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ABSTRACT
Boolean matching determines whether two given (in)completely-
specified Boolean functions can be identical or complemen-
tary to each other under permutation and/or negation of
their input variables. Due to its broad applications in logic
synthesis and verification, it attracted much attention. Most
prior efforts however were incomplete and/or restricted to
certain special matching conditions. In contrast, this paper
focuses on the computation kernel of Boolean matching and
proposes a complete generic framework. Through conflict-
driven learning and abstraction, the capacity of Boolean match-
ing scales up due to the effective pruning of infeasible match-
ing solutions. Experiments show encouraging results in re-
solving hard instances that are otherwise unsolvable.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—automatic synthesis,
verification

General Terms
Algorithms, design, verification

Keywords
Boolean matching, satisfiability solving, learning, abstraction

1. INTRODUCTION
Boolean matching is an important subject of both the-

oretical and practical interest. Given two (in)completely-
specified Boolean functions, Boolean matching (under NPN-
equivalence) determines if they can be identical or comple-
mentary to each other under certain input permutation and/or
negation. From a theoretical standpoint, the computational
complexity of Boolean matching (known as Boolean congru-
ence, Boolean isomorphism, and other variants, which re-
ceived attention dating back to the nineteenth century) sit-
uates in between coNP and Σp

2 in the polynomial hierar-
chy [7, 4]. Thus it is a good candidate for examining the
open question about the collapse of the polynomial hierar-
chy. From a practical standpoint, it has broad applications
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in logic synthesis and verification, for instance, library bind-
ing [5], FPGA technology mapping [8], logic verification [13],
engineering change order [11], etc.

The demand from practical applications drives the ad-
vances of Boolean matching algorithms over the last two
decades. By the survey [5] and recent developments [3, 2, 17,
19], prior methods can be classified into four categories: spec-
tral, signature-based, canonical-form-based, and, the more
recent, SAT-based methods. Spectral methods are complete,
but often with prohibitive computation cost. Signature-based
methods are effective, but mostly incomplete due to their in-
trinsic limitations [12]. Canonical-form-based methods are
complete, and have been improved recently, see, e.g., [2]
for a review. SAT-based methods are complete [17, 19];
however, the strengths of modern propositional satisfiability
(SAT) solvers have not been fully exploited yet. Among prior
Boolean matching techniques, only a few took the general
NPN-equivalence into account. Even if this general problem
is considered, their computation costs may still be too expen-
sive to be practical. Furthermore, spectral, signature-based,
and canonical-form-based methods are not easily extendable
to deal with incompletely specified functions, see, e.g., [18, 1]
for a recent treatment.

We show that these shortcomings can be naturally re-
solved under a general computation framework, named BooM,
a decision procedure dedicated to Boolean matching. In
essence Boolean matching is a decision problem of solving
quantified Boolean formulas (QBFs). Particularly its special
problem structure allows effective conflict-driven learning for
search space reduction, which is beyond the capability of a
generic QBF solver.

The features of BooM are summarized as follows. 1) It
handles NPN-equivalence, and both completely and incom-
pletely specified functions. 2) It is equipped with abstraction
and dynamic learning techniques for effective search space
reduction. 3) It supports the search of one matching solu-
tion and of all solutions. 4) It admits easy integration with
signature-based techniques for search space reduction, and
helps signature-based Boolean matching be complete. 5)
It uses memory efficient data structures, specifically, and-
inverter graphs (AIGs) and conjunctive normal form (CNF)
formulas, for scalable Boolean function representation. Ex-
perimental results show the effectiveness of BooM in conquer-
ing instances hard to solve without learning and abstraction.

Compared with the closest prior work [17], BooM outper-
forms it and can be much scalable. This prior method relies
on the sum-of-products representation of the two functions
to be matched, and consists of two separate computation
phases: first learning and second SAT solving. Since there
is no feedback between these two phases, the first phase can
be interpreted as static learning in a sense. In contrast, our
learning and SAT solving are interactive (with feedback). In-



feasible solutions are learned from a conflict produced by SAT
solving; SAT solving searches a solution in the space refined
by learning. Hence the learning in BooM is more global and
dynamic. As SOP representation may not be always available
especially for large designs, the prior method can be limited.

