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Abstract Quantified Boolean formulae (QBF) allow compact encoding of
many decision problems. Their importance motivated the development of fast
QBF solvers. Certifying the results of a QBF solver not only ensures correct-
ness, but also enables certain synthesis and verification tasks. To date the cer-
tificate of a true formula can be in the form of either a syntactic cube-resolution
proof or a semantic Skolem-function model whereas that of a false formula is
only in the form of a syntactic clause-resolution proof. The semantic certifi-
cate for a false QBF is missing, and the syntactic and semantic certificates
are somewhat unrelated. This paper identifies the missing Herbrand-function
countermodel for false QBF, and strengthens the connection between syntac-
tic and semantic certificates by showing that, given a true QBF, its Skolem-
function model is derivable from its cube-resolution proof of satisfiability as
well as from its clause-resolution proof of unsatisfiability under formula nega-
tion. Consequently Skolem-function derivation can be decoupled from special
Skolemization-based solvers and computed from standard search-based ones.
Experimental results show strong benefits of the new method.
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1 Introduction

Quantified Boolean formulae (QBF) allow compact encoding of many decision
problems, for example, hardware model checking [7], design rectification [18],
program synthesis [19], two-player game solving [14], planning [16], and so
on. QBF evaluation has been an important subject in both theoretical and
practical computer sciences. Its broad applications have driven intensive ef-
forts pursuing effective QBF solvers, despite the intractable PSPACE-complete
complexity. Approaches to QBF evaluation may vary in formula representa-
tions, solving mechanisms, data structures, preprocessing techniques, etc. As
a matter of fact, the advances of DPLL-style satisfiability (SAT) solving make
search-based QBF evaluation [6] on prenex conjunctive normal form (PCNF)
formulae the most popular approach.

As QBF evaluation procedures are much more complicated than their SAT
solving counterparts, validating the results of a QBF solver is more critical
than that of a SAT solver. The commonly accepted certificate formats to date
are mainly resolution proofs and Skolem-function models. More precisely, for
a true QBF, a certificate can be in the syntactic form of a cube-resolution
proof (e.g., available in solvers QUBE-CERT [13] and YQUAFFLE [21]) or in
the semantic form of a model consisting of a set of Skolem functions (e.g.,
available in sSK1zz0 [1,2], SQUOLEM [10], and EBDDRES [10]); for a false QBF,
it can be in the syntactic form of a clause-resolution proof (e.g., available in all
the above solvers except for SK1zz0). Despite early attempts towards a unified
QBF proof checker [10], resolution proofs and Skolem-function models remain
weakly related. Moreover, the asymmetry between the available certificate
formats in the true and false QBF may seem puzzling.

From the application viewpoint, Skolem functions are more directly useful
than resolution proofs. The Skolem-function model of a true QBF may cor-
respond to, for example, a correct replacement in design rectification, a code
fragment in program synthesis, a winning strategy in two-player game solv-
ing, a feasible plan in robotic planning, etc. Unfortunately, Skolem-function
models are currently only derivable with Skolemization-based solvers, such as
sK1zz0, sQUOLEM, and EBDDRES. Moreover, the derivation can be expensive
as Skolemization-based solvers usually take much longer time on solving true
instances than solving false ones. In contrast, search-based solvers, such as
QUBE-CERT, can be more efficient and perform more symmetrically in terms
of runtime on true and false instances.

This paper takes one further step to a unified approach to QBF val-
idation by showing that, for a true QBF, its Skolem-function model can
be derived from its cube-resolution proof of satisfiability and also from its
clause-resolution proof of unsatisfiability under formula negation, both in time
linear with respect to proof sizes. Consequently, the aforementioned issues
are addressed. Firstly, the connection between resolution proofs and Skolem
functions is strongly established. Secondly, it practically conceives Herbrand-
function countermodels for false QBF, and thus yielding a symmetric view be-
tween satisfiability and unsatisfiability certifications. Finally, Skolem-function
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derivation can be decoupled from Skolemization-based solvers and achieved
from the standard search-based solvers, provided that resolution proofs are
maintained. A key characteristic of the new derivation is that Skolem func-
tions are generated for variables quantified from outside in, in contrast to the
inside-out computation of Skolemization-based solvers. This feature gives the
flexibility of computing a subset of Skolem functions of interest, rather than
computing all as in Skolemization-based solvers.

Experimental results show that search-based QBF solver QUBE-CERT cer-
tifies more QBFEVAL instances! than Skolemization-based solvers sKi1zzo
and SQUOLEM. Almost all of the Skolem-function models (respectively Herbrand-
function countermodels) are computable, under resource limits, from the cube-
resolution proofs of the true formulae (respectively clause-resolution proofs of
the false formulae). On the other hand, for the Boolean relation instances of
[3] (true QBF), whose negations are concise by Tseitin’s conversion from the
circuit structures, their Skolem functions are obtained both from the cube-
resolution proof of the original formulae and also from the clause-resolution
proof of the negated formulae to compare. The latter tends to be much more
robust and shows the unique value of the proposed method.

The rest of this paper is organized as follows. After the preliminaries given
in Section 2, our main results on Herbrand-function derivation from clause-
resolution proofs and Skolem-function derivation from cube-resolution proofs
are presented in Sections 3 and 4, respectively. Section 5 discusses the issue of
long-distance resolution. Applications to relation determinization in logic syn-
thesis are elaborated in Section 6. After experimental evaluation summarized
in Section 7, Section 8 concludes this paper.

2 Preliminaries

A literal in a Boolean formula is either a variable (i.e., positive-phase literal)
or the negation of the variable (i.e., negative-phase literal). In the sequel, we
shall denote the corresponding variable of a literal I as var(l). A clause is a
Boolean formula consisting of a disjunction of a set of literals; a cube is a
Boolean formula consisting of a conjunction of a set of literals. In the sequel,
we may alternatively specify a clause or cube by a set of literals. A formula in
congunctive normal form (CNF) is a conjunction of a set of clauses whereas a
disjunctive normal form (DNF) formula is a disjunction of a set of cubes. A
(quantifier-free) formula ¢ over variables X subject to some truth assignment
a: X’ — {0,1} on variables X’ C X is denoted as ¢|q.

1 Since negating the QBFEVAL formulae using Tseitin’s conversion [20] may suffer from
variable blow up, the Skolem functions are only derived with respect to the original formulae.
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2.1 Quantified Boolean Formulae

A quantified Boolean formula (QBF) & over variables X = {z1,...,z} in the
prenex conjunctive normal form (PCNF) is of the form

Q171 - - Qrrk-9, (1)

where Q121 - Qrzr, with Q; € {3,V} and variables z; # x; for ¢ # j, is
called the prefir, denoted @Pe, and ¢, a quantifier-free CNF formula in terms
of variables X, is called the matriz, denoted @,,,. We shall assume that a
QBF is in PCNF and is totally quantified, i.e., with no free variables. So the
set X of variables of @ can be partitioned into ezistential variables X5 = {z; €
X | Q; = 3} and universal variables Xy = {z; € X | Q; = V}. A literal [ is
called an existential literal and a wuniversal literal if var(l) is in X3 and Xy,
respectively.

