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ABSTRACT
Retiming and resynthesis are among the most important tech-
niques for practical sequential circuit optimization. However,
their applicability is much limited due to verification con-
cerns. Overcoming the verification bottleneck is a supreme
task. This paper studies both the theoretical and practical
aspects of inductive verification on the equivalence between
circuits under retiming and resynthesis transformation. We
study the completeness condition of the inductive approach
to equivalence checking and show that prior work is only com-
plete for circuits transformed under retiming or resynthesis,
but not both. We overcome prior limitation and make com-
plete the equivalence checking for circuits transformed up
to retiming+resynthesis+retiming. The theoretical insights
lead to a robust satisfiability formulation of verification un-
der various retiming and resynthesis scenarios. Experimental
results demonstrate the scalability of the approach. Several
previously unverifiable circuits and unverifiable transforma-
tion scenarios can now be verified effectively.

1. INTRODUCTION
Retiming [13] is an elementary yet effective technique in

optimizing synchronous hardware systems. By simply repo-
sitioning registers, it is capable of rescheduling computa-
tion tasks in an optimal way subject to various design cri-
teria. However, since retiming preserves circuit structures
expect for register locations, its optimization power is lim-
ited. Resynthesis [4, 17] was proposed, in combination with
retiming, to allow structural modification. Despite the effec-
tiveness of retiming and resynthesis in circuit optimization,
they are not widely used in hardware synthesis flows due to
the verification hindrance. Overcoming the bottleneck is an
important task to enhance the applicability of retiming and
resynthesis.

A recent result [11] showed that equivalence checking of
circuits under unbounded retiming and resynthesis transfor-
mation is PSPACE complete, i.e., as hard as the general se-
quential equivalence checking. Unless synthesis history is
kept or the transformation of retiming and resynthesis is
bounded, it is unlikely to have a satisfactory solution to the
intractable problem. This paper is concerned with equiv-
alence checking under bounded transformation of retiming
and resynthesis.

Prior work on the subject focuses mostly on retiming ver-
ification, e.g., [6, 9, 5, 16], where the key issue is how to
exploit structural similarities to simplify verification tasks.
While exploiting structural similarities has been a standard
technique in practical combinational equivalence checking,
it is not as straightforward in sequential verification because
register correspondence does not always exist and thus struc-
tural similarities are harder to identify. In [5], an inductive
approach was proposed to automate the detection of signal

correspondence. Although the technique is very useful, there
are still some limitations on its practicality. Firstly, the so-
found structural similarities are only complete for retiming or
resynthesis verification, but not both. Secondly, an excessive
amount of signal pairs are checked iteratively. It substantially
slows down verification. Thirdly, BDD-based computation is
inherently nonrobust. This paper overcomes the above limi-
tations.

Through the study of the fundamental condition that makes
inductive signal correspondence complete for retiming verifi-
cation, we are able to extend the verification capability and
devise reduction techniques. The main results include: 1).
Complete verification procedures are obtained for equivalence
checking under several retiming and resynthesis scenarios.
2). Reduction techniques are proposed to simplify verifica-
tion tasks. 3). Robust SAT-based formulation is addressed
to extend verification capacity. Thereby, several previously
unverifiable instances can now be verified. We hope that
through this study the practicality of retiming and resynthe-
sis can be enhanced.

This paper is organized as follows. Section 2 gives the pre-
liminaries. Our main theoretical results are presented in Sec-
tion 3 and the practical implementation issues are discussed
in Section 4. The proposed methods are then evaluated with
experiments in Section 5. Our results are contrasted with
prior work in Section 6. Section 7 gives the concluding re-
marks.

2. PRELIMINARIES

2.1 Circuits and Finite State Machines
A circuit C = (G, N) consists of gates G and directed

weighted two-terminal nets N . Without loss of generality,
we consider a fanout stem as a dummy gate with an identity
function, and thus a multi-terminal net can be treated as a
set of two-terminal nets. Every gate g ∈ G represents either
a logic/dummy gate or a primary input/output. Every net
e = (g1, g2) ∈ N ⊆ G × G represents a connection from
g1 to g2, and is weighted by the number of registers (state-
holding elements) on the net. Often a register is of some
specific initial value, either 0 or 1. In the sequel, a signal
of a circuit is meant to be the input or output of a gate or
register. Hence, several nets of a circuit may be of the same
signal (due to dummy gate fanouts); a net may correspond
to several signals (due to net weights).

Definition 1. The register boundary of a circuit C is
the set of register input and output signals. In particular,
the register input (respectively output) signals is called the
register input (respectively output) boundary.

Definition 2. A signal set S of a circuit C forms a feed-
back edge set if cutting C at the signals in S makes C acyclic.



We assume that a circuit contains no combinational loops.
Hence, the register input (output) boundary of a circuit must
form a feedback edge set.

Definition 3. The register depth of a circuit C with re-
spect to a feedback edge set S is the largest number of registers
along any path in the induced acyclic circuit after cutting C
at the signals of S.

(Cutting C at a signal s results in a new circuit C′, where
a pseudo-primary output and input are added to the input-
and output-side of the cut, respectively.)

In the behavior viewpoint, a circuit implements some de-
terministic and completely specified finite state machine (FSM).

Definition 4. A finite state machine M is a six-tuple
(Q, I, Σ, Ω, δ, λ), where Q is a finite set of states, I ⊆ Q
is the set of initial states, Σ and Ω are the sets of input and
output alphabets, respectively, and δ : Σ × Q → Q (respec-
tively λ : Σ×Q → Ω) is the transition function (respectively
output function).