This paper is organized as follows. Section 2 gives the
preliminaries. Boolean matching under NPN-equivalence is
presented in Section 3, and P-equivalence in Section 4. Ex-
perimental evaluation is provided in Section 5. Finally Sec-
tion 6 concludes this paper and outlines future work.

2. PRELIMINARIES
As conventional notation, a set of Boolean variables is de-

noted with an upper-case letter, e.g., X; its elements are
in lower-case letters, e.g., xi ∈ X. The ordered version
(namely, vector) of a set X = {x1, . . . , xn} is denoted as ~x =
(x1, . . . , xn). The cardinality of a set X (respectively ~x) is de-
noted as |X| (respectively |~x|). The set of truth valuations of
~x is denoted [[~x]], e.g., [[(x1, x2)]] = {(0, 0), (0, 1), (1, 0), (1, 1)}.

2.1 Boolean Matching
A permutation π over X is a bijection function π : X →

X; a negation ν over X is a componentwise mapping with
ν(xi) = xi or ¬xi. We let π(~x) and ν(~x) be the shorthand
for (π(x1), . . . , π(xn)) and (ν(x1), . . . , ν(xn)), respectively.

Given two (completely specified) functions f(~x) and g(~y)
with |~x| = |~y|, Boolean matching under NPN-equivalence
determines if these two functions can be equivalent or com-
plementary (the second “N” of “NPN”) to each other under
negation (the first “N”) and permutation (the “P”) of their
input variables. Its special cases include NP-equivalence
(determining if f(~x) = g(ν ◦ π(~x)) for some negation ν and
permutation π) and P-equivalence (determining if f(~x) =
g(π(~x)) for some permutation π). We call ν ◦ π (respectively
π) a matching solution for NP-equivalence (respectively
P-equivalence) if f(~x) = g(ν ◦ π(~x)) (respectively f(~x) =
g(π(~x))). In the sequel, unless otherwise said, we shall as-
sume |~x| = |~y| = n.

Boolean matching for two incompletely specified functions
is similar, except that the functional equivalence is asserted
only under the care-conditions of both functions.

2.2 Propositional Satisfiability
By assuming the reader’s familiarity with circuit-to-CNF

conversion [16] and SAT solving, including conflict-based learn-
ing [15] and other commonly used techniques in modern SAT
solvers, e.g., [14, 10], we omit to provide the background
knowledge.

3. MATCHING FOR NPN-EQUIVALENCE
Given two functions f(~x) and g(~y), optionally with their

care-conditions fc(~x) and gc(~y), respectively, we decide whether
f and g can be NPN-equivalent under the care-conditions.
In particular, this problem can be divided into two subtasks
by deciding whether f and g or whether f and ¬g are NP-
equivalent. Consequently we focus on Boolean matching un-
der NP-equivalence. Formally speaking, this task is to decide
the validity of the second-order formula

∃ν ◦ π, ∀~x.((fc(~x) ∧ gc(ν ◦ π(~x))) ⇒ (f(~x) ≡ g(ν ◦ π(~x)))), (1)

which is convertible to a first-order formula as shown below.

To represent ~y = ν ◦ π(~x), we introduce the 0-1 matrix:




x1 ¬x1 x2 ¬x2 · · · xn ¬xn

y1 a11 b11 a12 b12 · · · a1n b1n

y2 a21 b21 a22 b22 · · · a2n b2n

...
...

...
...

...
...

...
...

yn an1 bn1 an2 bn2 · · · ann bnn


 (2)

By asserting

n∑
j=1

(aij + bij) = 1 for i = 1, . . . , n, and (3)

n∑
i=1

(aij + bij) = 1 for j = 1, . . . , n, (4)

this matrix represents some legal mapping ν ◦ π, for aij = 1
and bij = 1 indicating mapping xj to yi and mapping ¬xj to
yi, respectively. These cardinality constraints (3) and (4) can
be expressed by a propositional formula ϕC of 2n2 Boolean
variables aij and bij , for i, j = 1, . . . , n. By asserting the
formula

ϕA =

n∧
i,j=1

((aij ⇒ (yi ≡ xj))(bij ⇒ (yi ≡ ¬xj))),

a solution to ϕC induces some unique mapping ν ◦ π. Con-
versely a mapping ν ◦ π corresponds to some unique solution
to ϕC . Hence in the sequel we shall not distinguish a map-
ping ν ◦ π and its corresponding solution to ϕC . In practice,
ϕC and ϕA are written in CNF.