Given a QBF, the quantification level ¢ : X — N of variable z; € X is de-
fined to be the number of quantifier alternations between 3 and V from left (i.e.,
outer) to right (i.e., inner) plus 1. For example, the formula 3z, x4, Vs, Jz4.0
has £(x1) = £(x2) = 1, £(x3) = 2, and £(z4) = 3. For convenience, we extend
the definition of ¢ to literals, with ¢(I) for some literal [ meaning £(var(l)).

A clause C with literals {l1,...,l;} in a QBF @ over variables X is called
manimal if

ziec,gﬁﬁ)eXV{g(Zz)} < ggg{é(ll)}.
Otherwise, it is non-minimal. A non-minimal clause C can be minimized to a
minimal clause C’ by removing the literals
{leC | var(l) € Xy and £(I) = {ngé({ﬁ(l,)}}
from C'. This process is called V-reduction. For a clause C of a QBF, we denote
its V-reduced minimal clause as MIN(C'). Replacing C with MIN(C) in a QBF
does not change the formula satisfiability.

2.2 Q-Resolution

A clause is tautological if it contains both literals  and —x of some variable
x. Two non-tautological clauses C; and Cs are of distance k if there are k
variables {z1,...,zr} appearing in both clauses but with opposite phases.
An ordinary resolution is defined on two clauses C; and Cy of distance 1. If
Cy = CyVx and Cy = C4V —z, then resolving C; and C5 on the pivot variable
x yields the resolvent Ci Vv C%.

Q-resolution [12] extends the ordinary resolution on CNF to PCNF formu-
lae with two rules: First, only existential variables can be the pivot variables
for resolution. Second, V-reduction is applied whenever possible. Unless oth-
erwise said, “Q-resolution” is shortened to “resolution” in the sequel. In fact
(Q-)resolution is a sound and complete approach to QBF evaluation.
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Theorem 1 ([12]) A QBF is false (unsatisfiable) if and only if there exists
a clause resolution sequence leading to an empty clause.

By duality, cube resolution can be similarly defined, and is also sound and
complete for QBF evaluation.

Theorem 2 ([9]) A QBF is true (satisfiable) if and only if there exists a cube
resolution sequence leading to an empty cube.

Modern search-based QBF solvers are equipped with conflict-driven learn-
ing, which performs resolution in essence. A tautological clause containing
both positive and negative literals of a (universal) variable may result from
resolution [22]. Since the clause is resolved from two clauses with distance
greater than 1, it is referred to as long-distance resolution. Unlike the case in
propositional satisfiability, such a clause is not totally redundant as it facili-
tates implication in QBF evaluation. Nevertheless, long-distance resolution is
not essential, and can always be replaced by distance-1 resolution [9].

2.3 Skolemization and Skolem Functions

A QBF & with variables X can be converted into the well-known Skolem
normal form in mathematical logic, which consists of only two quantification
levels, first existential and second universal. In the conversion, every appear-
ance of z; € X3 in @, is replaced by its respective fresh function symbol,
denoted Fg[z;], which refers only to z; € Xy with £(z;) < ¢(z;). These func-
tion symbols, corresponding to the so-called Skolem functions [17], are then
existentially quantified in the first quantification level before the second level
of universal quantification over the original universal variables. This conver-
sion, called Skolemization, is satisfiability preserving. It was exploited in [1] for
QBF evaluation. Essentially a QBF is true if and only if the Skolem functions
of its Skolem normal form exist.

Example 1 Skolemizing the QBF
Va1 Iy VaaJya.(x1 V yr V —ye) (—x1 V —2a V ya)
yields
IFs[y1]|3Fs[y2]Ve1Vas.(x1 V Fsly1] V = Fs[y2]) (mz1 V 22 V Fs[ya])

where Fg[yi] is a 1-ary function symbol referring to 1, and Fglys] is a 2-ary
function symbol referring to z; and x5. As can be verified, Fs[y1] = —~z1 and
Fslya] = x1 A xa, for instance, are legitimate Skolem functions.

In the sequel, we shall extend the notion of Skolem functions in their dual
form, also known as the Herbrand functions. For a QBF @ with variables X,
in the new notion the Herbrand function Fp[z;] of variable x; € Xy refers
only to x; € X3 with ¢(z;) < £(x;). Essentially QBF & is false if and only if
its Herbrand functions exist such that substituting Fy[x;] for z; € Xy in @
makes the new formula unsatisfiable.
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Ezxample 2 The QBF
Vo131 Veodys.¢

is false if and only if the formula
EIFH[ml]HFH[a:Q]EIylEIyQQS’

is unsatisfiable, where Fp[z1] is a 0-ary function symbol, Fy[za] is a l-ary
function symbol referring to y;, and ¢’ is the formula derived from ¢ with
every occurrence of z; in ¢ substituted with Fp[z,].

2.4 QBF Certificates

To validate the results of a QBF solver, resolution proofs and Skolem func-
tions are commonly accepted certificates [13]. For a true QBF, either a cube-
resolution proof or a Skolem-function model can certify its satisfiability. For a
false QBF, a clause-resolution proof can certify its unsatisfiability. In theory, a
false QBF can be negated to a true QBF, whose Skolem functions can then be
used as a countermodel to the original false QBF. In practice, however, such
a countermodel is hardly derivable because negation may result in substantial
increase in the formula size or variable count [10]. In contrast, we show that
a Herbrand-function countermodel can be obtained without formula negation,
and thus is practical for certifying a false QBF.

3 Countermodel Construction from Clause-Resolution Proofs

This section shows a sound and complete approach to construct Herbrand
functions for universal variables as the countermodel of a false QBF in time
linear with respect to a clause-resolution proof of unsatisfiability.

We consider resolution proofs of QBF unsatisfiability that involve no long-
distance resolution. As long-distance resolution can always be avoided and
replaced by distance-1 resolution [9], our discussion is applicable in general.?

Before delving into the main construction, we first define the following
formula structure.

Definition 1 A Right-First-And-Or (RFAO) formula ¢ is recursively defined
by

@ = clause | cube | clause A p | cube V p, (2)

7

where the symbol “:=” is read as “can be” and symbol “|” as “or”.

2 Rewriting a proof involving long-distance resolution to one with only distance-1 resolu-
tion might potentially increase the proof size exponentially.
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Note that the formula is constructed in order from left to right. Due to the
particular building rule of an RFAO formula with priority going to the right,
we save on parentheses to enhance readability. For example, formula

@ = clausey N clauses N cubes V clausey N cubes V cubeg

(clausey A (clauseg A (cubeg V (clausey A (cubes V cubeg))))).

We sometimes omit expressing the conjunction symbol “A” and interchange-
ably use “4” for “V” in a formula.

