition and the corre-
sponding subfunctions fA and fB .

3.1.1 Decomposition of Completely Specified Func-
tions

Decomposition with known variable partition
Given a function f(X) and a non-trivial variable parti-

tion X = {XA|XB |XC}, we study if f can be expressed
as fA(XA, XC) ∨ fB(XB , XC) for some functions fA and
fB . The following proposition lays the foundation of or2-
decomposition.

Proposition 1. [11] A completely specified function f(X)
can be written as fA(XA, XC)∨ fB(XB , XC) for some func-
tions fA and fB if and only if the quantified Boolean formula

f(X) ∧ ∃XA.¬f(X) ∧ ∃XB .¬f(X) (1)

is unsatisfiable.

It can be restated as follows.

Proposition 2. A completely specified function f(X) can
be written as fA(XA, XC)∨ fB(XB , XC) for some functions
fA and fB if and only if the Boolean formula

f(XA, XB , XC) ∧ ¬f(X ′
A, XB , XC) ∧ ¬f(XA, X ′

B , XC) (2)

is unsatisfiable, where variable set Y ′ is an instantiated ver-
sion of variable set Y .

By renaming quantified variables, the quantifiers of Formula
(1) can be removed. That is, Formula (1) can be rewritten as
the quantifier-free formula of (2) because existential quan-
tification is implicit in satisfiability checking. Note that the
complementations in Formulas (1) and (2) need not be com-
puted. Rather, the complementations can be achieved by
adding inverters in the corresponding circuit before circuit-
to-CNF conversion, or alternatively by asserting the corre-
sponding variables to be false in SAT solving.

A remaining problem to be resolved is how to derive fA

and fB . We show that they can be obtained through inter-
polation from a refutation proof of Formula (2). Consider
partitioning the clause set of Formula (2) into two subsets
CA and CB with CA the clause set of

f(XA, XB , XC) ∧ ¬f(X ′
A, XB , XC) (3)

and CB the clause set of

¬f(XA, X ′
B , XC). (4)

Then the corresponding interpolant corresponds to an im-
plementation of fA. On the other hand, to derive fB we
perform a similar computation, but now with CA the clause
set of

f(XA, XB , XC) ∧ ¬fA(XA, XC) (5)

and CB the clause set of

¬f(X ′
A, XB , XC). (6)

Then the corresponding interpolant corresponds to an im-
plementation of fB .

The following theorem asserts the correctness of the above
construction.

Theorem 3. For any or2-decomposable function f un-
der variable partition X = {XA|XB |XC}, we have f(X) =
fA(XA, XC) ∨ fB(XB , XC) for fA and fB derived from the
above construction.

Remark 1. An interpolant itself is in fact a netlist com-
posed of or2 and and2 gates [10]. The “bi-decomposed”
netlist however may contain some amount of redundancy;
moreover variable partitioning is not used in its derivation.

Decomposition with unknown variable partition
The previous construction assumes that a variable par-

tition X = {XA|XB |XC} is given. We further automate
variable partition in the derivation of fA and fB as follows.

For each variable xi ∈ X, we introduce two control variables
αxi and βxi . In addition we instantiate variables X into X ′

and X ′′. Let CA be the clause set of

f(X) ∧ ¬f(X ′) ∧
∧
i

((xi ≡ x′i) ∨ αxi) (7)

and CB be the clause set of

¬f(X ′′) ∧
∧
i

((xi ≡ x′′i) ∨ βxi), (8)

where x′ ∈ X ′ and x′′ ∈ X ′′ are the instantiated versions
of x ∈ X. Observe that (αxi , βxi) = (0, 0), (0, 1), (1, 0), and
(1, 1) indicate xi ∈ XC , xi ∈ XB , xi ∈ XA, and xi can be in
either of XA and XB , respectively.

In SAT solving the conjunction of Formulas (7) and (8),
we make unit assumptions [7] on the control variables. Un-
der an unsatisfiable unit assumption, the SAT solver will
return a final conflict clause consisting of only the control
variables. Notice that every literal in the conflict clause is
of positive phase because the conflict arises from a subset of
the control variables set to 0. It reveals that setting to 0 the
control variables present in the conflict clause is sufficient
making the whole formula unsatisfiable. Hence setting to 1
the control variables absent from the conflict clause can not
affect the unsatisfiability. The more the control variables can
be set to 1, the better the bi-decomposition is because |XC |
is smaller. In essence, this final conflict clause indicates a
variable partition XA, XB , XC on X. For example, the con-
flict clause (αx1 + βx1 + αx2 + βx3) indicates that the unit
assumption αx1 = 0, βx1 = 0, αx2 = 0, and βx3 = 0 results
in the unsatisfiability. It in turn suggests that x1 ∈ XC ,
x2 ∈ XB , and x3 ∈ XA.