Clearly solving Formula (1) is equivalent to solving the
following (first-order) QBF

∃~a,∃~b, ∀~x, ∀~y.(ϕC ∧ ϕA ∧ ((fc ∧ gc) ⇒ (f ≡ g))), (5)

where ~a = (a11, . . . , ann) and ~b = (b11, . . . , bnn). That is, we

look for a truth assignment to variables ~a and ~b that satisfies
ϕC and makes the miter constraint

Ψ = ϕA ∧ fc ∧ gc ∧ (f 6≡ g) (6)

unsatisfiable. For simplicity, unless otherwise said we shall
assume that fc and gc are tautologies in the sequel.

The key to solving Formula (5) is to effectively reduce the
search space. By exploiting the functional properties spe-
cific to f and g (such as variable symmetry, unateness, and
other functional properties), a preprocessing step is possi-
ble to screen out from ϕC a substantial amount of infeasible
solutions. Let formula Φ〈0〉 characterize the remaining solu-

tions of variables ~a and ~b after the preprocessing. We show
below how the solution space corresponding to legal ν ◦ π
can be effectively refined in a sequence Φ〈0〉, Φ〈1〉, . . . , Φ〈k〉,
(Φ〈i+1〉 ⇒ Φ〈i〉), along the solution search process.

3.1 Boolean Matching with Dynamic Learning
We discuss two different Boolean matching goals: to search

one matching solution and to search all matching solutions.

3.1.1 Searching one matching solution
Figure 1 sketches the procedure for finding one solution.

It takes on two input functions f and g, possibly with their
care-conditions fc and gc. A preprocessing step is first con-
ducted to strengthen ϕC yielding Φ〈0〉. It fast prunes infeasi-
ble matching solutions based on functional properties and an
abstraction technique, to be explained in Section 3.2. After
preprocessing, an iterative procedure is conducted between
two interacting SAT solving instances to refine the solution
space. The first SAT solving instance solves Φ〈i〉, i.e., the
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Figure 1: Search one Boolean matching solution

remaining matching solutions after the ith iteration. No so-
lution to Φ〈i〉 indicates that f and g cannot be matched; oth-
erwise, a solution to Φ〈i〉 corresponds to a candidate mapping
ν◦π. Further justification by the second SAT solving instance
is needed to check whether this solution makes the miter for-
mula Ψ unsatisfiable. If yes, the procedure terminates since
ν ◦ π is indeed a matching solution. Otherwise, the proce-
dure learns from this (conflict) solution and strengthens Φ〈i〉

to Φ〈i+1〉 accordingly. This action blocks not only this cur-
rent solution of Φ〈i〉 but also other infeasible solutions from
occurrence in later search. (Ordinary learning blocks only
the current conflict solution.) The procedure continues with

Φ〈i+1〉 in the new iteration.
Below we show how to strengthen Φ〈i〉 through learning.

Fact 1. Given two functions f(~x) and g(~y) for Boolean
matching under NP-equivalence, if f(~u) 6= g(~v) for ~u ∈ [[~x]]
and ~v ∈ [[~y]], then any mapping ν ◦ π with ν ◦ π(~u) = ~v is
infeasible.

Example 1. For two functions f(x1, x2, x3) and g(y1, y2, y3)
with f(1, 0, 1) 6= g(0, 1, 1), then f and g cannot be matched
under NP-equivalence by the six mappings with ~y = (¬x1,¬x2, x3),
(¬x1, x3,¬x2), (x2, x1, x3), (x2, x3, x1), (¬x3, x1,¬x2), and
(¬x3,¬x2, x1).

Fact 1 can be rephrased in the language of formulas Φ〈i〉

and Ψ as follows.