In our discussion we shall call a clause/cube in an RFAO formula a node
of the formula, and omit a node’s subsequent operator, which can be uniquely
determined. Note that the ambiguity between a single-literal clause and a
single-literal cube does not occur in an RFAO formula as the clause-cube
attributes are well specified in our construction.

The RFAO formula has two important properties (which will be crucial in
proving Theorem 3):

1. If node; under some (partial) assignment of variables becomes a validated
clause (denoted 1-clause) or falsified cube (denoted 0-cube), then we can
effectively remove node; (if it is not the last) from the formula without
further valuating it.

2. If node; becomes a falsified clause (denoted 0-clause) or validated cube
(denoted 1-cube), then we need not further valuate (namely, can remove)
all other nodes with index greater than <.

Below we elaborate how to construct the countermodel expressed by the
RFAO formula from a clause-resolution proof IT of a false QBF &. We treat the
proof IT as a directed acyclic graph (DAG) G (Vir, Err), where a vertex v €
Vi1 corresponds to a clause v.clause obtained in the resolution steps of IT and a
directed edge (u,v) € Erp C Vir x Vi from the parent u to the child v indicates
that v.clause results from wu.clause through either resolution or V-reduction.
The clauses of IT can be partitioned into three subsets: those in @1y, those
resulting from resolution, and those from V-reduction. Let Vj;, Vg, and Vp
denote their respective corresponding vertex sets. So Viy = Vs U Vg U Vp.
Note that in Gj7 a vertex in Vs has no incoming edges and is a source vertex;
a vertex in Vg has two incoming edges from its two parent vertices; a vertex
in Vp has one incoming edge from its parent vertex. On the other hand, there
can be one or more sink vertices, which have no outgoing edges. Since the final
clause of IT is an empty clause, the graph Gj; must have the corresponding
sink vertex.

The intuition behind our construction stems from the following observa-
tions. Firstly, if Vp = ), then the quantifier-free formula @,,;, is unsatisfiable
by itself, and so is @. Since there exists an ordinary resolution proof, which in-
volves no V-reduction, any functional interpretation on the universal variables
forms a legitimate countermodel to @.

Secondly, if Vg = 0, then &,,;, must contain a clause consisting of only
universal variables. With only V-reduction, ¢ can be falsified. Without loss
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of generality, assume this clause is (I; V -+ V li). Then letting the Herbrand
function of var(l;) be

Vv S0 ifl; =war(l;), and
Fglvar(l,)] = { 1 ifl; = —war(ly),
for i = 1,...,k, forms a countermodel of ®@. (The Herbrand functions of the

universal variables not in the clause are unconstrained.)

Finally, we discuss the general case where Vp and Vg are non-empty. Every
clause w.clause of II with w € Vg is implied by the conjunction u.clause A
v.clause with (u, w), (v,w) € Ep. (That is, the clause resulting from resolution
is unconditionally implied by the conjunction of its parent clauses.) Even if
the pivot variable of the corresponding resolution were universally quantified,
the implication would still hold. So the implication is regardless of @,¢. On
the other hand, a clause v.clause of II with v € Vp is not directly implied
by u.clause with (u,v) € Ey. (That is, the clause resulting from V-reduction
is conditionally implied by its parent clause.) Nevertheless @y and @ppx A
v.clause are equisatisfiable under @p.

To characterize the conditions for an implication (especially between the
two clauses involved in a V-reduction step) to hold, we give the following
definition.

Definition 2 Let a: X — {0,1} be a full assignment on variables X. Given
two (quantifier-free) formulae ¢; and ¢o over variables X, if the implication
¢1 — ¢2 holds under «, then we say that ¢ is a-implied by @1, and ¢
a-implies ¢s.

For a resolution proof of a false QBF @, when we say a clause is a-implied,
we shall mean it is a-implied by its parent clause or by the conjunction of
its parent clauses depending on whether the clause results from V-reduction
or resolution. A clause resulting from resolution is surely a-implied for every
a, but a clause resulting from V-reduction may not be a-implied for some
a. We further say that a clause C' is a-inherited if all of its ancestor clauses
(except for the clauses of the source vertices, which have no parent clauses
and are undefined under a-implication) and itself are a-implied. Clearly, if C
is a-inherited, then @nixla = (Pmtx A C)|a-

For a false QBF @ over variables X = X3U Xy, let the assignment o : X —
{0,1} be divided into a3 : X3 — {0,1} and ay : Xy — {0,1}. To construct
the Herbrand-function countermodel, our goal is to determine ay for every
a3 such that the empty clause of the resolution proof is a-inherited, or there
exists an a-inherited clause C' with C|, = 0. Therefore, for every assignment
a3, @ implies false. That is, such ay provides a countermodel to ®.

Figure 1 sketches the countermodel construction algorithm, where the Her-
brand functions are computed in RFAO formulae, each of which is stored as
an (ordered) array of nodes. Before proving the correctness of the algorithm,
we take the following example to illustrate the computation.
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Countermodel_construct
input: a false QBF @ and its clause-resolution DAG G (Vir, Err)
output: a countermodel in RFAO formulae

begin

01 foreach universal variable  of &

02 RFAO_node_array[z] := 0;

03 foreach vertex v of Gy in topological order

04 if v.clause resulting from V-reduction on w.clause, i.e., (u,v) € Epy
05 v.cube := —(v.clause);

06 foreach universal variable x reduced from w.clause to get v.clause
07 if x appears as positive literal in u.clause

08 push v.clause to RFAO_node_array [x];

09 else if x appears as negative literal in u.clause

10 push v.cube to RFAO_node_array[z];

11 if v.clause is the empty clause

12 foreach universal variable = of @

13 simplify RFAO_node_array [z];

14 return RFAO_node_array’s;

end

Fig. 1 Algorithm: Countermodel Construction

Ezample 8 Let @ be a false QBF and II be its resolution proof of unsatisfia-
bility as below.

Doy = JaVzIVy3e
Pix = (aVbVyVe)avVaVbVyV-oc)(zV-b)(-yVe)(-aV -z VbV -c)
(mz VvV =b)(aV —bV —y)
1. clauses = resolve(clausey, clauses)
2. clauseg = resolve(clauses, clauseg)
IT = < 3. clauseyy = resolve(clausey, clauses)

4. clause; = resolve(clauseyq, clauseg)
5. clauseempty = resolve(clauseqr, clauseg)

Note that the V-reduction steps are omitted in II. They however can be easily
recovered as shown in Figure 2, where the clauses are indexed by the subscript
numbers and the V-reduction steps are indexed by the parenthesized numbers
indicating their derivation order.

