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ABSTRACT
The increasing cost paid in clocking integrated circuits and
combating timing variations forces designers to rethink asyn-
chronous approaches to system realization. Among various
techniques, quasi-delay-insensitive (QDI) design is promising
due to its very relaxed timing assumption. Its expensive logic
overhead, however, often nullifies its promise of performance
and power improvements, and remains a major obstacle against
its adoption. To overcome this obstacle, this paper proposes an
efficient static performance analysis procedure and a synthesis
flow for precharged half buffer (PCHB) and weak-conditioned
half buffer (WCHB) circuit optimization. Experimental re-
sults demonstrate efficient performance analysis and effective
area reduction under pipeline cycle time constraints.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—automatic synthesis

General Terms
Algorithms, Logic Synthesis, Verification

Keywords
Asynchronous Pipeline, Half Buffer, Quasi-Delay Insensitivity,
Static Performance Analysis

1. INTRODUCTION
Asynchronous approaches to system construction gradually

gain their relative practicality due to the increasing cost in syn-
chronizing modern nanometer integrated circuits under various
sources of timing uncertainty. Asynchronous circuits are well
known for their potential advantages in terms of elimination
of clock tree and its power consumption, flexibility in pipelin-
ing, reduction on electromagnetic interference (EMI) and IR
drop, reusability, robustness against timing variability, and
other benefits. Despite these benefits, asynchronous designs
remain not popular largely because of its lack of design automa-
tion tools and substantial area overhead, among other issues
[1, 17].

Depending on their delay models, asynchronous circuits may
vary in their underlying timing assumptions. Well-known delay
models, in the descending order of timing robustness, include
delay insensitive (DI), quasi-delay insensitive (QDI), speed in-
dependent (SI), and burst mode circuits [6]. Among them, the
QDI model is the most robust and yet practical one. Under
the QDI model, asynchronous design can be made close to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC’14, June 01 - 05, 2014, San Francisco, CA, USA.
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

standard synchronous design flow [6, 16]. Nevertheless, large
area overheads arise due to the conservative timing assumption
of QDI circuits.

There are different QDI design styles, e.g., delay insensi-
tive minterm synthesis (DIMS) [13], pre-charged half buffers
(PCHB) [7, 11], null-convention logic [4], etc. Among them,
PCHB can be practical. In fact, there have been commer-
cial asynchronous designs (e.g., Intel ethernet switch, Achronix
FPGA, etc.) based on PCHB implementation. This paper fo-
cuses on the synthesis of PCHB and, its close relative, weak-
conditioned half buffer (WCHB) circuits. In particular we
consider performance constrained area minimization for hybrid
PCHB and WCHB circuits.

The analysis and synthesis of asynchronous circuits can be
challenging in distinct respects, compared to synchronous de-
signs. Performance analysis of asynchronous pipelines may
involve sophisticated computation on timed marked graphs,
e.g., finding shortest paths [15], solving linear programming
[8], plotting throughput versus token number graphs [7], ana-
lyzing time separation of events [12], simulating pipelines, etc.
Analyzing complex pipelines involving different protocols may
require heuristic methods [18]. Moreover, not all prior meth-
ods can provide criticality information for circuit optimization.
On the other hand, performance optimization of asynchronous
pipelines can be expensive, too. For example, slack matching
of full buffer pipelines may require solving mixed integer linear
programming (MILP) [1]. The computation may not well scale
to large designs. On the other hand, slack matching for half
buffer pipelines awaits accurate solutions [3].

In contrast to prior work, this paper focuses on acyclic1

PCHB and WCHB pipelines. We show that, for data indepen-
dent token flow, performance analysis (specifically cycle time
computation) can be done by linear time traversal over the
underlying delay graph. The computation is efficient, simi-
lar to static timing analysis (STA) in synchronous design. It
also provides criticality information essential for circuit per-
formance improvement, and thus can be powerful supporting
incremental synthesis, which is crucial to enable large scale
optimization.