2.2 Retiming and Resynthesis

2.2.1 Retiming
Retiming is made up from atomic moves of registers in

forward and backward directions across a gate [13]. Any
retiming of a circuit C = (G, N) can be specified by a retime
function ρ : G → Z, where ρ(g) denotes the lag of gate g ∈ G,
namely, the number of unit delays (in clock cycles) added to
the output signal of gate g. Thus, a lag is positive (negative)
for backward (forward) retime. Moreover, we assert that
ρ(g) = 0 if g is a primary input or output. That is, no retime
moves are made over primary inputs and outputs. (We are
concerned with valid retime functions. That is, any net after
retiming is of nonnegative weight.) Note that, if circuit C′ is
retimed from C through ρ, then C is retimed from C′ through
−ρ.

As retiming repositions registers, it changes the register
boundary of a circuit. When a circuit C and its retimed
version C′ are compared, any register can be moved forward,
backward, or stay unmoved. We may accordingly divide the
set of signals in C into several subsets as follows.

Definition 5. Given a circuit C = (G, N) and retime
function ρ, the retime region 〈C〉ρ of C with respect to ρ is
|C〉ρ ∪ 〈C|ρ, where

|C〉ρ = {the input/output signals of g ∈ G | ρ(g) < 0} and

〈C|ρ = {the input/output signals of g ∈ G | ρ(g) > 0}
are the forward and backward retime regions, respectively.

We extend the above definition to the largest retime region of
a circuit C = (G, N) (under all possible retimings) as 〈C〉 =
|C〉ρ¤ ∪ 〈C|ρ¢ , where ρ¤ and ρ¢ are the retime functions of
the most forward and most backward retimings, respectively.
In particular, we call |C〉ρ¤ (also denoted as |C〉) and 〈C|ρ¢

(also denoted as 〈C|) the largest forward and backward retime
regions of C, respectively.1

1In retiming a circuit most forwardly, the lag of a gate cannot
be bounded from above when some feedback loop is not in
the transitive fanout cone of any primary input. However, it
does not affect our discussion of the forward retime region. In
contrast, there is no such problem in most backward retiming
since, if a feedback loop is not in the transitive fanin cone of
any primary output, it is redundant and can be removed from
the circuit.

2.2.2 Resynthesis
Resynthesis, on the other hand, is a structural rewrit-

ing of a combinational function. Unlike retiming, resynthesis
changes the circuit structure but not the global functionality.

2.2.3 Retiming and Resynthesis
Retiming and resynthesis can be applied alternatively and

iteratively for circuit optimization [4, 17]. An (ordered) se-
quence of retiming and resynthesis operations is denoted as
ôp = op1+op2+· · ·+opn, where opi ∈ {retiming, resynthesis}.
Without loss of generality, we assume that opi 6= opi+1

since two consecutive retiming (similarly, resynthesis) oper-
ations can be seen as a single transformation. In the se-
quel, we say two circuits are ôp equivalent, or equivalent un-
der ôp, if one circuit can be derived from the other with
ôp. In particular, ôp in the sequel can be retiming, resyn-
thesis, retiming+resynthesis, resynthesis+retiming, or retim-
ing+resynthesis+retiming. In fact, the more iterations are
performed, the harder the circuits can be verified [11].

2.3 Signal Correspondence and Retiming In-
variants

Safety property checking (which includes sequential equiv-
alence checking) over an FSM (Q, I, Σ, Ω, δ, λ) can be consid-
ered as identifying some state set R satisfying

I(s) ⇒ R(s), (1)

R(s) ⇒ R(δ(x, s)), and (2)

R(s) ⇒ P (s), (3)

for all x ∈ Σ, s ∈ Q. (Notationally we shall not distinguish a
set and its characteristic function.) That is, R contains the
initial states I by Eq. (1) and is closed under state transition
δ by Eq. (2). Moreover, all states in R must satisfy the
desired property P by Eq. (3). In general, exact reachability
analysis may be needed to compute the smallest or largest
such R, which is costly, in fact, PSPACE-complete in the
number of state variables.

Given two FSMs M1 = (Q1, I1, Σ, Ω, δ1, λ1) and M2 =
(Q2, I2, Σ, Ω, δ2, λ2), their product FSM is (Q×, I×, Σ,B, δ×, λ×),
where Q× = Q1 × Q2, I× = I1 × I2, δ× = (δ1, δ2), and
λ× = (λ1 ≡ λ2). That is, the corresponding product circuit
C× is built from the circuits C1 of M1 and C2 of M2 by
sharing the inputs and adding an equivalence comparator at
the outputs. In the sequel, we are concerned with checking
the equivalence between C1 and C2.

Given two circuits, where one is retimed from the other,
there exists a retiming invariant [16] that specifies a relation
among state variables between these circuits and satisfies the
above three conditions with property P asserting the equiv-
alence of their outputs. Retiming invariant is easy to obtain
if signal correspondences between two circuits are known.
Van Eijk [5] proposed an inductive approach to automate
the identification of such correspondences. It can be seen as
over-approximating reachability analysis and is more robust
than exact analysis.

Any signal f of a circuit can be expressed as a function
over the primary input variable x and current-state variable
s. In fact, the equivalence between two signals, in a sequen-
tial sense, can be more general than the equivalence of their
combinational functions. We may speak of the observational
equivalence of two signals under any execution of an FSM.
To avoid the costly exact reachability analysis, we exploit a
subset of the equivalence relation by induction as follows.

Definition 6 ([5]). An inductive signal correspondence
(or briefly signal correspondence), denoted as m, of a cir-
cuit C implementing an FSM (Q, I, Σ, Ω, δ, λ) is an equiva-



InductiveSignalCorrespondence
input: a sequential circuit (with signals S) implementing

M = (Q, I, Σ, Ω, δ, λ)
output: the inductive register correspondence of M
begin
01 i := 0

02 m(i) :=
∧

(fp ≡ fq) for {(fp, fq) ∈ S × S | ∀x ∈ Σ, s ∈ Q.
[I(s) ⇒ (fp(x, s) ≡ fq(x, s))]}

03 repeat
04 i := i + 1

05 m(i) :=
∧

(fp ≡ fq) for {(fp, fq) | ∀x, x′ ∈ Σ, s ∈ Q.