By following the steps of algorithm Countermodel_construct in Figure 1,
the RFAO node-array contents after each V-reduction step in the proof of
Figure 2 are listed in order of appearance in Figure 3. The resultant Herbrand
functions for variables z and y are

Fylz] = (a) A (a) = a, and
Fyly] = (mab) Vv ((a V z V b) A (az—b)),

respectively. Note that the computed Fpy[y] depends on variable x, which can
always be eliminated by substituting Fy[z] for « in Fg[y]. In fact, keeping
such dependency may be beneficial as the countermodel can be represented
in a multi-level circuit format with shared logic structures. Moreover, observe
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(a+b+y+c)(a+x+b+y+c),(x+b)(y+¢),(a+x+b+c) (x+b)(a+b+y),

. N Lo

(a+x+b+y), (a+x+b+;)10 (a+b),,
@) l@
(a+x+b),, (@+x+b),,
(a+x), (;"‘})11
®)
®
(a)9+ -
/(a)IH
(L)
Fig. 2 DAG of resolution proof IT
0. =x: [ ] Yy [ }
1. z:[] y: [cube(—ab) ]
) [ cube(—ab),
2. @:[] v _clause(anVb)}
[ cube(—ab),
3. z: [clause(a)] y: _zymjﬁegz 2/ Y b)}
[ cube(—ab),
4. w: [clause(a)] y: | clause(a V z V b),
| cube(az—b)
[ cube(—ab),
5 [clabuse(a),} y: | clause(aV z Vb),
cube(a) | cube(az—b)

Fig. 3 Contents of RFAO node arrays

that clause 7, namely (aV—-bV—y), is not involved in the resolution steps leading
to the empty clause. Its existence is optional in constructing the countermodel,
and can be treated as don’t cares for countermodel simplification. It can be
verified that, for every assignment to variables a, b, and ¢, formula @4, with
variables x and y substituted with Fiy[z] and Fgly], respectively, is false.

The correctness of algorithm Countermodel_construct of Figure 1 is as-
serted below.

Theorem 3 Given a false QBF @ and a DAG G corresponding to its res-
olution proof II of unsatisfiability, algorithm Countermodel_construct (®, Gy)
produces a correct countermodel for the universal variables of ®.
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Proof We show that, under every assignment a3 to existential variables of @,
our constructed countermodel always induces some ay such that @y¢x|o = 0.
There are two possible cases under every such a.

First, assume every clause v.clause with v € Vp is a-implied. Then the
empty clause must be a-inherited because other clauses resulting from resolu-
tion are always a-implied. Thus @4x|o = 0.

Second, assume not every clause v.clause with v € Vp is a-implied. Let
Cla_violate D€ the set of all such clauses violating a-implication. Suppose v.clause
€ Co_violate is obtained by V-reduction from w.clause with (u,v) € Ep on some
universal variables. Let C\, denote the subclause of u.clause consisting of ex-
actly the reduced literals in the V-reduction leading to v.clause. Then v.clause
must satisfy the criteria

1. wv.clause|, = 0 (otherwise v.clause would be a-implied), and
2. Cy\vlay = 1 (otherwise v.clause would have the same value as u.clause and
thus be a-implied).

It remains to show that, even if C,_yioiate 1S non-empty, there still exists some
a-inherited clause C' with C|, = 0, i.e., an induced empty clause under .

Notice that algorithm Countermodel_construct processes Gy in a topolog-
ical order, meaning that a clause in the resolution proof is processed only
after all of its resolution ancestor clauses are processed. Now we consider all
clauses v.clause with v € Vp in the topological order under the assignment
a. Let v'.clause be the first clause encountered with v’.clause|, = 0. (If there
is no such v’.clause under «, then it corresponds to the situation analyzed in
the first case.) For every universal variable z being reduced from the parent
clause u'.clause of v'.clause, i.e., (u',v") € Ep, we examine its corresponding
RFAO_node_array[z]. Suppose v’ is the ith enumerated vertex that results
from V-reduction involving reducing variable z. By the aforementioned two
properties of the RFAO formula and by the way how RFAO_node_array [x] is
constructed, we know that the Herbrand function value of Fy[z] under « is not
determined by the first :—1 nodes, but by the ith node of RFAO_node_array[z].
In addition, the function value Fy[z] makes the literal of variable x in clause
Cuno valuate to false. Because every literal in C\, is valuated to false, we
have u’.clause|, = 0 and thus v'.clause is a-implied. Moreover, since v'.clause
is the first clause encountered with v’.clause|, = 0, all its ancestor clauses
must be a-implied. So v’.clause is a-inherited, and thus @4x|o = 0.

Because every assignment ag together with the corresponding induced as-
signment oy makes @pix|o = 0, the Herbrand functions computed by algo-
rithm Countermodel_construct form a correct countermodel to @. |

Proposition 1 Given a false QBF @ and its resolution proof of unsatisfi-
ability, let Fylx] be the Herbrand function computed by algorithm Counter-
model_construct for the universal variable x in ®. Then Fylz| refers to some
variable y in @ only if £(y) < £(x).

Note that, by the above strict inequality, Proposition 1 asserts that no cyclic
dependency arises among the computed Herbrand functions.
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Proposition 2 Given a false QBF and its resolution proof of unsatisfiability,
algorithm Countermodel_construct computes the countermodel in time linear
with respect to the proof size.

Proposition 3 The RFAO formula size (in terms of nodes) for each universal
variable computed by algorithm Countermodel_construct is upper bounded by
the number of V-reduction steps in the resolution proof.

The resolution proofs provided by search-based QBF solvers often contain
(redundant) resolution steps unrelated to yielding the final empty clause. Al-
gorithm Countermodel_construct works for resolution proofs with and without
redundant steps. Since a highly redundant proof may degrade the performance
of the algorithm, it may be desirable to trim away redundant parts before coun-
termodel construction. On the other hand, as illustrated in Example 3, it may
be possible to exploit the redundancy for countermodel simplification.

4 Model Construction from Cube-Resolution Proofs

The discussion about countermodel construction can be easily extended under
the duality principle to model construction of a true QBF from its cube-
resolution proof of satisfiability as shown in this section.

Cube resolution can be defined as the dual of clause resolution. In contrast
to clause resolution, where a resolvent is implied by the conjunction of its par-
ent resolving clauses, a resolvent in cube resolution implies the disjunction of
its parent resolving cubes. So if the empty cube is deduced through a sequence
of cube resolutions, then the original formula is implied to be true. In fact,
complementing a cube-resolution proof of a true QBF by negating each cube
in the proof to a corresponding clause yields a clause-resolution proof of its
negated false QBF, and vice versa.

Following a similar strategy to algorithm Countermodel_construct, algo-
rithm Model_construct in Figure 4 computes Skolem functions from the reso-
lution proof II of a true QBF @ by making the empty cube a-imply @t under
every «. Notice that it processes Gy in a topological order, meaning that a
cube in the resolution proof is processed only after all of its parent resolving
cubes are processed. The correctness of the algorithm can be established in a
way similar to Theorem 3 and its proof is omitted.

The following example illustrates how algorithm Model_construct works.

Example 4 Consider the true QBF ¥ = =@ for @ being the QBF of Example 3
and its resolution proof II' shown below with F-reduction steps omitted.

