
Synthesis of Feedback Decoders for Initialized Encoders
Kuan-Hua Tu and Jie-Hong R. Jiang

Department of Electrical Engineering / Graduate Institute of Electronics Engineering
National Taiwan University, Taipei 10617, Taiwan

ABSTRACT
Encoding and decoding are common practice in data process-
ing. Designing encoder and decoder circuitry manually can
be error prone and time consuming. Although great progress
has been made on automating decoder synthesis from its
encoder specification, prior specification was limited to an
uninitialized encoder only, whose decoder in turn cannot de-
pend on the entire execution history of the encoder. Prior
decoder existence condition is unnecessarily stringent as en-
coders are often initialized to some specific starting states.
This paper shows how decoders of initialized encoders can be
practically synthesized. Experimental results demonstrate
effective decoder synthesis of initialized encoders, beyond ex-
isting methods’ capabilities.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—automatic synthesis

General Terms
Algorithms, logic synthesis, verification

Keywords
Craig interpolation, decoder, encoder, finite-state transition
system, satisfiability solving

1. INTRODUCTION
Data processing is pervasive in computation and commu-

nication, and relies on an encoding and decoding scheme for
effective and robust data manipulation. An encoder trans-
forms some input data to encoded data, whereas a decoder
recovers the original input data from the encoded data (pos-
sibly being modified by the underlying communication chan-
nel). Given an encoder specification (and possibly channel
characteristics), its decoder design may be non-trivial and
hard to formally verify. Automating decoder synthesis eases
the design and verification tasks.

There have been prior efforts on decoder synthesis. Shen
et al. [11] proposed a bounded decoder synthesis method with
no termination guarantee. Complete synthesis methods were
later established independently by Shen et al. [12] and Liu et
al. [7, 8]. Particularly, Liu et al. [7, 8] exploited incremental
satisfiability (SAT) solving [5] and Craig interpolation [3, 9,
6] techniques for efficient computation.

All prior methods, however, can only synthesize a special
class of decoders, whose decoding process must depend on a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2013, May 29 - June 07, 2013, Austin, Texas, USA.
Copyright 2013 ACM ACM 978-1-4503-2071-9/13/05 ...$15.00.

1/1

0/0 1/0

0/1

q0 q1

Figure 1: A 0-1 alternation detector with a desig-
nated initial state q0.

bounded execution history of their encoders. Therefore the
considered decoder must be in a pipelined form without se-
quential feedbacks. Not all decoders, however, can be in such
simplicity. Many encoders in real applications inevitably re-
quire their decoding to depend on the entire histories of out-
put sequences starting from initial states. In essence, sequen-
tial feedbacks are a necessity for such decoders. Figure 1,
modified from [7, 8], shows one such encoder example, whose
decoder exists with respect to any initial state but does not
exist if no initial state is specified. The decoding must de-
pend on the entire input history, which is unbounded and
accounts for the necessity of sequential feedbacks. Moreover,
decoders with sequential feedbacks are potentially more com-
pact than those without feedbacks especially when the num-
ber of pipeline stages is large for feedback-free decoders. On
the other hand, prior work required encoders in their normal
operation to be in non-dangling states (a state is called dan-
gling if it cannot be reached by any states, including itself,
or can be reached only by dangling states), and permitted
not all the input data being recovered. However in certain
applications such data loss is disadvantageous, if not unac-
ceptable.

This paper investigates the fundamental question how to
synthesize decoders without restricting to a bounded exe-
cution history of their encoders and without admitting any
data loss. The main results include 1) a sound and complete
decoder existence checking algorithm, 2) practical decoder
existence checking techniques using incremental SAT solving
and property directed reachability analysis [2, 4], 3) a decoder
synthesis method based on Craig interpolation. Experimen-
tal results demonstrate the effectiveness of decoder existence
checking and synthesis, while the obtained decoders, unlike
those derived previously, can depend on an unbounded en-
coder execution history and recover data without any loss.

This paper is organized as follows. Section 2 provides
some preliminaries. After the decoding problem is stated
in Section 3, our new results on decoder existence checking
and decoder synthesis are presented in Sections 4 and 5, re-
spectively. Experimental results are shown in Section 6, and
finally concluding remarks are given in Section 7.

2. PRELIMINARIES
In the sequel the cardinality of a set S is denoted as |S|.

The set of truth valuations of a vector x⃗ = (x1, . . . , xk) of
Boolean variables is denoted [[x⃗]], for instance, [[(x1, x2)]] =

{(0, 0), (0, 1), (1, 0), (1, 1)}. Symbols ¬, ∧, ∨, and⇒ stand for
logical connectives negation, conjunction, disjunction, and
implication, respectively.

2.1 SAT Solving and Craig Interpolation
We assume the reader’s familiarity with Boolean satis-

fiability (SAT) solving [10, 5] and the circuit to conjunctive
normal form (CNF) formula conversion [13]. A more detailed
exposition can be found in [6].