To see how the new construction works, imagine setting
all the control variables to 0. As SAT solvers tend to re-
fer to a small subset of the clauses relevant to a refutation
proof, it may return a conflict clause with just a few liter-
als. It in effect conducts a desirable variable partition. This
perception, unfortunately, is flawed in that SAT solvers are
very likely to return a conflict clause that consists of all
the control variables reflecting the trivial variable partition
XC = X. In order to avoid trivial variable partitions, we
initially specify two distinct variables xa and xb to be in
XA and XB , respectively, and all other variables in XC ,
that is, having (αxa , βxa) = (1, 0), (αxb , βxb) = (0, 1), and
(αxi , βxi) = (0, 0) for i 6= a, b in the unit assumption. We
call such an initial variable partition as a seed variable par-
tition. If the conjunction of Formulas (7) and (8) is un-
satisfiable under a seed partition, then the corresponding
bi-decomposition is successful. As SAT solvers often refer
to a small unsatisfiable core, the returned variable parti-
tion is desirable because |XC | tends to be small. Other-
wise, if the seed partition fails, we should try another one.
For a given function f(X) with |X| = n, the existence of
non-trivial or2-decomposition can be checked with at most
(n− 1) + · · ·+ 1 = n(n− 1)/2 different seed partitions. On
the other hand, we may enumerate different variable parti-
tions using different seed partitions to find one that is more
balanced and closer to disjoint. Even from a successful seed
partition, we may further refine the returned variable parti-
tion by reducing the corresponding unsatisfiable core. The
process can be iterated until the unsatisfiable core is mini-
mal.

Lemma 1. For an unsatisfiable conjunction of Formulas
(7) and (8) under a seed variable partition, the final conflict
clause contains only the control variables, which indicates a
valid non-trivial variable partition.

Theorem 4 asserts the correctness of the construction.

Theorem 4. For any or2-decomposable function f , we
have f(X) = fA(XA, XC) ∨ fB(XB , XC) for fA, fB, and
a non-trivial variable partition X = {XA|XB |XC} derived
from the above construction.

One might speculate about whether (αx, βx) = (1, 1) is
possible as it tends to suggest that x can be in either of XA

and XB . To answer this question, we study the condition
that xi can be in either of XA and XB .

Lemma 2. [14] If f is bi-decomposable under some vari-
able partition, then the cofactors fx and f¬x for any variable
x are both bi-decomposable under the same variable parti-
tion.

The converse however is not true. The following theorem
gives the condition that x can be in either of XA and XB .

Theorem 5. Let X = {Xa|Xb|XC |{x}} for some x ∈
X. A function f = fA(XA, XC) ∨ fB(XB , XC) can be bi-
decomposed under variable partition {Xa ∪ {x}|Xb|XC} as
well as under variable partition {Xa|Xb ∪ {x}|XC} if and
only if both fx and f¬x are themselves or2-decomposable
under variable partition {Xa|Xb|XC}, and also (fx 6≡ 1 ∧
f¬x 6≡ 1) ⇒ (fx ≡ f¬x) under every c ∈ [[XC]].

That is, under every c ∈ [[XC]] either x is not a support vari-
able of f , or fx or f¬x equals constant one. It is interesting
to note that only the former can make (αx, βx) = (1, 1).
Whenever the latter happens, (αx, βx) equals (0, 1), (1, 0),
or (0, 0) if the solver is unable to identify a minimal unsat-
isfiable core. To see it, consider fx ≡ 1 (similar for f¬x ≡ 1)
and f¬x 6≡ fx under some c ∈ [[XC]]. If (αx, βx) = (1, 1),
Formula (2) reduces to

(∃x.f(Xa, Xb, c, x)) ∧ ¬(∀x.f(X ′
a, Xb, c, x)) ∧

¬(∀x.f(Xa, X ′
b, c, x))

= 1 ∧ ¬f¬x(X ′
a, Xb, c) ∧ ¬f¬x(Xa, X ′

b, c),

which is satisfiable because f¬x 6≡ 1 under c. Hence (αx, βx) =
(1, 1) only if x is not a support variable of f .

3.1.2 Decomposition of Incompletely Specified Func-
tions

Proposition 2 can be generalized for incompletely specified
functions as follows.