Proposition 1. Given two functions f(~x) and g(~y) for
Boolean matching under NP-equivalence, if f(~u) 6= g(~v) for
~u ∈ [[~x]] and ~v ∈ [[~y]] with ~v = ν◦π(~u) for some ν◦π satisfying

Φ〈i〉, then conjuncting Φ〈i〉 with the clause κ =
∨n

i,j=1 lij for
literals

lij =

{
aij , if vi 6= uj;
bij , otherwise,

excludes from Φ〈i〉 exactly the mappings {ν′ ◦π′ | ν′ ◦π′(~u) =
ν ◦ π(~u)}.
In essence a satisfying solution to the miter formula Ψ with
respect to a solution of Φ〈i〉 reveals additional infeasible match-
ing solutions. Letting Φ〈i+1〉 = Φ〈i〉 ∧ κ prevents the above
procedure from searching the learned infeasible solutions in
later iterations. As a result, a single clause with n2 literals
is added in each iteration.1

1The number of literals of a learned clause can be reduced if the
underlying SAT solver is capable of providing partially assigned
satisfying solutions.
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Figure 2: Search all Boolean matching solutions

Example 2. Consider Example 1. The learned clause cor-
responding to f(1, 0, 1) 6= g(0, 1, 1) is

(a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33).

It excludes the previously listed six infeasible mappings.

The pruning power of a learned clause can be character-
ized as follows.

Proposition 2. For Boolean matching under NP-equivalence,
the clause κ learned from a satisfying solution to f(~x) 6≡ g(~y)
with ~y = ν◦π(~x) for some ν◦π prunes n! infeasible mappings.

However the sets of mappings pruned by two different learned
clauses may not be disjoint.

Since there are 22n distinct truth assignments to variables
~x and ~y, the number of different learned clauses is upper
bounded by 22n. This fact also asserts the termination of the
procedure.

Proposition 3. The Boolean matching procedure of Fig-
ure 1 for NP-equivalence terminates within O(22n) iterations.

3.1.2 Searching all matching solutions
When the Boolean matching objective is to find all match-

ing solutions rather than just one, applying the procedure of
Figure 1 to find the solutions one by one can be overkill.
Figure 2 sketches a more effective procedure for this pur-
pose. This procedure is the same as that of Figure 1 except
that there is only one SAT solving kernel for one combined
formula Φ〈i〉 ∧Ψ.

Unlike the procedure of Figure 1 (where, effectively, vari-

ables ~a and ~b have higher decision orders than the other vari-
ables in making truth assignments), the procedure of Figure 2
imposes no restriction on the variable decision order. This
freedom makes it much more effective. On the other hand,
since this procedure terminates only when all infeasible solu-
tions are pruned, sometimes its termination may take a long
time. Nevertheless its number of SAT solving iterations has
the same upper bound as that of Figure 1 for a similar reason.

Proposition 4. The procedure of Figure 2 for Boolean
matching under NP-equivalence terminates within O(22n) it-
erations.

Note that the computation of Figure 2 can be understood
as performing quantifier elimination of variables ~x and ~y of
Formula (5). The resultant formula (in terms of variables

~a,~b) characterizes all matching solutions.



3.2 Boolean Matching with Abstraction
We propose a new preprocessing method and introduce

abstract Boolean matching.

Definition 1. Given a Boolean function f(~x), a variable
subset X∗ ⊆ X, and a variable z, the abstract function f∗

of f with respect to the (X∗, z)-abstraction α is defined to
be f∗( ~x∗, z) = f(α(x1), . . . , α(xn)) for

α(xi) =

{
xi, if xi ∈ X∗;
z, otherwise.

Variables X∗ are referred to as the concrete variables, and
z is the abstract variable.

Given two functions f(~x) and g(~y), let f∗ be the abstract
function of f with respect to the (X∗, z)-abstraction α. The
abstract Boolean matching determines if f∗( ~x∗, z) and
g(~y) can be equivalent under the variable mapping ~y = α ◦
ν ◦ π(~x) for some ν ◦ π. (The function α is phase-preserving,
i.e., α(¬xi) = ¬α(xi).)