For decoder synthesis, the following theorem is useful.

Theorem 1 (Craig Interpolation Theorem). [3]
Given two Boolean formulas ϕA and ϕB, if ϕA ∧ ϕB is un-
satisfiable, then there exists a Boolean formula ψA, called the
interpolant of ϕA with respect to ϕB, referring only to the
common variables of ϕA and ϕB such that ϕA ⇒ ψA and
ψA ⇒ ¬ϕB.

The interpolant ψA can be constructed in linear time from a
refutation proof of ϕA ∧ ϕB produced by a SAT solver [9].

2.2 State Transition Systems
A state transition system consists of a state transition re-

lation T (x⃗, s⃗, y⃗, s⃗ ′) and a set I(s⃗) of initial states, where s⃗,
s⃗ ′, x⃗, and y⃗ are referred to as the current-state variables,
next-state variables, input variables, and output variables,
respectively. (In the sequel, state sets are represented with
characteristic functions. We shall not distinguish between a
characteristic function and the set that it represents.) For a
deterministic system as we shall assume for an encoder, the
transition relation T (x⃗, s⃗, y⃗, s⃗ ′) can be alternatively treated
as the transition function T : [[x⃗]]× [[s⃗]] → [[y⃗]]× [[s⃗ ′]].

A time-frame expansion of the state transition system
T (x⃗, s⃗, y⃗, s⃗ ′) is the time unrolling of T into multiple time-
indexed copies, denoted T t = T (x⃗ t, s⃗ t, y⃗ t, s⃗ t+1), the tran-
sition relation at time t. In contrast, in the sequel T ∗ =

T (x⃗∗, s⃗∗, y⃗∗, s⃗∗
′
) denotes a renamed copy of T with variables

x⃗, s⃗, y⃗, and s⃗ ′ of T substituted with fresh new variables x⃗∗,

s⃗∗, y⃗∗, and s⃗∗
′
, respectively.

3. PROBLEM STATEMENT
Given a state transition system with transition relation

T (x⃗, s⃗, y⃗, s⃗ ′) and initial states I(s⃗), as an encoder it trans-
forms an input sequence to an output sequence. The decoder
synthesis problem asks whether a decoder exists that recov-
ers the original input sequence from the observed encoded
sequence, and furthermore how to synthesize it if it exists.

A realistic decoder should satisfy the following two proper-
ties. First, the decoder must have a finite amount of memory
elements for practical implementation. Second, the decoding
must be an online process as the input and output sequences
can be indefinitely extended without a pre-specified length
upper bound. That is, the decoder must causally recover a
prefix of the original input sequence on-the-fly based on a
so-far observed encoded sequence. Unlike prior work [11, 12,
7, 8], the encoder under our consideration can have normal
operation under non-dangling states, and the synthesized de-
coder can recover the original input sequence starting from
the very first input (though with some time delay).

4. DECODER EXISTENCE CHECKING

4.1 Bounded Decoder Existence Checking
Given an encoder starting in some known state at time

t = 0, the following proposition states the necessary and
sufficient condition that the original input to the encoder

at time t = 0 can be uniquely determined by the encoded
sequence of length p generated by the encoder.

Proposition 1. Given an encoder with transition relation
T (x⃗, s⃗, y⃗, s⃗ ′) and initial states I(s⃗), let formula φM(p) be

p−1∧
t=0

(
T t ∧ T ∗t ∧ (y⃗ t = y⃗∗

t
)
)
∧ (x⃗ 0 ̸= x⃗∗

0
) ∧ (s⃗ 0 = s⃗∗

0
) (1)

where predicate “=” asserts the bit-wise equivalence of its two
argument variable vectors and “ ̸=” asserts the corresponding
negation. Then the original input i⃗ 0 ∈ [[x⃗ 0]] can be uniquely
determined by observing the encoded outputs o⃗ 0, . . . , o⃗ p−1 ∈
[[y⃗ 0]]× · · · × [[y⃗ p−1]] of length p ≥ 1 if and only if the formula

φM(p) ∧ I(s⃗ 0) (2)

is unsatisfiable.

In the sequel, we shall call Formula (1), namely φM(p), the
miter formula.

To ensure that the original input x⃗ t at any time t ≥ 0
can be uniquely determined by observing an encoded output
sequence of length p starting from a known state at time t,
Proposition 1 has to be strengthened by relaxing the state
variable constraint of s⃗ 0 from the initial states to any states
reachable from the initial states.

Theorem 2. For a given encoder with (deterministic) tran-
sition relation T (x⃗, s⃗, y⃗, s⃗ ′) and initial states I(s⃗), let R(s⃗) be

the set of reachable states. Then the original input i⃗ t ∈ [[x⃗ t]]
at any time t ≥ 0 can be uniquely determined by observing
the encoded outputs o⃗ t, . . . , o⃗ t+p−1 ∈ [[y⃗ t]]×· · ·× [[y⃗ t+p−1]] of
length p ≥ 1 if and only if the formula

φM(p) ∧R(s⃗ 0) (3)

is unsatisfiable.