For circuit optimization, on the other hand, we propose a
synthesis flow transforming a gate-level logic netlist to a hybrid
PCHB-WCHB circuit. Slack matching is applied to meet tar-
get cycle time (throughput) constraints, and WCHB replace-
ment is applied for area recovery. Essentially the performance
advantage of PCHB and the area advantage of WCHB can be
leveraged to achieve improved pipeline design. In fact, for a
design with complex pipeline structures, non-critical pipeline
modules may exist to some extent and area recovery through
WCHB replacement can be substantial. Experimental results
show efficient timing analysis and effective area-performance
optimization.

2. PRELIMINARIES

1Although only acyclic pipelines are considered in this paper,
they may arise naturally in the design automation flow of con-
verting synchronous to asynchronous design.



2.1 Quasi-Delay Insensitive Model
The delay insensitive (DI) model makes no timing assump-

tion on the gate and wire delays in a circuit, and is the most
robust delay model in asynchronous design. It is, however,
impractical since only very limited functions can be realized
under this model. On the other hand, the quasi-delay insensi-
tive (QDI) model is a robust and yet practical delay model in
asynchronous design. It imposes no timing assumption, simi-
lar to the DI model, except for some designated wire forks (or
fanouts), called isochronic forks, where the delays to the ends
of a fork are assumed to be the same. This assumption can be
easily satisfied as the isochronic forks are often localized within
standard cell modules. Compared with circuits under other de-
lay models, such as speed-independent (SI) circuits, where wires
are assumed of ideal zero delay, and self-timed circuits, where
certain timing conditions are assumed for correct operation,
QDI circuits are easier to design without sophisticated tim-
ing verification and are robust against timing variability. This
paper focuses on QDI circuit synthesis.

2.2 4-Phase Dual-Rail Protocol
QDI asynchronous pipelines are commonly implemented with

a 4-phase dual-rail protocol. In a dual-rail encoding system, a
1-bit data d is encoded by a pair (d0, d1) of wires, whose valua-
tion (0, 0) represents a null (i.e. empty value) state, and (1, 0)
and (0, 1) represent valid 0 and valid 1 states, respectively.
The null and valid valuations alternate to form a 4-phase
protocol in a communication channel between a sender and
a receiver. The protocol proceeds with the following 4-phase
cycle: The sender sends a valid (0 or 1) signal, the receiver ac-
knowledges receipt of the signal, the sender clears the channel
to null, and finally the receiver resets the acknowledgement.

2.3 Half Buffers
In a pipeline design, a module is called a full buffer if its

input and output channels can hold different data tokens at
the same time. On the other hand, if the input and output
channels of the module can hold only one data token, it is
called a half buffer. Although a full-buffer pipeline design can
be more concurrent than its half-buffer counterpart, they are
more complicated to realize.

This paper considers two common types of half buffer tem-
plates, namely, the weak-conditioned half buffer (WCHB) and
pre-charged half buffer (PCHB).

2.3.1 Weak-Conditioned Half Buffer
For a WCHB, its output being in a null (respectively valid)

state implies all its inputs being in null (respectively valid)
states. As a result, it suffices to detect only the output state
to know the input states. To satisfy the criterion that output
validity implies input validity, the evaluation blocks can be re-
alized in a minterm expansion form. On the other hand, the
criterion that output nullity implies input nullity is satisfied by
stacking the PMOS transistors controlled by the input wires
on the pull-up network. These criteria make input completion
detection circuitry unnecessary and mitigate area overhead in
WCHB.

In the WCHB operation, a sender buffer starts to precharge
to enter the null state only if all its inputs are in null states
and its receiver buffer has finished evaluation (i.e. in a valid
state). On the other hand, a sender buffer starts to evaluate
to enter the valid state only if its receiver buffer has finished
precharging (i.e. in a null state).

The operation of a three-stage WCHB pipeline can be an-
alyzed with the signal transition graph (STG). There are two
critical cycles that determine the cycle time τwchb (the time be-
tween the generation of two successive tokens) of the pipeline
[3]. That is,

τwchb =

{
3teval + tprech + 2tCD , if teval ≥ tprech

2teval + 2tprech + 2tCD , if teval < tprech

where teval is the evaluation time, tprech is the precharge time
through the PMOS pull-up network, and tCD is the output
completion detection time.