Yot = VadzVb3IyVe

Unntx = (ma—b—y—ce) V (ma—z—b—yc) V (mxb) V (y—c) V (ax—be) V (zb) V (—aby)
1. cubeg = resolve(cubey, cubes)

. cubeg = resolve(cubes, cubeg)

. cube1g = resolve(cubey, cubes)

. cube1; = resolve(cubeyq, cubeg)

. cubeempty = Tesolve(cubeqr, cubey)

I =

Tk W N
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Model_construct
input: a true QBF & and its cube-resolution DAG G (Vir, Err)
output: a model in RFAO formulae

begin

01 foreach existential variable z of @

02 RFAO_node_array[z] := 0;

03 foreach vertex v of Gy in topological order

04 if v.cube resulted from J-reduction on u.cube, i.e., (u,v) € Epp
05 v.clause := —(v.cube);

06 foreach existential variable x reduced from u.cube to get v.cube
07 if x appears as positive literal in u.cube

08 push v.cube to RFAO_node_array [x];

09 else if x appears as negative literal in u.cube

10 push v.clause to RFAO node_array [x];

11 if v.cube is the empty cube

12 foreach existential variable z of @

13 simplify RFAO_node_array [z];

14 return RFAO_node_array’s;

end

Fig. 4 Algorithm: Model Construction

(abyc) +(axbyc),+(xb), +(yc), +(axbe)s +(xb)+(aby),

N\ / N/ lo

(;;[3;)8 (axby), (;b)u
[ o Te
(; x 5)8+ (ax l;)l()+
\

(ax), (ax),

I (C] T ®)

(Cl)9+ (a)11+

(T

Fig. 5 DAG of resolution proof IT’

The DAG of IT’ is shown in Figure 5, where the arrow direction signifies the
implication direction. Note that ¥ above is not expressed in PCNF for ease of
illustration. Realistically, ¥ should be in PCNF, and in this case, the cubes of
Untx above can be considered as the cubes learnt from solving V.

The corresponding RFAO node-array content after each 3-reduction step
in the DAG of Figure 5 is the same as that of Figure 3. Consequently the
obtained Skolem functions Fs[x] and Fg[y] for ¥ equal the previous Herbrand
functions Fy[z] and Fily] for @, respectively. In fact, the equivalences are not
a mere coincidence because the Skolem-function model for a true QBF @ is
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also the Herbrand-function countermodel for its negated false QBF —®, and
vice versa.

Note that algorithm Countermodel_construct (Model_construct) can be eas-
ily modified to compute the Herbrand (Skolem) functions for a subset of the
universal (existential) variables of interest for a given QBF. Let k be the maxi-
mal quantification level among the universal (existential) variables whose Her-
brand (Skolem) functions are of interest. Algorithm Countermodel_construct
(Model_construct) only needs to maintain RFAO node arrays for universal (ex-
istential) variables with quantification level no greater than k. For Skolemization-
based solvers, this partial derivation is not possible because Skolem functions
are constructed on-the-fly during QBF solving, whereas our construction is
performed after the entire proof is done.

5 (Counter)model Construction from Long-Distance Resolution
Proofs

The above discussions focus on distance-1 resolution, where two resolving
clauses have only the pivot variable appearing as literals in both positive and
negative phases. There are solvers, such as QUBE-CERT, occasionally produc-
ing proofs involving long-distance resolutions due to the omission of interme-
diate distance-1 resolutions. Although such proofs can always be transformed
into regular proofs without long-distance resolutions by internal rearrange-
ment, in practice it may slow down the solver.

This section characterizes a set of long-distance resolution rules as a sound
and complete proof system. Moreover, we propose rewriting rules that elimi-
nate long-distance resolution steps from a given resolution proof. We focus on
clause resolution while similar results can be obtained for cube resolution.

In the sequel we shall denote = V -z, the disjunction of both literals of
a variable x, as a special literal z*. We formally define a resolution to be of
long-distance if it belongs to one of the three cases:

Cl\/p\/l CQ\/_|pv_|l
MIN*(Cy v Gy v 1%)

MIN*(C; Vv Cy V I¥)

CiVvpVIi* CyV-pVI*
MIN*(Cl Vv Oy Vv l*)

where p and [ are literals with £(p) < £(I) and with var(p) and var(l) being
existential and universal variables, respectively, and MIN* extends the usual V-
reduction MIN to reduce also [* literal in the same way as the [ and = literals.
We call var(l) the merged variable in the above resolutions. Notice that the
above quantification level restriction applies to other merged variables in C
and Cs as well. Otherwise long-distance resolution would be unsound. Also
note that the resolution
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(a+x+b+y+c)a+x+b+c)b+y+c)c)
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(x"+b+y+c)
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(x"+y " +0)
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(x"+y)

(L)

Fig. 6 DAG of resolution proof IT*

Ci1Vp CyV-pVI*
MIN*(C; Vv Cy V I*)

is considered as the usual distance-1 resolution (since var(l) is not considered
as a merged variable for this resolution step, there is no quantification level
restriction imposed on ).

In fact long-distance resolution can be exploited to condense proofs as the
following example shows.

Example 5 Consider the following QBF, whose unsatisfiability is shown by the
resolution proof IT* detailed in Figure 6.

Ppex = JaVrIbVy3c
Prix = (aVaV-bVyV-e)(-aV-zV-bV-e)(bV -y V-c)e)
1. clauses = resolve(clausey, clauses)

IT* = ¢ 2. clauseg = resolve(clauses, clauses)
3. clauseempty = resolve(clausey, clauseg)

As shown, the long-distance resolutions make the proof succinct.

The above resolution rules in addition to distance-1 resolutions form a
sound and complete proof system for QBF evaluation as shown below.

Proposition 4 Let C3 be the resolvent under (possible long-distance) resolu-
tion of clauses C1 and Co. Let Cf and C) be the sub-clauses of Cy and Cs,
respectively, (with | C I* and =l C I*). Then the resolvent C4 of C| and C}
under the same pivot variable must be a sub-clause of Cs.

By the previous proposition, the following claim can be concluded.

Proposition 5 Let I be a (possibly long-distance) resolution proof of a false
QBF & = Q1x1 - Qnxn.¢. For an existential variable x;, the induced proof,
denoted I1-,, (respectively II,), from II with variable x; being assigned con-
stant 0 (respectively constant 1) forms a legitimate proof of QBF Qqxq1 ---
Qi—17i—1Qit1%it1 - Qupn. @l (respectively Qray -+ Qi 17 1Qiy1%iq1 -+~
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Theorem 4 The long-distance (in addition to distance-1) resolution rules
form a sound and complete proof system for QBF evaluation. That is, a QBF
@ is false if and only if there exists a resolution sequence leading to the empty
clause.

Proof For completeness, it follows directly from the fact that distance-1 reso-
lution, a special subset of the rules, is complete for QBF evaluation [12].

For soundness, we prove by induction on the number k of quantifiers in the
prefix of @. Let IT be a resolution proof of the falsity of . For k =1, ® = Jx.¢
or Vz.¢. Since there is no long-distance resolution involved in I7, I must be
sound (following from the fact that distance-1 resolution is sound).