Proof. (=⇒) For the sake of contradiction, assume φM(p)∧
R(s⃗ 0) is satisfiable. Then there exists some reachable state
q⃗ ∈ [[s⃗]] such that φM(p) ∧ (s⃗ 0 = q⃗) is satisfiable. By Propo-

sition 1, we know the original input i⃗ 0 with current state
q⃗ cannot be uniquely determined by the encoded outputs
o⃗ 0, . . . , o⃗ p−1. (Note that t = 0 is a relative reference time
point.) Since q⃗ is a reachable state, it follows that not every
original input at any time can be uniquely determined from
an encoded output sequence of length p.

(⇐=) If Formula (3) is unsatisfiable, no state q⃗ ∈ [[s⃗]]
reachable from I satisfies φM(p) ∧ (s⃗ 0 = q⃗). For q⃗ being

an initial state, the unsatisfiability of φM(p) ∧ (s⃗ 0 = q⃗) im-

plies the original input i⃗ 0 ∈ [[x⃗ 0]] can be uniquely determined
from the encoded output sequence o⃗ 0, . . . , o⃗ p−1 by Proposi-
tion 1. Thereby the next state q⃗ ′ of q⃗ can be uniquely de-
termined from the deterministic transition relation T under
current state q⃗ and current input i⃗ 0. Again since q⃗ ′ is a
reachable state, φM(p)∧ (s⃗ 0 = q⃗ ′) must be unsatisfiable, and
the original input under current state q⃗ ′ can be uniquely de-
termined from the encoded output sequence o⃗ 1, . . . , o⃗ p and
so is its next state. Repeating this argument, we know that
the original input i⃗ t at any time t can be determined from
the encoded output sequence o⃗ t, . . . , o⃗ t+p−1.

Notice that the above decoder existence condition, For-
mula (3), is with respect to some pre-specified length bound
p. The decoder non-existence at p = n does not exclude the
decoder existence at a larger p = n+k for k ≥ 1 however. To
determine if there exists no decoder for arbitrary p ≥ 1, ad-
ditional constraints need to be imposed to make the checking
finitary and complete as we show below.

4.2 Unbounded Decoder Existence Checking
The following proposition provides a necessary and suf-

ficient condition for determining decoder existence without
referring to a pre-specified length bound.

Proposition 2. Given an encoder with transition relation
T (s⃗, x⃗, s⃗ ′, y⃗) and initial states I(s⃗), its decoder does not exist
if and only if the encoder starting from some reachable state
q⃗ ∈ [[s⃗ t]] at time t produces the same infinite encoded output
sequence o⃗ t, o⃗ t+1, ... ∈ [[y⃗ t]] × [[y⃗ t+1]] × · · · under two input

sequences i⃗1
t
, i⃗1

t+1
, . . . and i⃗2

t
, i⃗2

t+1
, . . . ∈ [[x⃗ t]]× [[x⃗ t+1]]×

· · · with i⃗1
t ̸= i⃗2

t
at time t.

The following theorem provides a computational means
to demonstrate the non-existence of decoders, that is, For-
mula (1) is satisfiable for any arbitrary p ≥ 1.

Theorem 3. The decoder of a transition system T (x⃗, s⃗, y⃗, s⃗ ′)
with initial states I(s⃗) does not exist if and only if the formula

φM(p) ∧R(s⃗ 0) ∧
p−1∨
i=0

p∨
j=i+1

(
(s⃗ i = s⃗ j) ∧ (s⃗∗

i
= s⃗∗

j
)
)
, (4)

is satisfiable for some p, where R characterizes the set of
states reachable from I under T .

Proof. (=⇒) If there exists no decoder, then there ex-

ist two distinct inputs i⃗ 0 ∈ [[x⃗ 0]] and i⃗∗
0 ∈ [[x⃗∗

0
]] at time

t = 0 that are consistent (in terms of input-output traces
confined by T) yielding the same infinite encoded output se-
quence. Let the corresponding two state traces be q⃗ 0, q⃗ 1, . . .

and q⃗∗
0
, q⃗∗

1
, . . ., respectively, with q⃗ 0 = q⃗∗

0
. Because of the

finite state space of the encoder, there must be a state pair

(q⃗ k, q⃗∗
k
) at time k in the two traces repeating itself at some

other time k + l, that is, (q⃗ k+l, q⃗∗
k+l

) = (q⃗ k, q⃗∗
k
). Hence

Formula (4) is satisfiable.
(⇐=) Assume Formula (4) is satisfiable under some p.

Then there must exist two infinite input sequences with two
distinct current inputs and the same current reachable state
that result in the same infinite encoded output sequence. By
Proposition 2, the decoder does not exist.