Proposition 3. Given an incompletely specified function
F = (q, d, r), there exists a completely specified function f
with f(X) = fA(XA, XC)∨fB(XB , XC), q(X) ⇒ f(X), and
f(X) ⇒ ¬r(X) if and only if the Boolean formula

q(XA, XB , XC) ∧ r(X ′
A, XB , XC) ∧ r(XA, X ′

B , XC) (9)

is unsatisfiable.

The derivations of fA and fB can be computed in a way
similar to the aforementioned construction. We omit the
detailed exposition to save space.

3.2 AND Bi-decomposition

Proposition 4. [14] A function f is and2-decomposable
if and only if ¬f is or2-decomposable.

By decomposing ¬f as fA ∨ fB , we obtain f = ¬fA ∧ ¬fB .
Hence our results on or2-decomposition are convertible to
and2-decomposition.

3.3 XOR Bi-decomposition

3.3.1 Decomposition of Completely Specified Func-
tions

Decomposition with known variable partition
We formulate the xor-decomposability in the following

proposition, which differs from prior work [16, 8] and is more
suitable for SAT solving.

Proposition 5. A function f can be written as f(X) =
fA(XA, XC) ⊕ fB(XB , XC) for some functions fA and fB

under variable partition X = {XA|XB |XC} if and only if

(f(XA, XB , XC) ≡ f(XA, X ′
B , XC)) ∧

(f(X ′
A, XB , XC) 6≡ f(X ′

A, X ′
B , XC)) (10)

is unsatisfiable. Furthermore, fA = f(XA,~0, XC) and fB =

f(~0, XB , XC)⊕f(~0,~0, XC), or alternatively fA = ¬f(XA,~0, XC)

and fB = f(~0, XB , XC)⊕ ¬f(~0,~0, XC).

Accordingly interpolation is not needed in computing fA and
fB in xor-decomposition.
Decomposition with unknown variable partition

The xor-decomposition of Proposition 5 assumes a vari-
able partition is given. We further automate variable parti-
tion as follows. For each variable xi ∈ X, we introduce two
control variables αxi and βxi . In addition we instantiate
variables X into X ′, X ′′, and X ′′′. We modify Formula (10)
as

(f(X) ≡ f(X ′)) ∧ (f(X ′′) 6≡ f(X ′′′)) ∧∧
i

(((xi ≡ x′′i) ∧ (x′i ≡ x′′′i)) ∨ αxi) ∧
∧
i

(((xi ≡ x′i) ∧ (x′′i ≡ x′′′i)) ∨ βxi). (11)

By Formula (11), an automatic variable partition can be
obtained from a seed partition, similar to what we have in
or2-decomposition.

The correctness of the construction is asserted as follows.

Theorem 6. For any xor-decomposable function f , we
have f(X) = fA(XA, XC) ⊕ fB(XB , XC) for fA, fB, along
with a non-trivial variable partition X = {XA|XB |XC} de-
rived from the above construction.

To see whether (αx, βx) = (1, 1) is possible or not for some
variable x, we study the condition that x can be in either of
XA and XB .

Theorem 7. Let X = {Xa|Xb|XC |{x}} for some x ∈
X. A function f = fA(XA, XC) ⊕ fB(XB , XC) can be bi-
decomposed under variable partition {Xa ∪ {x}|Xb|XC} as
well as under variable partition {Xa|Xb ∪ {x}|XC} if and
only if both fx and f¬x are themselves xor-decomposable
under variable partition {Xa|Xb|XC}, and also (fx ≡ f¬x)∨
(fx ≡ ¬f¬x) under every c ∈ [[XC]].

Under the flexible partition for variable x, Formula (10) re-
duces to

(∃x.f(Xa, Xb, XC , x) ≡ ∃x.f(Xa, X ′
b, XC , x)) ∧

(∃x.f(X ′
a, Xb, XC , x) 6≡ ∃x.f(X ′

a, X ′
b, XC , x)). (12)

If fx ≡ f¬x, the unsatisfiability of Formula (10) implies the
unsatisfiability of Formula (12). On the other hand, if fx ≡
¬f¬x, ∃x.f is a constant-1 function, and thus Formula (12) is
unsatisfiable. Hence (αx, βx) = (1, 1) is possible even if x is
a support variable of f . In this case, we can first decompose
f as f = x⊕ f¬x or equivalently ¬x⊕ fx. Moreover, it can
be generalized as follows.

Corollary 1. For an xor-decomposable function f , sup-
pose xi, for i = 1, . . . , k, are the support variables of f with
(αxi , βxi) = (1, 1) after variable partition. Then f can be
decomposed as

f = x1 ⊕ · · · ⊕ xk ⊕ f¬x1···¬xk . (13)

Further, for Xa = {x | (αx, βx) = (1, 0)}, Xb = {x | (αx, βx) =
(0, 1)}, and XC = {x | (αx, βx) = (0, 0)}, then

f = x1 ⊕ · · · ⊕ xk ⊕ fA(Xa, XC)⊕ fB(Xb, XC) (14)

with fA and fB derived from the previous construction.