[m(i−1) ⇒ ((fp ≡ fq) ∧ (fp(x′, δ(x, s)) ≡ fq(x′, δ(x, s))))]}
06 until m(i) = m(i−1)

07 return m(i)

end

Figure 1: Computation of signal correspondence m.

lence relation over a set S of signals in C such that signals
fi, fj ∈ S with m ⇒ (fi ≡ fj), i.e. fi and fj are correspond-
ing signals, satisfy

I(s) ⇒ (fi(x, s) ≡ fj(x, s)), and (4)

m(x, s) ⇒ (fi(x
′, δ(x, s)) ≡ fj(x

′, δ(x, s))) (5)

for all x, x′,∈ Σ and s ∈ Q.

(For brevity, in the sequel we abuse the notation (fi, fj) ∈ m
to mean m ⇒ (fi ≡ fj).) Note that the above definition
can be slightly generalized by considering signal pairs com-
plement to each other as corresponding signals. For brevity,
our discussion focuses on true identical signals. Definition 6
suggests a fixed-point computation as shown in Figure 1.

The connection between signal correspondence and equiv-
alence checking is as follows.

Proposition 1 ([5]). Two circuits C1 and C2 are equiv-
alent if the signal correspondence m of their product circuit
C× satisfies

m(x, s) ⇒ λ×(x, s) (6)

for all x ∈ Σ, s ∈ Q×.

Note that Eq. (6) can be checked alternatively by embedding

(λ1 ≡ λ2) into m(0) of the computation of Figure 1 with C×
as the input circuit. Thereby, C1 and C2 are equivalent if
(λ1 ≡ λ2) remains in m(i) upon return.

In the context of equivalence checking between C1 and
C2, in the sequel, for (fi, fj) ∈ m of C×, we shall assume
for simplicity that fi and fj are signals of C1 and C2, re-
spectively. Although fi and fj can be signals of the same
circuit, their appearance in m does not affect the conclusion
of (in)equivalence between the two circuits.

3. THEORETICAL INVESTIGATION
We prove below an unjustified statement in [5] that signal

correspondence is complete for retiming verification. The
proof helps us understand what conditions make the ap-
proach complete and how to simplify verification tasks.

Lemma 1. Let C× be the product of two circuits C1 and
C2. If C2 is retimed from C1, then

∀x ∈ Σ, s ∈ Q×. m(x, s) ⇒ λ×(x, s), (7)

where m is the signal correspondence of virtually forward
retimed2 C×.

2A circuit C is virtually forward retimed if the signals that
can be produced through any forward retiming are added to
C [5].

Proof. Since C× is virtually forward retimed, any signal
that can be produced through forward retiming is added to
the constituent circuit C1 or C2 of C×. Hence, in C×, the
input and output signals of every forwardly retimed register
of one constituent circuit (forward with respect to the other
constituent circuit) have corresponding signals in the other.
Let P be the set of such corresponding pairs.

We show that signal pairs P remain in m throughout the
refinement procedure of Figure 1. By induction, for the base
case, it can be checked that the signal pairs of P must present
in m(0) for correct retiming. For the induction step, assume
signal pairs P are all present in m(k). Observe that, for any
signal pair (fi, fj) in P , fi and fj are isomorphic functions
over equivalent input signals (each equivalent input pair is
either the same primary input or a signal pair in P ). There-
fore, the valuation update of fi and fj for the next timeframe
can always be expressed in terms of corresponding primary
inputs and signal pairs in P . That is, adding one more time-
frame does not make fi and fj inequivalent. Hence all of the
signal pairs in P are present in m(k+1) as well. By induction,
we conclude signal pairs P remain in m.

Finally, since C1 and C2 are retiming equivalent, their
any corresponding primary output pair again consists of two
isomorphic functions over equivalent input signals. Thus,
m ⇒ λ×.

We learn from the above proof that the signal pairs P , in-
stead of all possible corresponding signal pairs, suffices to
demonstrate the implication of Eq. (7). In fact, P forms a
feedback edge set in C×. It suggests a way of deriving weak
m, yet complete for retiming equivalence checking. That is,
we do not need to compute maximal signal correspondence
in order to show retiming equivalence. The reduction in cor-
responding signal pairs turns out to be helpful in SAT-based
verification as to be discussed in Section 4.

The following theorem summarizes the connection between
signal correspondence and retiming equivalence checking.

Theorem 1. Signal correspondence m is both sound and
complete (i.e. no false negative) in checking retiming equiv-
alence provided that virtual forward retiming is performed.

Proof. The soundness follows from Proposition 1; the
completeness follows from Lemma 1.

Essentially, checking retiming equivalence is combinational
equivalence checking if register correspondence is known.

On the other hand, a result similar to Lemma 1 holds for
resynthesis transformation.

Lemma 2. Let C× be the product of two circuits C1 and
C2. If C2 is resynthesized from C1, then

∀x ∈ Σ, s ∈ Q×. m(x, s) ⇒ λ×(x, s),

where m is the signal correspondence of C×.

Proof. Observe that resynthesis does not change transi-
tion and output functions. Thus any signal in the register
boundary of C1 has a corresponding signal in C2, and vice
versa. The signal correspondence induces the equivalence
between λ1 and λ2 for correct resynthesis transformation.