Proposition 3. If Formula (4) is satisfiable under p =
1, 2, . . . , |R|2, where |R| denotes the cardinality of the reach-
able state set R of the encoder, then Formula (4) remains
satisfiable for arbitrary p > |R|2.

Suppose the decoder existence condition of Formula (4)
is checked by incrementing p starting from 1 until decoder
existence or non-existence is concluded. Then the looping
sub-formula of Formula (4), i.e.,

p−1∨
i=0

p∨
j=i+1

(
(s⃗ i = s⃗ j) ∧ (s⃗∗

i
= s⃗∗

j
)
)
. (5)

can be simplified to

φL(p) =

p−1∨
i=0

(
(s⃗ i = s⃗ p) ∧ (s⃗∗

i
= s⃗∗

p
)
)
. (6)

This simplification is possible due to the fact that the looping
sub-constraints of Formula (5) corresponding to j < p have
been checked and shown unsatisfiable in conjuncting with
φM(p−1) ∧ R(s⃗ 0). Since φM(p) ⇒ φM(p−1), these looping
sub-constraints of j < p play no role contributing to the
satisfiability of Formula (4) and can be removed. That is,
Formula (4) can be simplified to

φM(p) ∧R(s⃗ 0) ∧ φL(p) (7)

I, T and R

solve ϕM(p)∧R∧ϕL(p)

solve ϕM(p)∧R

SAT?
yes no decoder exists

return counterexample

yes

p := p+1

p := 1

SAT?

no

no decoder exists

return p

Figure 2: Flow of decoder existence checking with a
priori reachability knowledge.

in incremental satisfiability solving.
The flow of decoder existence checking, with the reachable

state set R given, is shown in Figure 2. In the procedure, p
starts from 1 and is increased by 1 until either φM(p) ∧ R is
unsatisfiable (a decoder exists) or φM(p) ∧ R ∧ φL(p) is sat-
isfiable (no decoder exists). By Proposition 3, the procedure
is guaranteed to terminate at some p ≤ |R|2.

4.3 Decoder Existence Checking without A Pri-
ori Reachability Knowledge

The above discussion assumes the reachable state set R is
given. Exact state reachability analysis, however, is often too
expensive to be practically computed. Fortunately, recent
advances in SAT-based unbounded model checking (UMC),
in particular the interpolation method [9] and the property
directed reachability method [2, 4], allow efficient computa-
tion of over-approximated reachable state sets. Given a state
transition system T , initial state set I, and final state set F
as input, an UMC algorithm, denoted UMC(I, T, F), returns
either an input trace as an evidence in the case of F reachable
from I, or an over-approximated state set R† satisfying

∀s⃗. I(s⃗) ⇒ R†(s⃗), (8)

∀x⃗, s⃗, y⃗, s⃗′. R†(s⃗) ∧ T (x⃗, s⃗, y⃗, s⃗′) ⇒ R†(s⃗′), and (9)

∀s⃗. R†(s⃗) ⇒ ¬F (s⃗) (10)

in the case of F not reachable from I. It is immediate that
R ⇒ R† and thus R† over-approximates R.

An UMC algorithm can be exploited as a black-box tool
in decoder existence checking as follows. Instead of checking
directly whether Formula (7) is satisfiable, we check if any
state q⃗ ∈ [[s⃗]] satisfying φF (p)(s⃗) =

∃x⃗ 0, . . . , x⃗ p−1, y⃗ 0, . . . , y⃗ p−1, s⃗ 1, . . . , s⃗p.φM(p) ∧ φL(p) (11)

can be reached from the initial states I. (Notice that in For-
mula (11) the original free variables s⃗ 0 are renamed to s⃗ to
avoid confusion as the time index 0 of s⃗ 0 is merely a rela-
tive reference time point rather than the absolute initial time
point.) That is, Formula (11) is treated as the final state set
F . Notice that no quantifier elimination needs to be per-
formed on these existentially quantified variables as they are
simply free variables during SAT-based UMC computation.

Intuitively φF (p) characterizes the set of bad states (start-
ing from them, state pair recurrence happens within p steps

I and T

solve ϕM(p)∧R+

UMC(I, T, F)

F:= ϕM(p)∧ϕL(p)

Reach?
yes no decoder exists

return counterexample

no, over-approximated state set R+p := p+1

p := 1

SAT?

yes

no decoder exists

return p and R+

Figure 3: Flow of decoder existence checking without
a priori reachability knowledge.

in the state trace, i.e., φL(p) is satisfied), whose inputs can-
not be uniquely determined by observing output sequences
of finite lengths. So if any state of φF (p) is reachable from
I, then no decoder exists and an UMC algorithm returns an
input trace that accounts for the non-existence. Otherwise,
an over-approximated reachable state set R† is returned by
an UMC algorithm. It allows the replacement of Formula (3)
with

φM(p) ∧R†(s⃗ 0). (12)

If Formula (12) is unsatisfiable, then decoder exists and can
be further synthesized (as to be detailed in Section 5). Oth-
erwise the length parameter p is incremented for a new iter-
ation of computation. The overall flow of the computation is
summarized in Figure 3.