2.3.2 Pre-Charged Half Buffer
Unlike WCHB, a PCHB module requires completion de-

tection at its inputs (besides the output) to tell whether an
input is ready in its null or valid state. The logic circuit
implemented in the evaluation blocks can be arbitrary without
being in the minterm expansion form. Hence the output may
finish evaluation (i.e. be in a valid state) even before all in-
puts are in valid states. On the other hand, a PCHB module
may start to precharge once its inputs and output are in valid
states and its ack in signal is low (indicating the inputs and
output of its next stage are in valid states as well). In contrast,
a WCHB module may start to precharge only after its inputs
are all precharged. Thus PCHB may start its precharging ear-
lier than WCHB.

The operation of a three-stage PCHB pipeline can be ana-
lyzed with the STG. There is one critical cycle that determines
the cycle time τpchb of the pipeline [3]. That is,

τpchb = 3teval + tprech + 2tCD + 2tC

where tprech is the precharge time, tCD the completion detection
time, and tC is the C-element delay time. Notice that the
precharge time of PCHB and that of WCHB may differ to
some extent. For modules with many inputs, WCHB may take
longer time to precharge than PCHB since the WCHB module
has a long cascade of PMOS transistors.

It is worth to note that the handshaking mechanisms of
PCHB and WCHB are compatible. The compatibility can be
easily seen from the STG of hybrid PCHB-WCHB pipeline.
It is this compatibility that we exploit in QDI circuit synthe-
sis. Essentially we take advantage of the high performance of
PCHB and the area saving of WCHB for optimization.

3. PERFORMANCE ANALYSIS OF
ASYNCHRONOUS PIPELINES

We focus on data-independent performance analysis of acyclic
PCHB-WCHB pipeline circuits. A linear-time static analysis
procedure is proposed to compute the minimum cycle time for
a given pipeline circuit. Moreover, it provides useful critical-
ity information for cycle time reduction and thus throughput
enhancement. Essentially the performance analysis algorithm
will serve as a core engine for slack matching and WCHB area
recovery in our synthesis flow.

3.1 Delay Model
Given an acyclic PCHB-WCHB pipeline circuit, we model

it as a delay graph as follows.

Definition 1. A delay graph is a directed acyclic graph
G(V,E), where V and E ⊆ V ×V are the vertex and edge sets,
respectively. The set V of nodes is partitioned into input nodes
Vi, output nodes Vo, and other internal nodes Vint. Every node
v ∈ V (representing some input, output, or PCHB/WCHB
module) is associated with three delay attributes: the evaluation
delay (denoted v.teval ), the precharge delay (denoted v.tprech),
and the combined delay of completion detector tCD and, for
the PCHB case, C-element tC (denoted v.tc). That is, v.tc =
tCD + tC for PCHB and v.tc = tCD for WCHB.

For v ∈ Vi, v.teval = v.tprech = v.tc = 0; for v ∈ Vo, v.tprech =
v.tc = 0 and v.teval ≥ 0. That is, we assume the environment
can produce tokens to the pipeline inputs whenever available
and consume tokens from the pipeline outputs with a certain
consumption delay.

Given a delay graph G(V,E), for each node v ∈ V there are
four essential values to compute.

• v.eval s: evaluation start time (all foot NMOS transistors
are turned on and all inputs are in valid states),



• v.eval f : evaluation finish time (the output is in a valid
state),
• v.prech s: precharge start time (all precharge PMOS tran-

sistors are turned on), and
• v.prech f : precharge finish time (the output is in a null

state).