3.1 Timeframe Expansion
Although virtual forward retiming makes signal correspon-

dence complete for retiming equivalence checking, it has two
main limitations. Firstly, it is insufficient for checking the
equivalence of circuits transformed with both retiming and
resynthesis because signal pairs essential to equivalence check-
ing can be missing. In this case, virtual backward retiming



InductiveSignalCorrespondence k-Timeframe
input: k and a sequential circuit (with signals S) implementing

M = (Q, I, Σ, Ω, δ, λ)
output: the inductive register correspondence of M
begin
01 i := 0

02 m(i)
k :=

∧
(fp ≡ fq) for {(fp, fq) ∈ S × S | ∀x1, . . . , xk ∈ Σ,

s ∈ Q.[I ⇒ ∧k
t=1(f

t
p ≡ ft

q)]}
03 repeat
04 i := i + 1

05 m(i)
k :=

∧
(fp ≡ fq) for {(fp, fq) | ∀x1, . . . , xk+1 ∈ Σ,

s ∈ Q.[(m(i−1)
k ⇒ (fp ≡ fq))∧

((
∧k

t=1 m(i−1)
k

t
) ⇒ (fk+1

p ≡ fk+1
q ))]}

06 until m(i)
k = m(i−1)

k

07 return m(i)
k

end

Figure 2: Computation of signal correspondence mk.

is needed, which is, however, impractical due to the possible
nonexistence and nonuniqueness of valid initial states. Sec-
ondly, the extra signals added by virtual forward retiming
induce more signal pairs to be checked in m(i) of Figure 1.
This side effect is critical especially for SAT-based formula-
tion of equivalence checking as to be discussed in Section 4.

We abandon virtual retiming and overcome the above lim-
itations through timeframe expansion.

Definition 7. Given a circuit C with transition function
δ(x, s), the k-timeframe expansion of signal f(x, s) in C, de-
noted as fk, is

fk(xk, . . . , x1, s) = f(xk, δ(xk−1, δ(. . . , δ(x1, s)))), (8)

where input variable x is instantiated with time indices given
in superscript.

That is, fk is a timed Boolean formula.
The signal correspondence of Definition 6 can be general-

ized under the k-timeframe expansion as follows.

Definition 8. A signal correspondence under the k-timeframe
expansion, denoted as mk, of a circuit C implementing an
FSM (Q, I, Σ, Ω, δ, λ) is an equivalence relation over a set S
of signals such that signals fi(x, s), fj(x, s) ∈ S with (fi, fj) ∈
mk satisfy

I ⇒
k∧

t=1

(f t
i ≡ f t

j ), and (9)

(

k∧
t=1

mt
k) ⇒ (fk+1

i ≡ fk+1
j ) (10)

for all x1, . . . , xk+1 ∈ Σ, s ∈ Q.

Similar to Figure 1, Figure 2 shows the computation for mk.
Moreover, the proposition below is analogous to Proposi-
tion 1.

Proposition 2. Two circuits C1 and C2 are equivalent
if the signal correspondence mk of their product circuit C×
satisfies

mk(x, s) ⇒ λ×(x, s) (11)

for all x ∈ Σ, s ∈ Q×.

Proof. Observe that (fi, fj) ∈ m implies (fi, fj) ∈ mk.
By the transitivity of implication, we have mk(x, s) ⇒ m(x, s) ⇒
λ×(x, s). The proposition follows.

Checking Eq. (11) is similar to checking Eq. (6), and can be
alternatively embedded into the mk computation.

Figure 3: (a) Original circuit C with register bound-
ary in solid line. (b) Retimed (and then resynthe-
sized) circuit C† with register boundary in dashed
line. (c) Further retimed circuit C‡ with register in
dotted line.

The intuition behind timeframe expansion is not to cre-
ate intermediate signals as in virtual retiming, but rather to
bridge the missing temporal links among signals between C1

and C2 through timed Boolean formulas. Thus, unlike in vir-
tual retiming, the signal pairs to be checked is not increased
due to timeframe expansion, even though we do need to check
the same signal pair in different timeframes.

A useful property connecting the feedback edge set and
timeframe expansion of a circuit is as follows.

Proposition 3. Given a feedback edge set S of a circuit
C, there exists some constant k such that any signal of C can
be represented as a timed Boolean formula over the variables
of the signals in S with time indices no greater than k. In
particular, k is bounded from above by the register depth of
C with respect to S.

Hence as long as signals S1 = {f1 | (f1, f2) ∈ mk with f1 of
C1, f2 of C2} and S2 = {f2 | (f1, f2) ∈ mk with f1 of C1, f2 of
C2} form feedback edge sets in C1 and C2, respectively, any
signal of C× can be expressed as a timed Boolean formula
over primary input variables and the corresponding variables
of signals in S1 and S2. In this case, corresponding signal
pairs in mk can be used to check the equivalence between C1

and C2; not all signal pairs need to be considered in mk.
From practical experience, k is small in timeframe ex-

pansion. In our experimental study, k = 1 (i.e. no extra
timeframe expansion) suffices for most equivalence checking
instances. Also, for equivalence checking under several re-
timing and resynthesis scenarios, only a modest part of the
signal pairs suffices to show the (in)equivalence as long as it
forms a feedback edge set. The reduction in signal pairs is
important in our SAT-based verification.

3.2 Equivalence Checking
Below we study the equivalence checking under various re-

timing and resynthesis scenarios. We assume that the trans-
formation history is unknown. The original and final circuits
are to be compared for their equivalence.