The correctness of the above computation flow is based on
the following theorems.

Theorem 4. For a given encoder with transition relation
T (x⃗, s⃗, y⃗, s⃗ ′) and initial states I, its decoder does not exist if
and only if there is some state q⃗ ∈ [[s⃗ 0]] that satisfies

φM(p) ∧ φL(p) (13)

for some p ≥ 1 and is reachable from I under transition
relation T .

Proof. (=⇒) If there exists no decoder, formula φM(p) ∧
(s⃗ 0 = q⃗) is satisfiable for any reachable state q⃗ and any p.
Moreover, because the cardinality of reachable state set is
finite, a state pair (q⃗1, q⃗2) ∈ [[s⃗]] × [[s⃗∗]] in the state trace
satisfying φM(p) must recur at some p. Hence φL(p) will
eventually be satisfiable, and so will Formula (13).

(⇐=) If Formula (13) is satisfiable, then there exists a
reachable state whose input cannot be uniquely determined
by observing output sequences of length up to p. Since a
state pair recurs within the state trace as asserted by φL(p),
appending the time-frames corresponding to the recurrent
state trace of length n to the miter formula φM(p) makes
φM(p+n)∧φL(p+n) remain satisfiable. By continuing append-
ing time-frames, formula φM(p+kn) ∧φL(p+kn) remains satis-
fiable for arbitrary k ≥ 0. Therefore no decoder exists.

Theorem 5. For a given encoder with transition relation
T (x⃗, s⃗, y⃗, s⃗ ′) and initial states I, let R† be an over-approximated

set of reachable states. Then the original input i⃗ t ∈ [[x⃗ t]] at
any time t ≥ 0 can be uniquely determined by observing the
encoded outputs o⃗ t, . . . , o⃗ t+p−1 ∈ [[y⃗ t]] × · · · × [[y⃗ t+p−1]] of
length p ≥ 1 if Formula (12) is unsatisfiable.

Proof. SinceR ⇒ R†, the unsatisfiability of Formula (12)
implies that of Formula (3). By Theorem 2, the statement
holds. However the converse is not true since Formula (12)
can be satisfiable under the unreachable states R†∧¬R while
i⃗ t can still be uniquely determined.

Due to the reachability over-approximation, it is possible
that the computation flow of Figure 3 terminates at some
p = n that is much larger than that of Figure 2. Neverthe-
less it is possible to overcome this deficiency with a modified
computation flow of Figure 3 by replacing the SAT solving
φM(p)∧R† with the computation UMC(I, T, φM(p)). If the fi-
nal states F = φM(p) are unreachable from I, then a decoder
exists. Otherwise, p is incremented for the next computation
iteration. (Surely the price to pay is to perform the more
expensive UMC computation rather than SAT solving.)

Theorem 6. The decoder existence checking procedure of
Figure 3 with the SAT solving φM(p) ∧ R† replaced by the
computation UMC(I, T, φM(p)) (such that a decoder exists if
final states F = φM(p) are reachable from I, and p is incre-
mented for next iteration otherwise) terminates at p = n for
some n ≥ 1 same as the procedure of Figure 2.

Proof. Assume the procedure of Figure 2 terminates at
iteration p = n under decoder existence. Then φM(n)∧R(s⃗ 0)
is unsatisfiable, for R the exact reachable state set. That is,
any state q⃗ ∈ [[s⃗]] cannot satisfy both R(q⃗) and φM(n)∧ (s⃗ 0 =
q⃗). Hence any state in the final states F = φM(n) is not in
the reachable state set R. Because the final states F = φM(n)

are unreachable from I, UMC(I, T, φM(p)) should return un-
reachability when p = n and thus the modified procedure
terminates at the same iteration n.

On the other hand, assume the procedure of Figure 2
terminates at iteration p = n under decoder non-existence.
Then φM(n) ∧ R ∧ φL(n) is satisfiable. Since UMC is com-
plete in proving reachability, UMC(I, T, φM(n)∧φL(n)) must
establish the reachability of φM(n) ∧ φL(n) from I, and thus
the modified procedure terminates at iteration n.

5. DECODER SYNTHESIS
By the unsatisfiability of φM(p) ∧ R†(s⃗ 0) (which includes

φM(p) ∧ R(s⃗ 0) as a special case), a decoder can be synthe-
sized from the corresponding resolution refutation by Craig
interpolation. The decoding function fi corresponding to ev-
ery output bit x0i ∈ x⃗ 0 of the decoder is synthesized one at
a time. The actual length pi (1 ≤ pi ≤ p) of the observation
window for fi is usually smaller than p. Let φMi(pi) be

p−1∧
t=0

(
T t ∧ T ∗t

)
∧

pi−1∧
t=0

(
y⃗ t = y⃗∗

t
)
∧ (x0i ̸= x∗i

0
) ∧ (s⃗ 0 = s⃗∗

0
).