Assume the soundness holds for every long-distance resolution proof of @
with its quantifier number k < n. For k = n+1and ® = Vo, 1Qnx, - Q171.0,
variable z,1 can be V-reduced at most once in IT (namely on the last step
of IT). If x,,41 in IT is not V-reduced at all, it means all the clauses with the
occurrence of variable z,,41 are not involved in the resolution proof, and thus
can be removed from the matrix. By the induction hypothesis, the soundness
holds. If x,,41 in IT is V-reduced, it must be reduced in the form of literal
Xy or literal 2,41 (cannot be x,1* since long-distance resolution allows
the quantification level of a pivot variable less than that of a merged variable).
Without loss of generality, assume literal z,1 is V-reduced. Since no steps
except for the last one in II involves reduction of variable z,,1, the ancestor
clauses of the empty clause cannot include literal -z, 1. So if z,,41 is assigned
as constant 0 (and thus removed from the prefix), the induced proof will still
be a legitimate proof. By the induction hypothesis, the soundness holds.

On the other hand, for k. = n+ 1 and ©® = Fx,+1QnTp41 - Q121.0,
according to Proposition 5 the induced proofs II, , and II-., , are both
legitimate proofs leading to the empty clause. So the unsatisfiability proof of
QnTp - Q171.¢|z,,, and that of Qnxy -+ Q171.¢|,, ., establish the falsity
of @. Therefore by induction hypothesis the soundness holds. |

To derive the Herbrand functions from a long-distance resolution proof,
the following two rewriting rules can be first applied to eliminate long-distance
resolution steps from the proof.

Cl\/p\/q\/ll CQ\/_‘p\/ZQ
CiV Oy VgV —qV C3

—
CiVCyVC3VI*F
CiVpVaqVih —qV Cs
01\/03\/])\/11 CQ\/—\p\/lg
CivCyVvCyVvIF
Cl\/p\/q\/ll 02\/_|p\/q\/12
C’1VC'2\/q\/l* —|q\/C’3 N

CiVvCyvCyVIF
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CyVpVaqVl gV Cs CoV-pVaqVli —qV Cs
CivCsVpVi CoVvC3V-pVliy
CivCyV(CsVI*

where p, ¢, l1, and ls are literals with l;,lo € {I, -0, 1*}, and Iy # Iy or ; =
lo = I*. As stated in the following theorem, the above rewriting rules when
applied in a proper order are complete in removing long-distance resolution
steps from a resolution proof.

Theorem 5 Given a long-distance resolution proof II of a false QBF &, the
above two rewriting rules when applied on the long-distance resolution steps in
a reverse topological order eventually yield a new proof without long-distance
resolution.

Proof Consider the last (i.e., in the reverse topological order, the first encoun-
tered) long-distance resolution step S of II. Let C] and C} be the resolving
clauses at S. Then there must exist another clause C such that these three
clauses match the three top-level clauses of either the first or the second rewrit-
ing rule above. Since no descendants of S are long-distance resolution steps,
clause CY% cannot include variable var(l). After applying the corresponding
rewriting on these clauses, the new last long-distance resolution step S will
move one step closer to the empty clause without introducing any new long-
distance resolution step to the proof. Since S is again the closest to the empty
clause, the rewriting rules will be applied to it again and again until all the
existential variables in its C7 and CY clauses disappear and var(l) is eventu-
ally V-reduced. Consequently every last long-distance resolution step will be
eventually removed. Iterating this process all long-distance resolution can be
eliminated and leaving a new proof with only distance-1 resolutions. |

Ezxample 6 Consider the following QBF & with a long-distance resolution II.

Doy = JaIbVaxde
Pix = (aVaVe)(-aVbV-zVe)(-bVaVc)(ae)

1. clauses = resolve(clausey, clauses)
IT = < 2. clauseg = resolve(clauses, clauses)
3. clauseempty = resolve(clausey, clauses)

Figure 7 shows the rewriting process converting I7 to a new proof without
long-distance resolution steps.

6 Applications to Boolean Relation Determinization

We relate Skolem functions to the problem of Boolean relation determiniza-
tion, which is useful in logic and property synthesis [10,11]. A Boolean rela-
tion over input variables X and output variables Y is a characteristic function
R : {0, 13X+ — {0, 1} such that assignments a € {0,1}/X! and b € {0,1}/Y]
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Fig. 7 Rewriting long-distance resolution

make R(a,b) = 1 if and only if (a,b) is in the relation. Relations can be ex-
ploited to specify the permissible (non-deterministic) behavior of a system, by
restricting its allowed input X and output ¥ combinations. To be implemented
with circuits, a relation has to be determinized in the sense that each output
variable y; € Y can be expressed by some function f; : {0, 1}XI — {0,1}. For-
mally it can be written as a QBF VX,3Y.R(X,Y), and the determinization
problem corresponds to finding the Skolem functions of variables Y

Often the formula R(X,Y") is not in CNF, but rather in some circuit struc-
ture. By Tseitin’s transformation, it can be rewritten in CNF ¢r(X,Y, Z)
with the cost of introducing some new intermediate variables Z. Therefore the
QBF is rewritten as VX,3Y,3Z.¢r(X,Y, Z). By our model construction, the
Skolem functions can be computed from its cube-resolution proof of satisfi-
ability. Alternatively, we may compute the Skolem functions by finding the
countermodel of 3X,VY.-R(X,Y), which can be again by Tseitin’s transfor-
mation translated into PCNF 3X,VY,37'.¢_g(X,Y,Z’) with Z’ being the
newly introduced intermediate variables in the circuit of =R(X,Y"). Note that
after the negation, the number of quantification levels increases from two to
three; on the other hand, ¢ and ¢_r can be simplified to have the same
number of clauses and |Z| = |Z’|. The above two approaches are to be studied
in the experiments.
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Table 1 Summary for QBFEVAL Benchmarks.

all sKi1zzo SQUOLEM+RESQU QUBE-CERT4+RESQU
time time time time time
sV sV (sv) #sv (sv) (md) #sv/#pg ‘ (sv) ‘ (md)
) 05 84 69 1707.3 50 1490.8 — 19/19 414.7 54.7
2 ’06 48 29 295.2 25 199.8 — 44/44 859.6 152.2
“ [total 132 98 2002.5 75 1690.6 — 63/63 1274.3 | 207.0
9 05 k4 0 0 42 1467.5 12.6 46/25 2369.9 13.0
= 06 29 0 0 9 86.0 0.8 28/22 916.6 2.3
“ [total 106 0 0 51 1553.4 13.4 74/47 3286.5 15.3

#sv: number of instances solved; #pg: number of proofs involving no long-distance resolution;
time (sv/md): CPU time in seconds for QBF evaluation/(counter)model generation; —: data not
available due to inapplicability of ResQu

It is interesting to note that, since the quantification order of a QBF af-
fects the support variables of a Skolem functions, QBF prefix reordering may
be exploited to synthesize Skolem functions with some desired variable depen-
dencies. Moreover, in addition to the relation determinization application, the
duality between model and countermodel construction may be useful in other
applications whose original formulae are in circuit representation.