3.2.1 Retiming Equivalence
Let circuit C2 be derived from C1 by retiming. We are

concerned with checking their equivalence. Signal correspon-
dence mk is complete for retiming equivalence checking as-
suming the checked signal pairs in the procedure of Figure 2
are comprehensive enough. However, to avoid checking un-
necessary signal pairs, we characterize a minimal set of signal
pairs to be checked sufficient for maintaining the complete-
ness property. We propose the following two constructions:
Construction T1: Every signal in the register output bound-
ary of C1 is paired up with every signal in the forward retime
region |C2〉, and vice versa.
The validity of this construction is asserted below.

Theorem 2. Signal pairs created by Construction T1 are



sufficient for complete retiming equivalence checking. In par-
ticular, Proposition 2 gives the equivalence condition for C1

and C2.

Proof. Consider Figure 3 (a) and (b). Let C1 = C and
C2 = C†. The signals in the register output boundary of C1

are paired up with the signals in |C2〉; the signals in the reg-
ister output boundary of C2 are paired up with the signals in
|C1〉. As a result, register output signals signified in “?” are
common signals exist in both C1 and C2. Thus, they form
corresponding signals between C1 and C2. Every such corre-
sponding signal pair is included in Construction T1. More-
over, the ? signals form a feedback vertex set in both C1 and
C2. (Otherwise a combinational cycle exists in the original
circuit and that violates our assumption.) With timeframe
expansion, it is guaranteed that the outputs of C1 and C2

can be expressed as timed Boolean formulas over the ? sig-
nals. The signal correspondence between C1 and C2 induces
the condition that the primary output signals must be equiv-
alent if the retiming is performed correctly.

Construction T2: Every signal in the register (both input
and output) boundary of one circuit, say C1, is paired up
with every signal in the retime region of the other circuit,
〈C2〉.

Theorem 3. Signal pairs created by Construction T2 are
sufficient for complete retiming equivalence checking. In par-
ticular, C1 and C2 are equivalent if I×(s) ⇒ λ×(x, s) and
mk(x, s) ⇒ λ×(x′, δ(x, s)) for all x, x′ ∈ Σ, s ∈ Q×.

Proof. Consider Figure 3 (a) and (b). Let C1 = C and
C2 = C†. The register (input and output) boundary signals
of C2 are paired up with the signals in |C1〉. As a result, the
signals signified in “N” are common signals exist in both C1

and C2. Thus, they form corresponding signals between C1

and C2. Every such corresponding signal pair is included in
Construction T2. It is important to note the N signals are on
the left-hand and right-hand sides of the register boundary
of C2 due to the backward and forward retiming, respec-
tively, performed on C1. As a result, the N signals does not
form a cut in a single timeframe separating the primary-input
and current-state signals from the primary-output and next-
state signals. However, in a two-timeframe expansion, the N
signals in two consecutive timeframes form a cut that sepa-
rates the primary-input and current-state signals of the first
timeframe from the primary-output and next-state signals
of the second timeframe. Therefore, the correspondence of
the signals in the cut induces the equivalence of the second-
timeframe primary outputs of C1 and C2 for correct retim-
ing, i.e., ∀x, x′ ∈ Σ, s ∈ Q×.mk(x, s) ⇒ λ×(x′, δ(x, s)). In
addition, since ∀x ∈ Σ, s ∈ Q×.I×(s) ⇒ mk(x, s), it im-
plies ∀x ∈ Σ.λ×(x, q) ≡ 1 for any state q reachable from I×.
Therefore, as long as ∀x ∈ Σ, s ∈ Q×.I×(s) ⇒ λ×(x, s), the
output λ× of C× always produces constant 1. That is, C1

and C2 are equivalent.

3.2.2 Retiming+Resynthesis Equivalence
Let circuit C2 be derived from C1 by retiming followed

with resynthesis. To check their equivalence, Construction T2
(but not Construction T1) can be slightly modified to reduce
the signal pairs to be checked in computing mk. In particular,
the roles of C1 and C2 should be distinguished.
Construction TS: Every signal in the register boundary of
C2 is paired up with every signal in 〈C1〉.
The validity of the construction is asserted below.

Theorem 4. Signal pairs created by Construction TS are
sufficient for complete retiming+resynthesis equivalence check-
ing. In particular, C1 and C2 are equivalent if I×(s) ⇒

λ×(x, s) and mk(x, s) ⇒ λ×(x′, δ(x, s)) for all x, x′ ∈ Σ, s ∈
Q×.

Proof. Consider Figure 3 (a) and (b). Let C1 = C and
C2 = C†. The N signals are those with signal correspondence
between the original circuit C1 and the retimed circuit C2.
Suppose C2 is further resynthesized. Then the signals in C1

and C2 can be completely different except for those in the
register boundary of C2 because resynthesis preserves the
transition and output functions. (In contrast, resynthesis on
C2 makes Construction T1 not able to generate all necessary
signal pairs for complete verification.) Therefore essential
signal correspondence still exists, and the proof is similar to
that of Theorem 3.

Hence unlike virtual retiming, the timeframe expansion method
makes equivalence checking complete for retiming+resynthesis.

3.2.3 Resynthesis+Retiming Equivalence
Checking resynthesis+retiming equivalence is essentially

the same as checking retiming+resynthesis equivalence ex-
cept for switching the roles between C1 and C2.

3.2.4 Retiming+Resynthesis+Retiming Equivalence
Let circuit C2 be derived from C1 by retiming, resynthesis,

and then retiming. To check their equivalence, the following
construction can be used to reduce the signal pairs to be
checked in computing mk. Essentially for the verification to
be complete, in addition to the signal correspondence within
a single timeframe, we need to explore signal correspondence
across two adjacent timeframes.
Construction TST: Consider C1 and C2 expanded in two
timeframes. There are four types of signal pairs to take care.
Let 〈C〉i denote the largest retime region of circuit C at the
ith timeframe. Every signal in 〈C1〉i is paired up with ev-
ery signal in 〈C2〉i, for i = 1, 2. In addition, every signal in
〈C1〉2 (respectively 〈C1〉1) is paired up with every signal in
〈C2〉1 (respectively 〈C2〉2). (Therefore mk depends on vari-
ables x, x′, s, where x and x′ are the primary inputs of two
adjacent timeframes.)