(14)

Then φMi(pi) ∧R
†(s⃗ 0) must remain unsatisfiable and fi can

be obtained as follows, similar to the synthesis approach pro-
posed in [6].

Theorem 7. Given a transition system T (x⃗, s⃗, y⃗, s⃗ ′) and
its (over-approximated) reachable state set R†, if φMi(pi) ∧
R†(s⃗ 0) is unsatisfiable, then the interpolant ψiA of ϕiA with

ψA

I

y0 x0

yp-1

�

T
x

s s'

y

Figure 4: Block diagram of synthesized decoder.

respect to ϕiB is a valid decoding function for x0i ∈ x⃗ 0, where

ϕiA :

p−1∧
t=0

T t ∧ x0i , and (15)

ϕiB :

p−1∧
t=0

T ∗t ∧
pi−1∧
t=0

(
y⃗ t = y⃗∗

t
)
∧ ¬x∗i

0 ∧ (s⃗ 0 = s⃗∗
0
) ∧R†(s⃗ 0).

(16)

Proof. The common variables of ϕiA and ϕiB are s⃗ 0 and
y⃗ 0, . . . , y⃗pi−1. By Theorem 1, the interpolant ψiA refers only
to these common variables. Furthermore its onset (respec-
tively offset) contains the assignments to the common vari-
ables that satisfy ϕiA (respectively ϕiB). Because x0i is as-
serted to be true in ϕiA and x∗i

0 is asserted to be false in ϕiB ,
the onset (respectively offset) of the interpolant contains the
assignments to the common variables that determine x0i to
true (x∗i

0 to false). So the interpolant validly implements the
decoding function of variable x0i .

Let ψ⃗A be the collection of obtained decoding functions.

Then the decoder can be constructed by composing ψ⃗A and
the encoder transition function T as the circuit shown in
Figure 4. Note that the decoder should start its operation
after its first p inputs o⃗ 0, . . . , o⃗ p−1 ∈ [[y⃗ 0]]× · · · × [[y⃗ p−1]] are
ready. So it produces its first output at the pth clock cycle.

Theorem 8. For a given encoder with transition relation
T (x⃗, s⃗, y⃗, s⃗ ′) and initial states I, its decoder has transition
relation Td(x⃗d, s⃗d, y⃗d, s⃗d

′) equal to(
y⃗d = ψ⃗A(x⃗d, s⃗d)

)
∧
(
∃y⃗.T (y⃗d, s⃗d, y⃗, s⃗d ′)

)
, (17)

with x⃗d = (y⃗ 0, . . . , y⃗ p−1), and has initial states Id(s⃗d) equal
to I(s⃗d).

Proof. By Theorem 7, ψ⃗A(x⃗d, s⃗d) for x⃗d = (y⃗ 0, . . . , y⃗ p−1)
and s⃗d = s⃗ 0 form the decoding functions of variables x⃗0 = y⃗d.
The output function [[x⃗d]] × [[s⃗d]] → [[y⃗d]] of the decoder can

be represented as relation y⃗d = ψ⃗A(x⃗d, s⃗d).

In addition, because the decoding functions ψ⃗A need the
output and state information of the encoder to reconstruct
the original input sequence while the decoder only receives
the encoded output sequence from the encoder, the decoder
needs to compute the state information by itself. Embedding
the transition relation of the encoder inside allows the de-
coder to keep track of the state transition in synchronization
with the encoder. Notice that the output of the embedded
encoder transition relation is of no use in the decoder and can
be removed through logic minimization. The overall transi-
tion relation of the decoder is generated as the conjunction

of relations y⃗d = ψ⃗A(x⃗d, s⃗d) and ∃y⃗.T (y⃗d, s⃗d, y⃗, s⃗d ′).

Notice that the above discussion imposes no constraint on
the cardinality of the initial state set, i.e., |I| ≥ 1. Although

Table 1: Benchmark Statistics.
circuit #gate/#level #reg #input

PCIE 265/24 22 14
XGXS 177/15 15 9

Scrambler 535/9 58 65
T2Ethernet 1094/18 48 8

CC13 63/8 13 1
CC14 66/8 14 1
CC3 12/4 3 1
CC4 24/4 4 1
AD 5/2 1 1

Huff-alphabet 297/18 9 5
Huff-jpeg 1528/27 12 8
Huff-ran8 2553/32 13 8
Huff-ran9 5155/32 14 9
Huff-skew5 538/21 10 5
Huff-skew6 1092/23 12 6
LFSR-12-6-4 12/6 12 1
LFSR-26-6-2 12/6 26 1
LFSR-32-7-6 12/6 32 1
SBC-Add(4,4) 171/23 16 4

C2670 717/21 0 233
s38417 9219/31 1636 28
s444 155/13 21 3
s5378 1343/17 164 35
s6669 2263/80 239 83

there are multiple initialization choices when |I| > 1, the
start state of the encoder and that of the decoder should
match. Otherwise the decoder may not correctly recover the
expected original input sequence of the encoder.