3.2 PCHB Cycle Time
Given a delay graph G(V,E) constructed from a PCHB

pipeline circuit, for v ∈ Vint the aforementioned four values
can be computed as follows.

v.eval s(i) = max{ max
u∈FO(v)

{u.prech f (i−1) + u.tc},

v.prech f (i−1) + v.tc, max
u∈FI (v)

{u.eval f (i)}}

where FI (v) and FO(v) denote the fanins and fanouts, respec-
tively, of node v, and the superscript (i) signifies the the ith

token being processed.

v.eval f (i) = v.eval s(i) + v.teval

v.prech s(i) = max{ max
u∈FI (v)

{u.eval f (i)}+ v.tc,

max
u∈FO(v)

{u.eval f (i) + u.tc},

v.eval f (i) + v.tc}
v.prech f (i) = v.prech s(i) + v.tprech

Initially, v.prech f (0) + v.tc = 0 for every v ∈ V .

Theorem 1. Given a delay graph G(V,E), for v ∈ V let

τv = max{ max
u∈FO(v)

{u.prech f (1) + u.tc},

v.prech f (1) + v.tc} − max
u∈FI (v)

{u.eval f (1)}.

Then any cycle time greater than τ = maxv τv is a valid cycle
time of G.

Theorem 2. Given a delay graph G(V,E), the computed cy-
cle time τ of Theorem 1 is the minimum, assuming that all
input tokens are simultaneously inserted into the graph and no
tokens are blocked in any part of the graph.

3.3 WCHB Cycle Time
Given a delay graph G(V,E) constructed from a WCHB

pipeline circuit, for v ∈ Vint we have the following four equa-
tions.

v.eval s(i) = max{ max
u∈FO(v)

{u.prech f (i−1) + u.tc},

max
u∈FI (v)

{u.eval f (i)}}

v.eval f (i) = v.eval s(i) + v.teval

v.prech s(i) = max{ max
u∈FI (v)

{u.prech f (i)},

max
u∈FO(v)

{u.eval f (i) + u.tc}}

v.prech f (i) = v.prech s(i) + v.tprech

Initially, v.prech f (0) + v.tc = 0 for every v ∈ V .

Theorem 3. Given a delay graph G(V,E), for v ∈ V let

τv = max{ max
u∈FO(v)

{u.prech f (1) + u.tc},

v.prech f (1) + v.tc} − max
u∈FI (v)

{u.eval f (1)}.

Then any cycle time greater than τ = maxv τv is a valid cycle
time of G.

Theorem 4. Given a delay graph G(V,E), the computed cy-
cle time τ of Theorem 3 is the minimum, assuming that all
input tokens are simultaneously inserted into the graph and no
tokens are blocked in any part of the graph.

PCHB-WCHB CycleTimeComputation
input: an acyclic PCHB-WCHB pipeline circuit C
output: cycle time τ
begin
01 construct delay graph G(V,E) from C;
02 foreach v ∈ V in a topological order

03 compute v.eval s(1) and v.eval f(1);
04 foreach v ∈ V in a topological order

05 compute v.prech s(1) and v.prech f(1);
06 τ := 0;
07 foreach v ∈ V
08 compute τv;
09 if τ < τv
10 τ := τv;
11 return τ ;
end

Figure 1: Algorithm: Cycle Time Computation

3.4 Cycle Time Computation
Given a PCHB-WCHB pipeline circuit, the procedure of

Figure 1 computes the tight lower bound of its cycle time. Since
it traverses the delay graph three times for delay calculation,
the overall complexity is linear O(n) in the graph size n.

Figure 2: Pipeline under performance analysis

Example 1. Consider the delay graph of Figure 2, where
each node v contains three attributes (v.teval , v.tprech , v.tc). As-
sume PCHB is the underlying pipeline structure. Then v.eval f ,
v.prech f , and τv can be computed as shown above the node.
Moreover, the overall minimum cycle time is 27.

Notice that the procedure of Figure 1 computes for every
node v the cycle time τv, which provides useful criticality in-
formation for pipeline optimization as to be discussed in Sec-
tions 4.5 and 4.6.