Theorem 5. Signal pairs created by Construction TST
are sufficient for complete retiming+resynthesis+retiming equiv-
alence checking. In particular, C1 and C2 are equivalent if
I× ⇒ (λ1

× ∧ λ2
×) and mk ⇒ λ3

× for all valuations on input
and state variables.

Proof. Consider Figure 3 (a) and (c). Let C1 = C and
C2 = C‡. In Figure 3 (c), the symbol “¥” denotes where
signal correspondence exists between the signals of C1 and
those of C2 delayed by one clock cycle; the symbol “•” de-
notes where signal correspondence exists between the signals
of C2 and those of C1 delayed by one clock cycle. Construc-
tion TST recovers the above signal correspondence across
two adjacent timeframes as well as the correspondence of N
signals within the same timeframe. Observe that, if the cir-
cuits are expanded into three timeframes, the signals marked
with N, ¥, • in (c) in the three timeframes form a cut for ev-
ery constituent circuit that separates the primary-input and
current-state signals of the first timeframe from the primary-
output and next-state signals of the third timeframe. More-
over, by Construction TST, every signal fi on the cut of
a circuit has a corresponding signal fj on the cut of the
other circuit such that (fi, fj) ∈ mk. Therefore, the signal
pairs created by Construction TST induce the equivalence of
the third-timeframe primary outputs of C1 and C2 for cor-
rect retiming+resynthesis+retiming, i.e., mk ⇒ λ3

×. Since
I× ⇒ mk, it implies λ×(x′, δ(x, q)) ≡ 1 for any state q reach-
able from I× in two or more transitions. Therefore, as long



as I× ⇒ (λ1
× ∧ λ2

×), the output λ× of C× always produces
constant 1. That is, C1 and C2 are equivalent.

It should be emphasized that the purpose of k-timeframe
expansion differs from that of the above discussion. The for-
mer is concerned with expressing timed Boolean functions
in terms of the feedback edge set signals, whereas the lat-
ter is concerned with the correspondence of signals across
two adjacent timeframes. They are orthogonal and neces-
sary techniques to make complete the equivalence checking
under retiming+resynthesis+retiming.

3.2.5 Resynthesis+Retiming+Resynthesis Equivalence
and Beyond

Inductive signal correspondence is incomplete in proving
the equivalence under resynthesis+retiming+resynthesis and
beyond. The reason is that, once circuit transformation in-
volves two resynthesis steps (interleaved with retiming), sig-
nal correspondence may not even exist between the original
and transformed circuits. In this case, verification techniques
for general sequential equivalence checking may be needed.

4. PRACTICAL IMPLEMENTATION
We formulate the computation of signal correspondence

mk as SAT solving. Formally speaking, in the initial step,

signal pair (fp, fq) is in m(0)
k if I ⇒ ∧k

t=1(f
t
p ≡ f t

q), that is,

I∧∨k
t=1(f

t
p 6≡ f t

q) is unsatisfiable. In every refining iteration,

(fp, fq) is in m(i+1)
k if (fp, fq) is in m(i)

k and
∧k

t=1 m(i)
k

t ⇒
(fk+1

p ≡ fk+1
q ), that is,

∧k
t=1 m(i)

k

t ∧ (fk+1
p 6≡ fk+1

q ) is unsat-
isfiable. Thus, checking whether a signal pair remains in mk

requires a call to the SAT solver. For the SAT-formulation to
be practical, it is of great importance to reduce the number
of signal pairs to be checked.

The following techniques are useful making SAT-based
checking practical: 1). Constructions T1, T2, TS, TST pro-
vide ways of reducing signal pairs to be checked under differ-
ent retiming and resynthesis scenarios. 2). Multi-timeframe
simulation is effective in pruning inequivalent signal pairs.
The idea is that, for signal pair (fi, fj) to be in mk, they
must be equivalent in all timeframes. In other words, if two
signals appear to be inequivalent in some timeframe, then
they can be removed from consideration. Thus with a multi-
timeframe expansion we are able to prune more inequiva-
lent signals. Removing inequivalent pairs as early as possi-
ble reduces the number of calls to expensive SAT solving.
3). Exploring the transitivity of equivalence relation mk sub-
stantially reduces signal pairs to be checked. For instance,
(f1, f2), (f3, f4), (f3, f2) ∈ mk directly implies (f1, f4) ∈ mk

without SAT solving. Hence considering complementary sig-
nals as corresponding signals (as mentioned right after Defini-
tion 6) helps reduce the number of signal pairs to be checked.
4). Incremental SAT solving can be applied in every refin-
ing iteration. However, incremental solving across different
iterations may not be memory efficient when the number of
signal pairs to be checked is large. 5). A satisfying assign-
ment for one inequivalent pair may be useful in proving the
inequivalence of other pairs. See also [14, 12] for more useful
techniques.

5. EXPERIMENTAL RESULTS
We implemented our algorithm in C++ within the ABC [2]

framework and adopted miniSAT [7] as the underlying solver.
All experiments were conducted on a Linux machine with
Xeon 3.4GHz CPU and 6Gb RAM. The ISCAS benchmark
circuits were transformed under retiming and resynthesis to
test our equivalence checker.

