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ABSTRACT

Functional decomposition is a fundamental operation in logic
synthesis. Prior BDD-based approaches to functional decom-
position suffer from the memory explosion problem and do
not scale well to large Boolean functions. Variable partition-
ing has to be specified a priori and often restricted to a few
bound-set variables. Moreover, non-disjoint decomposition
requires substantial sophistication. This paper shows that,
when Ashenhurst decomposition (the simplest and prefer-
able functional decomposition) is considered, both single-
and multiple-output decomposition can be formulated with
satisfiability solving, Craig interpolation, and functional de-
pendency. Variable partitioning can be automated and inte-
grated into the decomposition process without the bound-set
size restriction. The computation naturally extends to non-
disjoint decomposition. Experimental results show that the
proposed method can effectively decompose functions with
up to 300 input variables.

1. INTRODUCTION

Functional decomposition [1, 5, 9] aims at decomposing a
Boolean function into a network of smaller sub-functions. It
is a fundamental operation in logic synthesis and has various
applications to FPGA synthesis and to the minimization of
circuit communication complexity. There has been intensive
work on this subject since FPGAs became a viable design
style and BDD packages were available. See, e.g., [14] for a
survey.

Most prior work on functional decomposition used BDD
as the underlying data structure. With proper variable or-
dering, BDD can be exploited for the computation of func-
tional decomposition. Despite having been a powerful tool,
BDD poses several limitations: Firstly, BDD suffers from
the memory explosion problem. In representing a Boolean
function, a BDD can be of large size (in the worst case, ex-
ponential in the number of variables). It is even more so
when special variable ordering rules need to be imposed on
BDDs for functional decomposition. Therefore it is typical
that a function under decomposition can have just a few vari-
ables. Secondly, variable partitioning needs to be specified
a priori, and cannot be automated as an integrated part of
the decomposition process. In order to effectively enumerate
different variable partitions and keep BDD sizes reasonably
small, the set of bound set variables cannot be large. Thirdly,
for BDD-based approaches, non-disjoint decomposition can-
not be handled easily. In essence, decomposability needs to
be analyzed by cases exponential in the number of joint (or
common) variables. Finally, even though multiple-output de-
composition [16] can be converted to single-output decompo-
sition [8], BDD sizes may grow largely in this conversion.

The above limitations motivate the need for new data
structures and computation methods for functional decom-

Figure 1: Ashenhurst decomposition

position. This paper shows that, when Ashenhurst decom-
position [1] is considered, these limitations can be overcome
through satisfiability (SAT) based formulation. Ashenhurst
decomposition is a special case of functional decomposition,
where, as illustrated in Figure 1, a function f(X) is decom-
posed into two sub-functions h(Xu, Xc,z4) and g(Xa, Xc)
with f(X) = h(Xu, Xc,9(Xa, Xc)). For general functional
decomposition, the function g can be a functional vector
(g1,...,9%) instead. It is this simplicity that makes Ashen-
hurst decomposition particularly attractive in practical ap-
plications.

The enabling techniques of our method, in addition to
SAT solving, include Craig interpolation [4] and functional
dependency [10]. Specifically, the decomposability of func-
tion f is formulated as SAT solving, the derivation of function
g is by Craig interpolation, and the derivation of function h
is by functional dependency.

Compared with BDD-based methods, the proposed algo-
rithm is advantageous in the following aspects. Firstly, it
does not suffer from the memory explosion problem and is
scalable to large functions. Experimental results show that
Boolean functions with more than 300 input variables can
be decomposed effectively. Secondly, variable partitioning
needs not be specified a priori, and can be automated and
derived on the fly during decomposition. Hence the size of the
bound set variables X need not be small. Thirdly, it works
for non-disjoint decomposition naturally. Finally, it is easily
extendable to multiple-output decomposition. Nonetheless,
a limitation of the method is its expensive generalization to
functional decomposition beyond Ashenhurst’s special case.

As interconnects become a dominating concern in modern
nanometer IC designs, scalable decomposition methods play
a pivotal role in circuit communication minimization. With
the advantages of the proposed method, hierarchical logic de-
composition could be made feasible in practice. In addition,
our results may shed light on scalable Boolean matching for
heterogeneous FPGAs as well as topologically constrained
logic synthesis.

This paper is organized as follows. Section 2 introduces
essential preliminaries. Our main algorithms are presented
in Section 3, and evaluated with experimental results in Sec-
tion 4. Section 5 compares some related prior work. Finally,
Section 6 concludes the paper and outlines future work.