It is worth mentioning that, although the computed cycle
time τ is a tight lower bound, not the entire circuit has to be
limited by τ . In fact, a sub-circuit of a pipeline design may
operate at a lower cycle time, provided that the sub-circuit
is not in the transitive fanin and fanout cones of the most
critical nodes, whose τv = τ . This observation suggests a re-
fined performance analysis procedure to identify cycle times for
sub-circuits with different levels of criticality. The procedure
may proceed by first identifying the transitive fanin and fanout
cones of nodes with τv = τ . So the performance of the identi-
fied sub-circuit is limited by τ . It then identifies the largest cy-
cle time, say τ ′, among the nodes in the remaining sub-circuit.
The transitive fanin and fanout cones of the remaining nodes
with τv = τ ′ are then identified, and the performance of the
identified sub-circuit is limited by τ ′. This process may iterate
until no sub-circuit left.

4. QDI CIRCUIT SYNTHESIS
Our synthesis procedure aims at transforming a Boolean

expression into a QDI implementation in a hybrid PCHB and
WCHB design style optimized with respect to area and perfor-
mance constraints.

4.1 Synthesis Flow Overview
The proposed synthesis flow is shown in Figure 3. The pro-

cedure takes as input a (single-rail encoded) gate-level logic



QDI CircuitSynthesis
input: a logic netlist C, target cycle time τ , and

a PCHB-WCHB library L
output: a hybrid PCHB-WCHB implementation of C
begin
01 perform technology independent logic synthesis on C;
02 perform cut-based technology mapping on C w.r.t. L;
03 if τ is not achieved in C
04 perform slack matching on C w.r.t. τ ;
05 perform area recovery on C;
06 return C;
end

Figure 3: Algorithm: QDI Circuit Synthesis

netlist (e.g., obtained through the standard synchronous design
flow). We assume the logic netlist is combinational and acyclic.
It transforms the netlist to an optimized hybrid PCHB-WCHB
pipeline circuit. The steps are elaborated in detail as follows.

4.2 Technology Independent Logic Optimization
Before being mapped to a PCHB-WCHB circuit, a given

logic netlist is optimized by standard technology independent
logic synthesis to simplify its Boolean expression. In particu-
lar, we represent the circuit as an And-Inverter graph (AIG),
where every node represents a 2-input and gate and the two
inputs of a gate can be optionally complemented by inverters
(represented with a single bit flip). Due to its compact data
structure, the AIG is a scalable representation for large indus-
trial designs. We optimize an AIG with conventional rewriting
techniques [9] for circuit size and logic level minimization. The
optimized AIG is to be further processed by technology map-
ping for PCHB-WCHB realization.

4.3 Library Construction
For the purpose of technology mapping, a library of PCHB

and WCHB modules is constructed. Since long stacking of
transistors in the pull-up and pull-down networks of a module
is not desirable, we restrict the number of inputs to a module
no greater than 4. PCHB and WCHB modules for all Boolean
functions up to 4 inputs are built. Notice that, for a dual-rail
encoded logic netlist, complementing a variable/function x cor-
responds to swapping its two encoding bits x0 and x1, and thus

is at no hardware cost. Accordingly, for the 65536 (i.e. 224)
Boolean functions up to 4 inputs, we only need to construct
their 402 representatives under the equivalence of input nega-
tion and input permutation (the so-called NP-equivalence).

To satisfy the weak condition of WCHB, the function eval-
uation block of a WCHB module is realized in a minterm ex-
pansion form with possible logic sharing. In contrast, no such
requirement is needed for PCHB.

4.4 Technology Mapping
Given an AIG optimized by technology independent logic

synthesis, it is to be realized with respect to our constructed
PCHB-WCHB library. Since the PCHB and WCHB modules
can realize any Boolean function with up to 4 inputs, we may
perform technology mapping by enumerating 4-feasible cuts,
similar to the technology mapping of lookup-table based field
programmable gate array (FPGA) [10].

When a cut is generated, we may derive its corresponding
Boolean function as well as a set of satisfiability don’t cares
(SDCs) [5] from the underlying AIG. In essence, the SDCs
are the set of truth assignments to the inputs of the cut that
cannot appear due to the fact that the functions to these inputs
may not be surjective. Because of the underlying dual-rail
encoding, any such don’t care can be optionally assigned to
the onset function, offset function, both of the onset and offset
functions, or none of the onset and offset functions. Notice
the fundamental difference that, for a single-rail logic circuit,
an SDC can only be assigned to either the onset or the offset.
We exploit SDCs for circuit optimization as follows.