7 Experimental Results

The proposed method, named RESQU, was implemented in the C++ language.
The experiments were conducted on a Linux machine with a Xeon 2.53 GHz
CPU and 48 GB RAM for two sets of test cases: the QBF evaluation bench-
marks downloaded from [15] and relation determinization ones modified from
[3].

We compared different Skolem-function derivation scenarios using QBF
solvers sK1zzo [1], SQUOLEM [10], and QUBE-CERT, which are equipped with
certification capabilities.? For true QBF instances, SK1ZZ0 and SQUOLEM were
applied to obtain Skolem-function models whereas the cube-resolution proofs
produced by QUBE-CERT were converted to Skolem-function models by RESQU.
For false QBF instances, SK1z2z0 was applied on the negated formulae to obtain
Skolem-function countermodels whereas the clause-resolution proofs produced
by SQUOLEM and QUBE-CERT were converted to Skolem-function counter-
models by RESQU.

Table 1 summarizes the results of our first experiment on the QBFEVAL’05
and QBFEVAL’06 test sets, which contain 211 and 216 instances, respectively.
In the experiment, all the QBF solvers, including sKizz0o, SQUOLEM, and
QUBE-CERT, are given a 600-second time limit and a 1-GB memory limit for
solving each instance. Under the given resource limits, all solvers, together,
solved 132 true and 106 false instances. All the (counter)models produced by

3 We did not experiment with EBDDRES [10] and YQUAFFLE [21] as the former tends to
generate larger certificates for false QBF compared to SQUOLEM, and the latter has charac-
teristics similar to QUBE-CERT.
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RESQU were verified using MINISAT [8] while the models produced by sKi1zzo
and SQUOLEM were assumed correct without verification.

It should be mentioned that the resolution proofs produced by QUBE-
CERT were not simplified, that is, including resolution steps unrelated to pro-
ducing the final empty clause (or empty cube). The unrelated resolution steps
were first removed (with runtime omitted) before the (counter)model construc-
tion of RESQU. On the other hand, the clause-resolution proofs produced by
SQUOLEM were simplified already and involved no long-distance resolution.
Hence RESQU had no problems constructing their countermodels.

We compared the numbers of instances whose (counter)models generated
by RESQU and by other tools. When models are concerned, RESQU (via the
proofs from QUBE-CERT) covered 63 (19 in QBFEVAL’05 and 44 in QBFE-
VAL’06), whereas sSKi1z2z0 and SQUOLEM in combination covered 105 (75 in
QBFEVAL’05 and 30 in QBFEVAL’06). When countermodels are concerned,
RESQU (via the proofs from sQUOLEM and QUBE-CERT) covered 83 (60 in
QBFEVAL’05 and 23 in QBFEVAL’06), whereas sK1zzo covered 0.* Notably,
RESQU circumvents the DNF-to-CNF conversion problem and is unique in
generating countermodels.

While all the (counter)models can be constructed efficiently (for proofs
without long-distance resolution), some of them can be hard to verify. In fact,
about 84% of the 161 (counter)models constructed by RESQU were verified
within 1 second using MINISAT; there are 5 models of the true instances in
QBFEVAL’06 that remained unverifiable within 1000 seconds.

Table 1 also reveals that for the QBFEVAL’05 true instances sKi1zzo and
SQUOLEM outperformed QUBE-CERT in solving more instances, while the sit-
uation reversed for the QBFEVAL’06 true cases. Investigating the reasons, we
noted that, for the solved QBFEVAL’05 true instances, the average numbers
of quantification levels, existential variables, universal variables, and clauses
are 22, 1393, 80, and 8028, respectively; for QBFEVAL’06, they are 3, 672, 78,
and 1690, respectively. The statistics might suggest that sK1zzo and SQUOLEM
could work better for true QBF with fewer existential variables (since there
are fewer Skolem functions to derive), whereas search-based solvers could work
better for cases with fewer quantification levels (since resolution depths are
shallower and J-reduction can be more effective).

We also compared the sizes of (counter)models in terms of and-inverter
graph (AIG) nodes. For models, we noticed that those constructed by RESQU
from the proofs of QUBE-CERT can be up to a few orders of magnitude larger
than those from sK1zz0 and SQUOLEM. Similarly for countermodels, those con-
structed by RESQU from the proofs of QUBE-CERT tend to be much larger
than those from the proofs of SQUOLEM. These AIGs can be very redundant

4 In addition to sKi1zzo, in theory SQUOLEM can also compute Skolem-function counter-
models of false QBF instances by formula negation. We only experimented with sKizzo,
which can read in DNF formulae and thus requires no external DNF-to-CNF conversion,
arising due to formula negation. Although SQUOLEM is not experimented in direct coun-
termodel generation by formula negation, prior experience [10] suggested that it might be
unlikely to cover much more cases than sKi1zzo.
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Table 2 Results for Relation Determinization Benchmarks.