4. IMPLEMENTATION ISSUES
When disjoint variable partitioning is concerned, it cor-

responds to computing a minimum unsatisfiable core. In-
cremental SAT solving is useful in finding a good minimal
unsatisfiable core, see e.g. [12]. In our implementation, a
variable of XC is greedily moved to either of XA and XB

favoring the small one. The process iterates until no more
reduction can be made on XC .

When balanced variable partitioning is concerned, SAT
solvers usually tend to make decisions in a descending prior-
ity order based on variable IDs. From empirical experience,
this bias makes variable partition unbalanced. To overcome,
we interleave the variable IDs of X ′ and those of X ′′ of For-
mulas (7) and (8) for or2- and and2-decomposition, and
interleave those of Formula (11) for xor-decomposition. For
example, assume that variables x′i, x′′i , x′i+1, and x′′i+1 are
originally of IDs 100, 200, 101, and 201, respectively. We
rename them to 100, 200, 201, and 101, respectively. This
shuffling makes variable partitioning more balanced.

5. EXPERIMENTAL RESULTS
The algorithms were implemented in C++ in ABC [2]

with MiniSAT [7] as the underlying solver. All experiments
were conducted on a Linux machine with Xeon 3.4GHz CPU
and 6Gb RAM.

Two sets of experiments were designed to demonstrate the
scalability of bi-decomposition and the optimality of variable
partitioning. Only circuits containing output functions with
large support sizes (≥ 30) were chosen from the ISCAS,
ITC, and LGSynth benchmark suites.1 To show the ef-
ficiency of decomposing large functions, Table 1 shows the
results of or2- and xor-decompositions on the output func-
tions of the listed circuits. As can be seen, functions with
many input variables, such as i2 and o64, can be decom-
posed effectively.

1Sequential circuits are converted to combinational ones by re-

Figure 1: |XC |/|X| and ||XA| − |XB ||/|X| in the enumer-

ation of variable partitions in OR2-decomposition.

To measure the quality of a variable partition, we use two
metrics: |XC |/|X| for disjointness, and ||XA| − |XB ||/|X|
for balancedness. The smaller they are, the better a par-
tition is. In particular, we prefer disjointness to balanced-
ness since the former yields better variable reduction. Ex-
perience suggests that |XC |/|X| very often can be maxi-
mally reduced within the first few enumerations while keep-
ing ||XA| − |XB ||/|X| as low as possible. Figure 1 shows
how these two values may change in enumerating different
variable partitions under or2-decomposition of two sample
functions from circuits s3330 and s420. In the figure, every
variable partition corresponds to two markers (one in black
and the other in gray) with the same symbol at the same
iteration.

It is interesting to note that or2- and xor-decompositions
exhibit very different characteristics in variable partitioning.
Figures 2 and 3 show the difference. In these two plots,
a marker corresponds to a first found valid variable parti-
tion in decomposing some function. As can be seen, the de-
composition quality is generally good in or2-decomposition,
but not in xor-decomposition. This phenomenon is because
xor-decomposable circuits, e.g. arithmetic circuits, possess
some regular structures in their functionality. This regular-
ity makes disjointness and balancedness mutually exclusive
in variable partitioning.

6. CONCLUSIONS
We showed that the bi-decomposition of a Boolean func-

tion can be achieved through SAT solving. Interpolation
(respectively cofactoring) turned out playing an essential
role in the computation of or2- and and2-decomposition
(respectively xor-decomposition). Moreover variable parti-
tioning was automated as an integrated part of the decompo-
sition process. Thereby the capacity of bi-decomposition can
be much extended for large functions. Experiments showed
promising results on the scalability of bi-decomposition and
the optimality of variable partitioning.

Although our method has its strengths in dealing with
large functions and in automating variable partitioning, it
is weak in handling don’t cares when compared with BDD-
based approaches. Future work on hybrid approaches com-

placing register inputs and outputs with primary outputs and
inputs, respectively.