To represent ~y = α ◦ ν ◦ π(~x), we define the 0-1 matrix:




x∗1 ¬x∗1 · · · x∗k ¬x∗k z ¬z

y1 a11 b11 · · · a1k b1k a1(k+1) b1(k+1)

y2 a21 b21 · · · a2k b2k a2(k+1) b2(k+1)

...
...

...
...

...
...

...
yn an1 bn1 · · · ank bnk an(k+1) bn(k+1)


 (7)

with

k+1∑
j=1

(aij + bij) = 1 for i = 1, . . . , n, and (8)

n∑
i=1

(aij + bij) = 1 for j = 1, . . . , k. (9)

Furthermore, let aij = 1 and bij = 1 indicate (yi ≡ xj) and
(yi ≡ ¬xj), respectively, for j = 1, . . . , k; let ai(k+1) = 1 and
bi(k+1) = 1 indicate (yi ≡ z) and (yi ≡ ¬z), respectively. All
of these constraints can be expressed with a Boolean formula
and a solution to it corresponds to some legal ν ◦ π with
respect to the abstraction α.2

To solve the abstract Boolean matching, the procedures
of Figures 1 and 2 can be applied with a similar learning
mechanism. Again let Φ〈i〉 be the formula characterizing the
remaining matching solutions after the ith iteration.

Proposition 5. For abstract Boolean matching of f∗( ~x∗, z)
and g(~y) under NP-equivalence, if f(α(~u)) 6= g(~v) for ~u ∈ [[~x]]
and ~v ∈ [[~y]] with ~v = α ◦ ν ◦π(~u) for some α ◦ ν ◦π satisfying

Φ〈i〉, then conjuncting Φ〈i〉 with the clause κ =
∨n

i=1

∨k+1
j=1 lij

for literals

lij =

{
aij , if vi 6= u∗j ,
bij , otherwise,

where ~u∗ ∈ [[( ~x∗, z)]] for f∗( ~u∗) = f(α(~u)), excludes from Φ〈i〉

exactly the mappings {α◦ν′ ◦π′ | α◦ν′ ◦π′(~u) = α◦ν ◦π(~u)}.
So a learned clause is of size n(k + 1).

The abstract Boolean matching of f∗ and g is useful for
two reasons. First, the computation is simplified (f∗ is sim-
pler than f and the leaned clauses are shorter). Second, its
solutions reveal useful information for the Boolean matching
of f and g.

2Note that z and ¬z are allowed to map to multiple variables in
Y since Eq. (9) imposes no cardinality constraint for j = k +1. In
contrast, one of x∗i and ¬x∗i maps to a unique variable in Y .

Proposition 6. If a mapping between the concrete vari-
ables X∗ and some Y ′ ⊆ Y (with |X∗| = |Y ′|) is shown
infeasible in the abstract Boolean matching of f∗ and g, then
in the original Boolean matching of f and g any mappings
between X and Y having the same sub-mapping between X∗

and Y ′ must be infeasible as well.

By conducting abstract Boolean matching for different sets
of concrete variables, it can be applied as preprocessing to fil-
ter out infeasible matching solutions for the original Boolean
matching problem.

For the preprocessing purpose, the procedure of Figure 2
is more effective for abstract Boolean matching than that of
Figure 1. In fact, the termination condition can be relaxed to
quit at any iteration since the remaining matching solutions
characterized by Φ〈i〉 in the abstract Boolean matching will
be a legitimate over-approximation of the matching solutions
in the original Boolean matching.

4. MATCHING FOR P-EQUIVALENCE
Since Boolean matching under P-equivalence is a special

case of matching under NP-equivalence, the computation frame-
work of NP-equivalence can be customized for P-equivalence.

To represent ~y = π(~x), Matrix (2) for NP-equivalence is
applicable by removing the columns indexed by ¬x1, . . . ,¬xn.
Moreover, the cardinality constraints are the same as Eq. (3)
and Eq. (4) but excluding the bij terms. They can be ex-
pressed by a CNF formula (new ϕC) with n2 variables and
2n(Cn

2 + 1) = O(n3) clauses. By asserting
∧n

i,j=1(aij ⇒
(yi ≡ xj)) (new ϕA), legal permutations can be character-
ized using a Boolean formula. Thus Boolean matching under
P-equivalence can be formulated as solving the QBF (5) with
the updated ϕC and ϕA.