6. EXPERIMENTAL RESULTS
The proposed method, namedDecosy-i, was programmed

in the C language and implemented within the ABC system
[1], where command pdr [4] was used for the UMC reacha-
bility computation. The experiments were conducted on a
Linux machine with Xeon 2.53GHz CPU and 48GB RAM.

The considered benchmark circuits are listed in Table 1,
where the numbers of gates, logic levels, registers, and inputs
are shown. Circuits XGXS, Scrambler, PCIE, and T2Ethernet

are from [11]; the CC series circuits are convolutional code
encoders from [7, 8]; circuit AD is the encoder of Figure 1;
the Huff series circuits are Huffman code encoders; the LFSR
series circuits correspond to linear feedback shift registers;
the SBC circuit is a sliding block code encoder; others are from
the MCNC and ISCAS benchmark suites. In the following
experiments, the obtained decoder circuits were optimized in
ABC under the script “strash; scleanup; dsd; strash; dc2;
dc2; dch; map”, where technology mapping was performed
using the mcnc.genlib library.

Tables 2, 3, and 4 show the statistics of Decosy [7, 8] as-
suming uninitialized encoder operation and our newDecosy-
i assuming initialized encoder operation. It should be empha-
sized that the two approaches cannot be directly compared
as their decoding problems are fundamentally different. The
circuits shown in Table 2 have decoders under both initializa-
tion assumptions; those in Table 3 have decoders only under
the initialized assumption; those in Table 4 have no decoders
at all.

Table 2 lists the window size of observing output sequences
in Columns 2 and 6, the numbers of decoder inputs/registers
in Columns 3 and 7, decoder area/delay in Columns 4 and 8,
and CPU time (including decoder generation time plus script
optimization time in parentheses) in Columns 5 and 9. As
shown, the runtimes are comparable except for circuits CC-13
and CC-14, where Decosy timed out at 3600 seconds (with
a window size of 13 upon timeout). On the other hand, the
decoders generated by our new Decosy-i are usually slightly
larger than those by Decosy since we require the transition

Table 2: Comparison on Decoders Synthesized under Different Encoder Assumptions.

circuit
Decosy (for uninitialized encoder) Decosy-i (for initialized encoder)

window size #in/#reg area/delay time (s) window size #in/#reg area/delay time (s)

PCIE 4 11/0 147/5.2 0.13 (+0.10) 3 10/0 168/5.6 0.31 (+0.10)
XGXS 3 11/0 294/7.7 0.04 (+0.05) 2 10/1 468/10.2 0.18 (+0.09)

Scrambler 3 65/64 640/3.8 0.54 (+0.07) 1 64/58 727/3.8 1.26 (+0.09)
T2Ethernet 6 11/0 388/9.9 4.96 (+0.08) 5 10/0 423/10.2 0.94 (+0.04)

CC3 3 4/0 10/3.8 0.00 (+0.09) 2 1/2 12/1.9 0.01 (+0.00)
CC4 3 6/0 15/6.9 0.00 (+0.00) 2 1/3 18/3.8 0.01 (+0.00)
CC13 13 − − > 3600 2 1/12 52/5.7 0.09 (+0.02)
CC14 13 − − > 3600 2 1/13 86/5.5 0.02 (+0.02)

Table 3: Comparison on Decoder (Non-)Existence Checking under Different Encoder Assumptions.

circuit
Decosy (for uninitialized encoder) Decosy-i (for initialized encoder)
window size exist? time (s) window size exist? #in/#reg area/delay time (s)

AD 1 no 0.00 1 yes 1/1 10/1.9 0.01 (+0.00)
Huff-alphabet 5 no 0.02 10 yes 10/9 261/9.6 0.52 (+0.04)

Huff-jpeg 5 no 0.44 16 yes 16/12 1058/16.5 19.16 (+0.20)
Huff-ran8 7 no 1.57 19 yes 19/13 1995/14.3 72.07 (+0.28)
Huff-ran9 7 no 2.37 19 yes 19/14 4110/16.5 467.96 (+0.76)
Huff-skew5 3 no 0.00 31 yes 31/10 395/25.9 7.17 (+0.05)
Huff-skew6 3 no 0.02 63 yes 63/12 826/51.5 289.21 (+0.12)
LFSR-12-6-4 31 no 11.63 1 yes 1/12 36/4.0 0.01 (+0.05)
LFSR-26-6-2 55 no > 3600 1 yes 1/26 57/4.0 0.01 (+0.02)
LFSR-32-7-6 15 no 0.14 1 yes 1/32 66/3.8 0.01 (+0.01)