Table 1: Bi-decomposition of PO functions
OR2-decomposition XOR-decomposition

circuit #in #max #out #dec #slv time mem #dec # slv time mem
(sec) (Mb) (sec) (Mb)

b04 76 38 74 49 3878 12.26 19.35 49 2714 28.82 20.02
b07 49 42 57 14 12985 27.59 22.3 39 601 5.43 18.72
b12 125 37 127 80 12526 25.14 23.32 84 4862 19.22 26.93
C1355 41 41 32 0 26240 354 20.32 – – TO –
C432 36 36 7 7 102 13.15 18.54 0 3654 197.81 17.46
C880 60 45 26 16 222 8.36 20.72 11 4192 83.08 18.72
comp 32 32 3 0 1488 2.61 15.86 1 1014 13.69 16.9
dalu 75 75 16 1 26848 352.87 24.14 16 210 26.59 19.68
e64 65 65 65 0 45760 17.98 22.91 0 45760 388.18 24.37
i2 201 201 1 1 1 1.07 18.6 1 34 2.16 18.59
i4 192 47 6 4 6 0.58 16.08 0 4326 60.04 16.54
k2 45 45 45 33 1071 17.51 22.33 33 612 5.29 20.71
my adder 33 33 17 0 3656 2.61 18.05 16 577 4.92 17.32
o64 130 130 1 1 1 0.36 16.17 0 8385 623.43 16.12
rot 135 63 107 49 19927 65.97 23.21 46 4975 59.23 21.96
s3330 172 87 205 60 2941 9.42 23.09 71 3135 16.45 21.87
s420 34 34 17 1 817 0.88 17.83 17 114 0.7 16.58
s6669 322 49 294 101 24423 198.14 29.13 176 3120 279.03 22.87
s938 66 66 33 1 5985 2.81 19.86 33 426 4.49 16.28

#in: number of PIs; #max: maximum number of support vars in POs; #out: number of POs;
#dec: number of decomposable POs; #slv: number of SAT solving runs; TO: time out at 1500 sec

Figure 2: Variable partition in OR2-decomposition.

bining SAT and BDD may exploit more don’t cares for bet-
ter decomposition of large functions. Also, an outstanding
open problem remains to be solved is the xor-decomposition
of incompletely specified functions using SAT solving.

7. REFERENCES
[1] R. L. Ashenhurst. The decomposition of switching

functions. In Proc. Int’l Symp. on the Theory of Switching
Functions, pages 74–116, 1959.

[2] Berkeley Logic Synthesis and Verification Group. ABC: A
system for sequential synthesis and verification.
http://www.eecs.berkeley.edu/∼alanmi/abc/.

[3] D. Bochmann, F. Dresig, and B. Steinbach. A new
decomposition method for multilevel circuit design. In
Proc. Euro-DAC, pages 374–377, 1991.

[4] J. Cortadella. Timing-driven logic bi-decomposition. IEEE
Trans. on CAD, 22(6):675–685, 2003.

[5] W. Craig. Linear reasoning: A new form of the
Herbrand-Gentzen theorem. J. Symbolic Logic,
22(3):250–268, 1957.

[6] A. Curtis. New approach to the design of switching circuits.
Van Nostrand, Princeton, NJ, 1962.

[7] N. Een and N. Soensson. An extensible SAT-solver. In
Proc. SAT, pages 502–518, 2003.

[8] V. Kravets. Private communication about an IBM internal
disclosure. 2008.

Figure 3: Variable partition in XOR-decomposition.

[9] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and
A. Mishchenko. Scalable exploration of functional
dependency by interpolation and incremental SAT solving.
In Proc. ICCAD, pages 227–233, 2007.

[10] K. L. McMillan. Interpolation and SAT-based model
checking. In Proc. CAV, pages 1–13, 2003.

[11] A. Mishchenko, B. Steinbach, and M. A. Perkowski. An
algorithm for bi-decomposition of logic functions. In Proc.
DAC, pages 103–108, 2001.

[12] Y. Oh, M. Mneimneh, Z. Andraus, K. Sakallah, and
I. Markov. Amuse: A minimally-unsatisfiable subformula
extractor. In Proc. DAC, pages 518–523, 2004.

[13] J. A. Robinson. A machine-oriented logic based on the
resolution principle. Journal of the ACM, 12(1):23–41,
1965.

[14] T. Sasao and J. Butler. On bi-decomposition of logic
functions. In Proc. IWLS, 1997.

[15] C. Scholl. Functional Decomposition with Applications to
FPGA Synthesis. Kluwer Academic Publishers, 2001.

[16] B. Steinbach and A. Wereszczynski. Synthesis of multi-level
circuits using EXOR-gates. In Proc. IFIP Workshop on
Applications of the Reed-Muller Expansion in Circuit
Design, pages 161–168, 1995.

[17] G. Tseitin. On the complexity of derivation in propositional
calculus. Studies in Constructive Mathematics and
Mathematical Logic, pages 466–483, 1970.