Similar to the NP-equivalence case, the procedures of Fig-
ures 1 and 2 are applicable here. As a matter of fact, leaning
for P-equivalence can be made more efficient. Let Φ〈i〉 char-
acterize the remaining matching solutions at the ith iteration.

Proposition 7. Given two functions f(~x) and g(~y) for
Boolean matching under P-equivalence, if f(~u) 6= g(~v) for
~u ∈ [[~x]] and ~v ∈ [[~y]] with ~v = π(~u) for some π satisfying

Φ〈i〉, then conjuncting Φ〈i〉 with the clause κ =
∨n

i,j=1 lij for
literals

lij =

{
aij , if vi = 0 and uj = 1;
∅, otherwise,

excludes from Φ〈i〉 exactly the mappings {π′ | π′(~u) = π(~u)}.
Note that the above condition “if vi = 0 and uj = 1” can be
equivalently replaced with “if vi = 1 and uj = 0.” Clearly
for ~u ∈ [[~x]] with m ui’s equal to 1, then the corresponding
learned clause is of m(n−m) literals.

Example 3. The learned clause corresponding to f(1, 0, 1) 6=
g(0, 1, 1) can be (a11 ∨ a13) or, equivalently, (a22 ∨ a32).

The pruning power of a learned clause can be character-
ized as follows.

Proposition 8. For Boolean matching under P-equivalence,
the clause κ learned from a satisfying solution ~u ∈ [[~x]] to
f(~u) 6≡ g(π(~u)) for some π prunes m!(n−m)! infeasible per-
mutations, where m is the number of 1’s in ~u.

Observe that the larger the difference between the numbers
of 1’s and 0’s in ~u is, the stronger the pruning power of the
learned clause is. Hence it may be beneficial to search satis-
fying solutions in such biased truth assignments.



For every ~u ∈ [[~x]] with k 1’s, there are Cn
k possible ~v ∈ [[~y]]

having the same number of 1’s. Hence the number of possible
learned clauses and thus learning iterations is upper bounded

by 1
2
((Cn

0 )2 + (Cn
1 )2 + · · ·+ (Cn

n )2) =
22n·(n− 1

2 )!

2
√

πn!
≤ 22n

2
√

π
.

Proposition 9. The Boolean matching procedures of Fig-
ures 1 and 2 for P-equivalence both terminate within O(22n)
iterations.

Preprocessing with abstraction can be pursued in Boolean
matching under P-equivalence similar to that for NP-equivalence.
We omit the exposition to save space.

5. EXPERIMENTAL RESULTS
BooM was programmed in C language within the ABC [6]

package using MiniSAT [10] as the underlying solver. All
experiments were conducted on a Linux machine with Xeon
2.5GHz CPU and 26GB RAM.

Circuits from the MCNC, ISCAS89 and ITC99 bench-
mark suites were chosen. Sequential circuits were converted
to combinational ones by the ABC command comb. To test
the full power of BooM, we make the computation harder by
matching each primary output of a circuit independently.3 A
function is matched against its synthesized version with its in-
puts permuted in a reverse/random order (for P-equivalence
checking), and in addition negated randomly (for NP-equivalence
checking). Functions with support sizes between 10 and 39
were experimented. Specifically there are 717 functions with
an average of 114.74 AIG nodes (ranging from 15 to 2160
nodes) and 23.74 variables.

The baseline preprocessing of BooM to reduce the search
space consists of detecting functional properties of NE-symmetry
and unateness, and simulating Type 1 and Type 2 vectors of
[19]. For two symmetry groups that can be uniquely mapped
between the two functions to be matched, BooM breaks the
symmetry by assigning an arbitrary variable mapping.
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Figure 3: Runtime with and without learning

Figure 3 shows the effect of learning (as an example, in the
context of searching all matching solutions under P-equivalence).
The x- and y-axes correspond to the runtimes with and with-
out learning, respectively. A spot in the figure corresponds
to the result of a function. As most of the spots are above
the 45-degree line, learning is evidentally useful.