Given a cut function f and its SDCs, we look for differ-

ent combinations of the SDC assignments and choose the best
realizations of the onset function f1 and offset function f0 sepa-
rately from the library. Essentially we retrieve a PCHB/WCHB
module from the library by Boolean function modulo the equiv-
alence under input negation and input permutation (the so-
called NP-equivalence). Notice that NP-equivalence has to be
applied for library look-up since both onset and offset functions
have to be realized.

4.5 Slack Matching
We explore an iterative heuristic approach to improve PCHB

pipeline throughput via buffer insertion. For practical imple-
mentation, a simple strategy is applied. We first perform buffer
insertion to balance pipeline stages. The inserted buffers are
sorted according to their criticality in the pipeline, and are it-
eratively removed provided that their removal incurs no cycle
time violation with respect to a given target cycle time τ .

Figure 4: Pipeline under slack matching

Example 2. Given the delay graph of Figure 2, its cycle
time can be improved by slack matching as shown in Figure 4,
where the highlighted buffer node is inserted. Since the value
of the most critical τA is determined by B.prech f , inserting a
buffer between nodes A and B reduces the precharge finish time
of A’s new fanout node. It effectively improves the cycle time
from 27 to 24.

4.6 Area Recovery
We exploit the compatibility between PCHB and WCHB,

and the area advantage of WCHB for PCHB pipeline area re-
covery. Specifically, replacing 1-input, 2-input, 3-input, and
4-input PCHB modules with their corresponding WCHB mod-
ules may potentially save up to 12, 16, 15, and 19 transistors,
respectively. For implementation, we sort the nodes in the de-
lay graph according to their timing criticality and potential
area reduction due to WCHB replacement. WCHB replace-
ment is performed iteratively according to the order, and only
those replacements that incur no cycle time violation with re-
spect to a given target cycle time τ are accepted. The pro-
posed performance analysis procedure is applied to assess the
performance impact due to the replacement; the timing and
criticality information of the delay graph is incrementally up-
dated after a replacement. The process terminates when no
improvements can be achieved.

Figure 5: Pipeline under WCHB replacement



Example 3. Given the delay graph of Figure 4, suppose that
all the nodes correspond to PCHB modules. Observe that a
WCHB module has larger precharge time than its PCHB coun-
terpart. Among the fanouts of a node v, suppose the precharge
finish time of u ∈ FO(v) is much smaller than other w ∈
FO(v). Then performing WCHB replacement on u may incur
less cycle time penalty on v. In the example of Figure 5, for
node A, its fanout C is thus more preferred for replacement
than B. By replacing a non-critical node with a functionally
equivalent and smaller WCHB module, the area may be reduced
while the cycle time may remain intact.

5. EXPERIMENTAL RESULTS
The proposed performance analysis and logic synthesis pro-

cedures were implemented in the C++ language under the
ABC [2] synthesis and verification environment. All experi-
ments were conducted on a Linux machine with two 6-core
Xeon 2.3GHz CPU and 32GB RAM.

A library of PCHB and WCHB modules were constructed
under NP-equivalence for any Boolean function with up to 4
inputs. We used the Predictive Technology Model (PTM) 180
nm technology file [14] to generate delay information for our
library cells. While we ignored wire delays, it should not be
difficult to incorporate them into the delay graph.

ISCAS and ITC benchmark circuits were selected for exper-
iments. The circuits were first synthesized using ABC script
strash, balance, dch, dch, dch for technology independent
logic transformation. On the other hand, for technology map-
ping, ABC command if was modified for cut generation and
technology mapping under our settings, including new area and
delay costs, SDC conditions, etc. By technology mapping, cir-
cuits purely consisting of PCHB modules were generated. They
were subject to the subsequent performance constrained area
minimization. We conducted the performance constrained area
minimization under two settings: First, let the target cycle
time τ be the cycle time of the original pure PCHB circuit.
WCHB replacement was performed for area recovery with re-
spect to the given τ . Second, let τ be 80% of the cycle time of
the original pure PCHB circuit. Slack matching by buffer in-
sertion was performed to meet τ , and then WCHB replacement
was performed for area recovery.