Table 1 shows the equivalence checking results for retim-
ing by Construction T1, retiming+resynthesis by Construc-
tion TS, and retiming+resynthesis+retiming by Construc-
tion TST. Column 1 lists the circuits. Column 2 (respectively
3) shows the numbers of AIG nodes (respectively registers)
of the original/transformed circuits. CPU time and memory
usage are shown in Columns 4 and 5, respectively. Column 6
shows the numbers of iterations taken in pruning inequivalent
pairs and the sizes (in parentheses) of timeframe expansion
for the circuits to be verifiable. Comparing the three ver-
ification problems, we see that the verification gets harder
as more retiming and resynthesis steps are involved. The
run time is in general proportional to the numbers of itera-
tions and signal pairs to be checked. We were able to check
retiming and retiming+resynthesis equivalences up to circuit
s38584.1, and retiming+resynthesis+retiming equivalence up
to s9234, with CPU time limit of 60,000 secs. Compared with
the BDD-based approach [5], our memory usage is small.
In contrast, the largest circuit reported in [5] is s5378 with
CPU time 801 secs (corresponding to our 70 secs in the re-
timing+resynthesis case). Another special circuit s3330 took
1316 secs in contrast to our 5 secs. Note that the comparisons
are unfair for different experimental circuits and machines,
and only provides a rough reference. Moreover, Table 1 re-
veals that most circuits can be verified within a few pruning
iterations and without extra timeframe expansion. Circuit
s838.1 is one of the few exceptions, where some inequivalent
signal pairs are hard to drop. It takes many iterations to
terminate. In such instances, intelligent simulation [15] may
be helpful in pruning inequivalent pairs more quickly.

Figure 4 compares the reduction power of Constructions T1,
T2 and T3, the construction of pairing up all signals between
〈C1〉 and 〈C2〉 for circuits C1 and C2 under verification. The
column chart has y-axis log-scaled indices on the left-hand
side. It shows the numbers of initial signal pairs left after
simulation on an 80-timeframe expansion. The line chart
with y-axis indices on the right-hand side shows the reduc-
tion ratios of Constructions T1, T2, and T3 compared with
T4, the construction of forming all signal pairs between C1

and C2. The average reduction ratios of T1, T2, and T3 are
0.84, 0.69, and 0.17, respectively. (All the experiments are
in terms of retiming equivalence checking.) These ratios in-
directly reveal the typical relative sizes among Constructions
T1, TS, and TST.

In addition to Figure 4, we study the relation between the
number of initial signal pairs (after a 80-timeframe simula-
tion) and the total verification time in Figure 5. The x-axis
indicates the run time; the y-axis indicates the number of
initial signal pairs in log scale. (Here the reported circuits
are chosen for best fit into the log-scaled plot.) For a circuit,
four points are plotted with respect to the numbers of initial
pairs from Constructions T1, T2, T3, and T4. As expected,
the more initial pairs are present, the longer a verification
task takes. However, s3384 and s6669 are the exceptions and
can be explained as follows. Observe that, since the y-axis
is log-scaled, Constructions T1 and T2 do not reduce sig-
nal pairs much in the two circuits. It may also due to the
fact that adding more constraints makes unsatisfiable a CNF
easier to solve. It is also interesting to observe that T2 is
the worst construction for s3384 and s6669. It can be ex-
plained that the numbers of signals in signal correspondence
m from C1 and C2 under verification are unbalanced. It
may lead to inefficient learning during SAT solving. On the
other hand, for circuits with many initial signal pairs (typical
in large circuits) or involving many pruning iterations (e.g.,
s635, s838.1), the reduction is very effective.

Figure 6 compares our approach with temporal induction
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Figure 4: Comparison of reduction techniques.
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[8] under retiming+resynthesis equivalence checking. A time
limit of 3600 secs is imposed. Since temporal induction is a
general safety property checking, only primary output pairs
are formed to avoid refining an excessive amount of inequiv-
alent pairs. As can be seen, exploiting synthesis structure is
very important in circuit equivalence checking.

6. COMPARISONS WITH PRIOR WORK
Retiming Verification. Shenoy et al. [18] exploited the

structure preserving property of retiming for retiming veri-
fication. Firstly, graph isomorphism checking is performed
over the two circuits under comparison (ignoring the weights
on nets). If two circuits are retiming equivalent, then their
structures must be isomorphic. Secondly, loop invariants are
asserted. That is, the number of registers on every cycle
remains the same before and after retiming. The limited ap-
plicability of this method may be due to the lack of effective
approaches to the graph isomorphism checking.

Assuming gate-to-gate matching between a circuit and
its retimed version is known, Mneimneh and Sakallah [16]
showed that the relation among state variables derived from
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Figure 6: Comparison with temporal induction.

a retime function forms a retiming invariant. In contrast, we
do not assume the existence of such matching.

Van Eijk’s signal correspondence [5] automates the com-
putation of retiming invariant without knowing gate match-
ing a priori. However, it is only complete for retiming verifi-
cation helped by virtual retiming.

SAT-Based Induction. Bjesse and Claessen [1] strength-
ened van Eijk’s method with generalized temporal induction
[19]. A SAT-based formulation was proposed to solve the
safety property given as the equivalence (or implication) re-
lation among signal pairs. As was not the focus, how to
reduce signal pairs in proving retiming equivalence was not
addressed. Although the general induction is complete for
checking safety properties, it does not exploit the speciality
of retiming and resynthesis. It is interesting to note that,
unlike [1, 19], no unique-state constraint is needed in our
verification.

Verification-Aware Synthesis. A recent approach [3]
to the verifiability of circuit transformation, orthogonal to
ours, is to maintain synthesis history. Keeping all synthesis
history with structural hashing makes inductive invariants



directly derivable from the synthesis database without fixed-
point computation. The approach is promising yet inappli-
cable if the synthesis history is unavailable.