SBC-Add(4,4) 5 no 0.29 1 yes 7/16 48584§/22.4§ 50.65 (+12.25§)

Table 4: Comparison on Decoder Non-Existence
Checking under Different Encoder Assumptions.

circuit
Decosy Decosy-i

(for uninitialized encoder) (for initialized encoder)
window size time (s) window size time (s)

C2670 1 0.00 1 0.03
s38417 3 0.15 2 346.88
s444 1 0.00 1 0.01
s5378 1 0.01 1 1.00
s6669 1 0.02 1 91.59

function of the encoder to be embedded as part of the decoder
although our decoders require smaller observation windows.
Note that, unlike our obtained decoder, the decoder gener-
ated by Decosy assumes steady state operation and may not
recover the entire original input sequence.

Table 3 reveals that, under different initialization assump-
tions, decoder existence checking may exhibit very different
characteristics. For circuits LFSR-12 and LFSR-26, for exam-
ple, Decosy required large window sizes to conclude decoder
non-existence whereas Decosy-i efficiently synthesized their
decoders with window sizes 1. (Decosy timed out on LFSR-

26 with a window size of 55.) Another special case is SBC-

Add(4,4), where logic optimization failed in dsd of our ABC
synthesis script. The reported decoder area/delay and script
runtime exclude dsd transformation and are marked with “§”
in superscript.

Table 4 suggests that the runtime of Decosy-i is propor-
tional to circuit and window sizes (particularly dominated
by pdr computation) while Decosy concludes decoder non-
existence within 0.15 seconds for all the circuits.

7. CONCLUSIONS
A sound and complete approach has been proposed to

synthesizing decoders for initialized encoders. An obtained
decoder can depend on an unbounded history of encoder exe-
cution (which should be distinguished from a bounded obser-
vation window), and recover the original input sequence with-
out any prefix loss. This approach exceeds the capabilities
of prior methods, and, as justified by experimental results,
achieves computational efficiency by SAT-based approxima-
tive reachability analysis and interpolation-based synthesis.

Acknowledgments
This work was supported in part by the National Science
Council under grants NSC 99-2221-E-002-214-MY3, 99-2923-
E-002-005-MY3, and 101-2923-E-002-015-MY2.

8. REFERENCES
[1] Berkeley Logic Synthesis and Verification Group. ABC: A system

for sequential synthesis and verification.
http://www.eecs.berkeley.edu/∼alanmi/abc/

[2] A. R. Bradley. SAT-based model checking without unrolling. In
Proc. Int’l Conf. on Verification, Model Checking, and Abstract
Interpretation (VMCAI), pp. 70-87, 2011.

[3] W. Craig. Three uses of the Herbrand-Gentzen theorem in
relating model theory and proof theory. J. Symbolic Logic,
22(3):269-285, 1957.

[4] N. Eén, A. Mishchenko, and R. Brayton. Efficient implementation
of property-directed reachability. In Proc. Int’l Conf. on Formal
Methods in Computer Aided Design (FMCAD), pp. 125-134,
2011.

[5] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc.
Int’l Conf. on Theory and Applications of Satisfiability Testing
(SAT), pp. 502-518, 2003.

[6] J.-H. R. Jiang, C.-C. Lee, A. Mishchenko, and C.-Y. Huang. To
SAT or not to SAT: Scalable exploration of functional
dependency. IEEE Trans. on Computers, 59(4):457-467, April
2010.

[7] H.-Y. Liu, Y.-C. Chou, C.-H. Lin, and J.-H. R. Jiang. Towards
completely automatic decoder synthesis. In Proc. Int’l Conf. on
Computer-Aided Design (ICCAD), pp. 389-395, 2011.

[8] H.-Y. Liu, Y.-C. Chou, C.-H. Lin, and J.-H. R. Jiang. Automatic
decoder synthesis: methods and case studies. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
31(9): 1319-1331, September 2012.

[9] K. McMillan. Interpolation and SAT-based model checking. In
Proc. Int’l Conf. on Computer Aided Verification (CAV), pp.
1-13, 2003.

[10] M. Moskewicz, C. Madigan, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proc. Design Automation
Conference (DAC), pp. 530-535, 2001.

[11] S. Shen, Y. Qin, K. Wang, L. Xiao, J. Zhang, and S. Li.
Synthesizing complementary circuits automatically. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems,
29(8):1191-1202, August 2010.

[12] S. Shen, Y. Qin, J. Zhang, and S. Li. A halting algorithm to
determine the existence of the decoder. In IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
30(10): 1556-1563, October 2011.

[13] G. Tseitin. On the complexity of derivation in propositional
calculus. Studies in Constructive Mathematics and
Mathematical Logic, pp. 466-483, 1970.