Figure 4 shows the effect of abstraction (in the same con-
text as Figure 3 with learning applied). The abstraction

3When multiple outputs are considered simultaneously, e.g., in
[19], many more mutual signatures can be deduced to reduce the
search space substantially.
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Figure 4: Runtime with and without abstraction

is conducted for enumerating half of all possible abstract
matchings with two concrete variables. Only functions with
non-empty clauses learned from abstraction are plotted. As
can be seen, abstraction achieves clear improvement. Many
instances timed out after 600 seconds without abstraction can
be effectively resolved with abstraction. Nevertheless, there
are a few cases where abstraction does not help.
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Figure 5: Cumulative runtime for P-equivalence

Figures 5 and 6 show the cumulative runtime for match-
ing under P-equivalence and NP-equivalence, respectively. In
these figures, the x- and y-axes are indexed by the cumu-
lative number of solved instances and cumulative runtime,
respectively. In the legends, “one sol” and “all sol” indicate
the targets of searching one matching solution (Section 3.1.1)
and searching all matching solutions (Section 3.1.2), respec-
tively; “learn” indicates learning being applied; “abs” indi-
cates preprocessing using abstraction being turned on. The
solved instances under each of these six options were sorted
by their runtimes in an ascending order before the accumula-
tion. (Among the solved functions in searching one matching
solution using both learning and abstraction, the maximum
input sizes are 39 and 38 for matching under P-equivalence
and NP-equivalence, respectively.) These two figures reveal,
as expected, that matching under NP-equivalence is much
harder than that under P-equivalence. Moreover, the perfor-
mance of searching all matching solutions is comparable to
that of searching one solution in the P-equivalence case, but
far worse in the NP-equivalence case. One explanation might
be that, since the configuration space for NP-equivalence is



����

����

����

�����

�����

��� 	�


��� 	�
� 
��
�

��� 	�
� 
��
�� ��	

�

 	�


�

 	�
� 
��
�

�

 	�
� 
��
�� ��	

�
��
�
��
�
�
��

�

����

� �� ��� ���

������� �!

Figure 6: Cumulative runtime for NP-equivalence

much larger, searching all matching solutions requires many
more refinement iterations and thus becomes less effective.

In all the above experiments, a matching instance consists
of a pair of functions, whose variables are in reverse order.
To see the effect of variable ordering, we alternatively pre-
pared matching instances with random order. For searching
all matching solutions under P-equivalence, 531 out of the
717 functions can be solved within 600 seconds under both
orders, and the corresponding total-runtime ratio of reverse
order to random order is 1.00 to 1.06. Since there seems no
strong bias when using these two orders, the results under
reverse ordering may be more or less representative.

Experience of matching incompletely-specified functions
(data not shown due to space limitation) suggested that it
takes longer time to solve than matching completely-specified
counterparts. The reason can be twofold: First, more as-
signments on average are tried before the miter constraint is
satisfied. Second, the miter constraint becomes more com-
plex in representing the care conditions. Hence the run-
time per learning iteration is larger. Nevertheless matching
incompletely-specified functions is indeed feasible under the
BooM framework.
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Figure 7: Comparison between BooM and DepQBF

Figure 7 compares BooM and DepQBF [9], a state-of-the-
art QBF solver, in searching one matching solution under P-
equivalence. The x- and y-axes correspond to the runtimes
of BooM and DepQBF, respectively, after the same prepro-
cessing. As can be seen, BooM outperforms DepQBF due to
its unique and powerful domain-specific learning.

6. CONCLUSIONS AND FUTURE WORK
We have formulated Boolean matching as QBF solving

and exploited domain-specific knowledge for effective search
space reduction. A decision procedure BooM, equipped with
abstraction and dynamic learning, has been proposed as a
generic computation framework for Boolean matching under
NPN-equivalence for both completely and incompletely spec-
ified functions. Experiments showed promising results. As
various Boolean matching techniques can be built and inte-
grated on top of BooM, we anticipate Boolean matching can
be made scalable and practical in more applications. More-
over, the success of BooM may suggest that it worths to cus-
tomize decision procedures for other computation problems.
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