7. CONCLUSIONS
Prior work mostly focused on either retiming verification

or general property checking. This paper studied practical
equivalence checking for circuits transformed under both re-
timing and resynthesis. We showed that van Eijk’s signal
correspondence is only complete for retiming verification even
with virtual retime. Through the study of its completeness
condition, we extended the verification capability and ca-
pacity to the complete checking of equivalence under retim-
ing+resynthesis+retiming. As retiming and resynthesis are
among the most important techniques in sequential circuit
optimization, our results overcame part of the verification
bottlenecks in logic synthesis. We hope that the applicabil-
ity of retiming and resynthesis can thus be enhanced through
our study.
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Table 1: Equivalence Checking
circuit #node #reg time mem #ite

old/new old/new (sec) (Mb) (#tf)

Retiming
s820 388/426 5/21 1.42 14.7 5(1)
s832 399/437 5/20 1.64 14.6 5(1)

s838.1 404/492 32/117 15.48 14.6 43(1)
s953 416/432 29/45 0.91 14.1 1(1)
s967 437/447 29/39 0.86 13.6 1(1)
s991 399/470 19/90 1.03 14.3 1(1)
s1196 524/526 18/20 1.47 13.9 1(1)
s1238 579/581 18/20 2.28 14.7 1(1)
s1269 541/612 37/108 1.79 14.6 1(2)
s1423 559/598 74/113 2.22 15.0 4(1)
s1488 697/723 6/27 1.62 15.2 2(1)
s1494 707/749 6/40 4.29 15.2 4(1)
s1512 578/714 57/190 5.61 14.4 7(1)
s3271 1259/1379 116/235 3.55 15.7 1(2)
s3330 1153/1157 132/306 4.83 15.8 1(2)
s3384 1323/1296 183/156 110.18 17.3 6(2)
s4863 1917/2177 104/363 11.8 16.7 1(1)
s5378 1654/1814 179/398 88.18 16.9 13(2)
s6669 2641/3133 239/731 56.89 22.4 1(3)

s9234.1 2245/2526 211/459 722.87 19.8 23(2)
s13207.1 3572/3491 638/627 10189.86 26.1 45(1)
s15850.1 - - - - -
s35932 14032/14330 1728/2026 1707.34 39.7 20(1)
s38417 - - - - -
s38584 14143/14148 1452/1457 2807.39 49.9 17(1)

s38584.1 14169/14170 1426/1427 6692.99 43.9 13(1)
Prolog 1214/1194 136/306 3.46 15.5 1(1)

Retiming+Resynthesis
s820 388/363 5/21 1.02 13.7 6(1)
s832 399/372 5/20 1.00 13.8 6(1)

s838.1 404/477 32/117 56.1 14.1 82(1)
s953 416/424 29/45 0.81 13.5 1(1)
s967 437/439 29/39 0.81 13.6 1(1)
s991 399/470 19/90 1.08 14.2 1(1)
s1196 524/505 18/20 1.26 13.8 1(1)
s1238 579/551 18/20 1.35 13.8 1(1)
s1269 541/589 37/108 1.62 14.2 1(2)
s1423 559/582 74/113 5.44 14.3 8(1)
s1488 697/671 6/27 1.27 14.4 2(1)
s1494 707/707 6/40 2.05 14.5 4(1)
s1512 578/677 57/190 33.45 14.7 12(1)
s3271 1259/1311 116/235 4.47 15.7 2(1)
s3330 1153/1104 132/306 5.15 15.7 1(2)
s3384 1323/1201 183/156 180.15 17.1 11(2)
s4863 1917/1898 104/363 12.58 16.2 1(1)
s5378 1654/1533 179/398 70.17 17.0 15(2)
s6669 2641/2974 239/731 251.86 23.2 1(3)

s9234.1 2245/2169 211/459 653.37 25.3 32(2)
s13207.1 3572/3013 638/627 16853.72 27.4 45(1)
s15850.1 - - - - -
s35932 14033/11060 1728/2026 17392.83 41.6 23(1)
s38417 - - - - -
s38584 14143/12184 1452/1457 5339.16 49.3 17(1)

s38584.1 14169/12211 1426/1427 7919.02 40.5 14(1)
Prolog 1214/1126 136/306 4.21 15.4 1(1)

Retiming+Resynthesis+Retiming
s820 388/339 5/16 4.43 13.8 8(1)
s832 399/356 5/29 5.17 13.8 8(1)

s838.1 404/381 32/68 179.95 14.9 154(1)
s953 416/426 29/52 1.34 13.7 1(1)
s967 437/440 29/40 1.43 13.7 1(1)
s991 399/401 19/21 1.18 14.5 1(1)
s1196 524/498 18/19 1.34 13.8 1(1)
s1238 579/540 18/19 1.38 13.8 1(1)
s1269 541/563 37/85 1.42 14.6 1(1)
s1423 559/559 74/90 19.04 14.6 12(1)
s1488 697/664 6/30 5.19 14.6 8(1)
s1494 707/697 6/36 5.31 14.6 8(1)
s1512 578/535 57/63 261.89 16.1 23(1)
s3271 1259/1306 116/230 11.82 16.2 3(2)
s3330 1153/893 132/122 5.22 15.3 1(2)
s3384 1323/1201 183/156 50.89 16.4 12(2)
s4863 1917/1705 104/221 25.02 17.4 1(2)
s5380 1654/1368 179/276 6672.95 28.8 16(6)
s6669 2645/2727 239/489 124.39 20.8 1(2)

s9234.1 2245/2169 211/459 3482.47 34.3 28(2)
s13207.1 - - - - -
s15850.1 - - - - -
s35932 - - - - -
s38417 - - - - -
s38584 - - - - -

s38584.1 - - - - -
Prolog 1214/908 136/148 4.73 15.0 1(1)