For the first experiment, the results are shown in Table 1,
where Columns 2, 3 and 4 show the transistor count of function
evaluation blocks, the transistor count of the rest parts, and
total transistor count, respectively, in the original pure PCHB
circuit; Column 5 shows the cycle time of the original pure
PCHB circuit; Column 6 shows the total CPU time for synthe-
sis; Columns 7 and 8 show the number of substituted modules
with WCHB and the total module number, respectively, in
the hybrid PCHB-WCHB circuit; Columns 9, 10, and 11 show
the transistor count of function evaluation blocks, the transis-
tor count of the rest parts, and total transistor count, respec-
tively, in the PCHB-WCHB hybrid circuit; Column 12 shows
the cycle time after WCHB substitution; Column 13 shows
the total CPU time for PCHB-WCHB hybrid circuit synthe-
sis; Columns 14 and 15 show the area ratio, cycle time ratio of
PCHB-WCHB to PCHB. As can be seen, after WCHB substi-
tution, the area can be reduced by an average of 11.6%, with-
out cycle time increase. For circuit c6288, which is a 16 × 16
multiplier, since it has long datapath, the WCHB substitution
cannot significantly reduce the circuit area without increasing
the cycle time.

Table 2, with a similar arrangement as Table 1, compares
circuits implemented by pure PCHB modules and by pure
WCHB modules. Essentially, this table gives the lower bounds
for circuit area recovery. Although the area can be (maximally)
reduced by an average of 18.4%, the cycle time can be on av-
erage 2.3 times longer than the original PCHB circuits. For
example, circuit c6288, although the area can be reduced to
81.2% of the original size, the cycle time can be 2.9 times longer

than the original PCHB circuit. Comparing Tables 1 and 2,
we see the effectiveness of WCHB substitution in reducing area
(close to pure WCHB implementation) while maintaining the
original cycle time.

For the second experiment, the results are shown in Table 3,
where Column 2 shows the total area of the original circuit in
transistor count; Column 3 shows the cycle time of the original
circuit; Columns 4, 5 and 6 show the number of inserted buffers,
area ratio, and cycle time ratio, respectively, after buffer inser-
tion to balance pipeline stages; Columns 7, 8 and 9 show the
number of remaining buffers, area ratio, and cycle time ra-
tio, respectively, after removing noneffective buffers (to keep
new cycle time within 80% of the original one); Column 10
shows the number of modules substituted with WCHB; Col-
umn 11 shows the total number of modules after slack match-
ing; Columns 12 and 13 show the area ratio and cycle ratio af-
ter slack matching and WCHB substitution; Column 14 shows
the total CPU time for synthesis. In slack matching, we in-
serted buffers between nodes by their level difference, so the
area overheads are large with an average of about 454%. How-
ever, the cycle time can be improved by 43% on average. Based
on our 80% cycle time constraint, we removed a considerable
amount of buffers, and reduced the area overhead to 25% on
average. For circuit s35932, the cycle time after buffer inser-
tion is greater than the target cycle time constraint, and no
buffer can be removed. Finally, we performed WCHB sub-
stitution to further reduce the area overhead to about 6.4%.
Moreover, some circuits, e.g., b22, are even smaller in area than
the original ones.

6. CONCLUSIONS AND FUTURE WORK
This paper has presented a linear-time algorithm for (data

independent) cycle time analysis of acyclic PCHB-WCHB hy-
brid pipeline circuits. Built upon this analysis tool, a synthesis
flow for PCHB-WCHB circuit optimization (specifically, per-
formance constrained area minimization) has been proposed.
Due to its computational efficiency, the analysis tool can serve
as a core engine providing essential criticality information to
guide incremental optimization, which is crucial for scalable
synthesis. Experimental results have demonstrated the feasi-
bility and effectiveness in circuit synthesis. For future work,
performance analysis for cyclic pipelines awaits further devel-
opment. Also our slack matching and area recovery methods
can be further refined.
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