. sKizzo SQUOLEM+RESQU QUBE-CERT4+RESQU
(#i, #o, #e, #C) time . time . time .
(sv) size (sv/md/vt) size (sv/md/vt) size
(7, 3, 55, 322) 0.1 377 01, — ) 134 (0.0, 0.0, 0.0) 28
(20, 10, 1k, 6k) 0.9 | 1.3k 0.8, —, —) 1.4k (0.1, 0.0, 0.0) 118
(21, 9, 1k, 8k) NA (NA, —, —) (5.3, 1.7, 1.2) 149k
(24, 12, 2k, 11k) NA (1.2, —, —) 179 (1.0, 0.1, 0.0) 1.9k
(28, 14, 2k, 11k) NA (NA, —, —) (0.4, 0.1, 0.0) 61
8 (32, 16, 3k, 20k) NA (NA, —, —) (1.2, 0.2, 0.0) 1.2k
= (36, 18, 6k, 35k) NA (NA, —, —) (0.2, 0.2, 0.0) 91
g (42, 20, 7k, 42k) NA (NA, —, —) (0.3, 0.1, 0.0) 3
g (39, 19, 10k, 59k) NA (NA, —, —) (3.1, 0.5, 0.0) 307
- (46, 22, 11k, 63k) NA (NA, —, —) (1.9, 0.3, 0.0) 58
2 (49, 19, 11k, 68k) NA (NA, —, —) (NA, NA, NA)
= (32, 18, 13k, 81k) NA (NA, —, —) (NA, NA, NA)
= (50, 24, 15k, 89k) NA (NA, —, —) (3.1, 0.8, 0.1) 3.5k
go (53, 25, 16k, 96k) NA (NA, —, —) (3.4, 0.4, 0.0) 283
B (56, 26, 20k, 118k) NA (NA, —, —) (8.1, 1.1, 0.1) 905
° (59, 27, 26k, 157k) NA (NA, —, —) (3.9, 0.6, 0.0) 187
a (65, 29, 29k, 174k) NA (NA, —, —) (7.2, 0.9, 0.1) 232
(62, 28, 30k, 182k) NA (NA, —, —) (9.3, 1.3, 0.1) 731
(72, 32, 36k, 215k) NA (NA, —, —) (NA, NA, NA)
(68, 30, 51k, 303k) NA (NA, —, —) (3.0, 0.6, 0.1) 11
(95, 35, 58k, 346k) NA (NA, —, —) (NA, NA, NA)
(41, 23, 90k, 538k) NA (NA, —, —) (NA, NA, NA)
(7, 3, 55, 322) NA (0.0, 0.0, 0.0) 6 (0.1, 0.0, 0.0) 17
(20, 10, 1k, 6k) NA (1.1, 0.0, 0.0) 53 (0.1, 0.1, 0.0) 61
(21, 9, 1k, 8k) NA (0.2, 0.0, 0.0) 4 (1.2, 0.1, 0.0) 5
» (24, 12, 2k, 11k) NA (0.3, 0.0, 0.0) 0 (0.3, 0.3, 0.0) 30
8 (28, 14, 2k, 11k) NA (0.3, 0.0, 0.0) 3 (1.0, 0.5, 0.0) 150
Es (32, 16, 3k, 20k) NA (2.0, 0.0, 0.0) 3 (1.0, 0.2, 0.0) 3
2 (36, 18, 6k, 35k) NA (3.1, 0.1, 0.1) 3 (4.2, 1.3, 0.0) 11
g (42, 20, 7k, 42k) NA (3.2, 0.1, 0.1) 3 (9.2, 3.6, 0.0) 1.2k
B (39, 19, 10k, 59k) NA (9.4, 0.1, 0.1) 5 (10.0, 1.6, 0.0) 201
It (46, 22, 11k, 63k) NA (9.9, 0.2, 0.1) 3 (3.6, 0.6, 0.0) 31
— (49, 19, 11k, 68k) NA (8.3, 0.2, 0.1) 3 (14.1, 0.9, 0.0) 1
E (32, 18, 13k, 81k) NA (10.4, 0.2, 0.1) 3 (10.4, 1.3, 0.0) 0
g (50, 24, 15k, 89k) NA (15.8, 0.3, 0.1) 4 (510, 89.9, 0.0) | 20k
g (53, 25, 16k, 96k) NA (23.7, 0.3, 0.1) 5 (7.2, 0.9, 0.0) 4
% (56, 26, 20k, 118k) NA (30.2, 0.4, 0.1) 3 (25.3, 2.3, 0.0) 93
g (59, 27, 26k, 157k) NA (74.2, 0.4, 0.1) 3 (203, 122, 0.0) 12k
) (65, 29, 29k, 174k) NA (46.9, 0.4, 0.2) 0 (24.5, 1.5, 0.0) 5
~ (62, 28, 30k, 182k) NA (84.5, 0.5, 0.3) 4 (94.9, 3.3, 0.0) 570
N (72, 32, 36k, 215k) NA (130, 0.4, 0.2) 3 (80.1, 2.6, 0.0) 662
(68, 30, 51k, 303k) NA (363, 0.7, 7.3) 3 (26.1, 2.3, 0.0) 0
(95, 35, 58k, 346k) NA (359, 1.0, 8.2) 2 (86.1, 2.5, 1.2) 6
(41, 23, 90k, 538k) NA (NA, NA, NA) (142, 5.1, 0.0) 170

#i: number of input variables in a relation; #o: number of output variables in a relation; #e:
number of innermost existential variables added due to circuit-to-CNF conversion; #C: number of
clauses in final CNF'; size: number of AIG nodes after performing ABC command dc2 with negligible
runtime not shown; time (sv/md/vf): CPU time in seconds for QBF evaluation/(counter)model
generation/verification; NA: data not available due to computation out of resource limit; —: data
not available due to inapplicability of ResQu

and can be substantially simplified by ABC [5] synthesis commands, e.g.,
balance, dc2, collapse, etc. If heavy synthesis commands such as collapse
succeeded, all the (counter)models derived in different ways for the same in-
stance can be of comparable sizes.

Table 2 shows the results of our second experiment on 22 relation deter-
minization benchmarks. All the original 22 instances are true (satisfiable). We



22 Valeriy Balabanov, Jie-Hong R. Jiang

Table 3 Summary for Relation Determinization Benchmarks.

all sKizzo SQUOLEM—+RESQU QUBE-CERT+RESQU
time time time time time
#sv ol #SV o) || #V | (sv) | (ma) || #SV/#Pe ‘ (sv) ‘ (md)
[true [ 17 [ 2 [ 1.0 J] 3 [ 21 [ — [ 17/ir ] 51.3 | 8.8 |
[false [ 22 [ 0 | 0 [ 21 [ 11758 | 52 [ 22/0 | 1254.3 | 242.9 |

(Legend same as in Table 1)

compared their models obtained in two ways: by direct model construction
from the satisfiability proofs of the original formulae and by indirect model
construction from the unsatisfiability proofs of their negations. Unlike the
QBFEVAL cases, negating these formulae by Tseitin’s transformation does
not result in variable- and clause-increase, as discussed in Section 6. The ex-
periment was conducted under the resource limit same as before. For the
original instances, RESQU could have generated Skolem functions only for the
existential variables of interests (namely, the output variables of a Boolean
relation rather than the intermediate variables), but it generated all for the
verification purpose.

It was observed that SQUOLEM is easier to produce a clause-resolution
proof than Skolem functions for a given relation determinization instance.
This phenomenon might be explained by the common large number of inner-
most existential variables, each of which requires building a Skolem function.
It was similarly observed that QUBE-CERT is relatively easier to produce a
clause-resolution proof than a cube-resolution one.

As summarized in Table 3, for the true cases, sK1zzo0 and SQUOLEM in
combination can construct models for only 3 instances, whereas from the 17
proofs of QUBE-CERT, RESQU can generate (and verify) all models. For the
negated cases, all the proofs provided by QUBE-CERT involved long-distance
resolution. RESQU internally applied the aforementioned rewriting rules to
convert them into new proofs without long-distance resolution and constructed
their countermodels. All the instances were successfully solved and verified.
SQUOLEM solved 21 out of 22 instances, and RESQU can generate (and verify)
all their countermodels (i.e., models for the original QBF). It is interesting to
see that, in the relation determinization application, countermodel generation
for the negated formulae can be much easier than model generation for the
original formulae. It reveals the essential value of RESQU.

8 Conclusions and Future Work

A new approach has been proposed to compute Skolem functions in the con-
text of QBF evaluation. As a result, Skolem-function derivation is decoupled
from Skolemization-based solvers, and is available from standard search-based
solvers, provided that proper resolution proofs are given. The approach gives a
balanced and unified view on certifying both true and false QBF using models
and countermodels. Moreover, its practical value has been strongly supported
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by experiments. As Skolem functions can be important in various areas, we
hope our results may encourage and enable QBF applications.
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