2. PRELIMINARIES

As conventional notation, sets are denoted by upper-case
letters, e.g., S; set elements are in lower-case letters, e.g.,
e € S. The cardinality of S is denoted by |S|. A partition of
aset Sinto S; C Sfori=1,...,k (with S;NS; =0,i # j,
and (J; Si; = 5) is denoted by {S1|S2|...|Sk}. For a set X of
Boolean variables, its set of valuations (or truth assignments)
is denoted by [X], e.g., [X] = {(0,0),(0,1),(1,0),(1,1)} for
X = {$1, CCQ}.

2.1 Functional Decomposition

DEFINITION 1. Given a completely specified Boolean func-
tion f, variable x is a support variable of f if fo # f-z,
where fr and f-r are the positive and negative cofactors of
f on x, respectively.

DEFINITION 2. A set {fi(X),...
ified Boolean functions is (jointly) decomposable with respect
to some variable partition X = {Xu|Xa|Xc} if every func-
tion fi, i =1,...,m, can be written as

Ji(X) = hi(Xu, Xe,1(Xa, Xe), -+, gx(Xa, Xo))

for some functions hi, g1, ..., g with k < |Xg|. The de-
composition is called disjoint if Xc = 0, and non-disjoint
otherwise.

It is known as single-output decomposition for m = 1, and
multiple-output decomposition for m > 1. Note that, in
multiple-output decomposition, functions hi, ..., h, share
the same functions ¢1,...,gx. For k& = 1, the decomposi-
tion is known as the so-called Ashenhurst decomposition [1].

Note that, for | X¢| = 1, there is no successful decompo-
sition because of the violation of the criterion k < |Xg|. On
the other hand, the decomposition trivially holds if Xc U X¢g
or Xc U Xy equals X. The corresponding variable partition
is called trivial. This paper is concerned about decomposi-
tion under non-trivial variable partition. Moreover, we focus
on Ashenhurst decomposition.

The decomposability of a set {f1,..., fm} of functions un-
der the variable partition X = {X#x|X¢|Xc} can be analyzed
through the so-called decomposition chart, consisting of a set
of matrices, one for each member of [X¢c]. The rows and
columns of a matrix are indexed by {1,...,m} x [Xg] and
[Xc], respectively. For i € {1,...,m}, a € [Xu], b € [X¢],
and ¢ € [X¢], the entry with row index (i,a) and column in-
dex b of the matrix of ¢ is of value f;( Xy = a, Xag = b, X¢ =

c).
PROPOSITION 1. [1, 5, 9] A set {fi1,...
functions is decomposable as
fi(X) = hi(Xu, Xc, g1(Xa, Xe), ..., gr(Xa, X))

fori=1,...,m under variable partition X = {Xu|Xc|Xc}
if and only if, for every ¢ € [X¢], the corresponding matriz
of ¢ has at most 2F column patterns (i.e., at most 2% different
kinds of column vectors).

2.2 Functional Dependency

, fm} of Boolean

DEFINITION 3. Given a Boolean function f : B™ — B
and a vector of Boolean functions G = (g1(X),...,gn(X))
with g; : B™ — B for i = 1,...,n, over the same set of
variable vector X = (z1,...,Tm), we say that f function-
ally depends on G if there exists a Boolean function h :
B™ — B, called the dependency function, such that f(X) =
h(g1(X),...,9n(X)). We call functions f, G, and h the tar-
get function, base functions, and dependency function, re-
spectively.

, fm (X))} of completely spec-

Note that functions f and G are over the same domain in the
definition; h needs not depend on all of the functions in G.

The necessary and sufficient condition of the existence of
the dependency function h was given in [7]. Moreover a SAT-
based computation of functional dependency was presented
in [10]. It forms an important ingredient in part of our for-
mulation.

2.3 Satisfiability and Interpolation

A brief introduction to SAT solving and circuit-to-CNF
conversion, essential to our development, can be found in
[10]. To introduce terminology and notation for later use, we
mention the following theorem.

THEOREM 1 (CRAIG INTERPOLATION THEOREM). [4]
Given two Boolean formulas 4 and g, with pa ANpp unsat-
isfiable, then there exists a Boolean formula 1 a referring only
to the common wvariables of pa and pp such that pa = a
and YA N pp is unsatisfiable.

The Boolean formula 14 is referred to as the interpolant of
pa with respect to ¢p. Some modern SAT solvers, e.g.,
MiniSat [6], are capable of constructing an interpolant from
an unsatisfiable SAT instance [13].

3. MAIN ALGORITHMS

We show that Ashenhurst decomposition of a set of Boolean
functions { f1, ..., fm} can be achieved by SAT solving, Craig
interpolation, and functional dependency. Whenever a non-
trivial decomposition exists, we derive functions h; and g au-
tomatically for f;(X) = hi(Xu, Xc, 9(Xa, Xc)) along with
the corresponding variable partition X = {Xy|X¢|Xc}.

3.1 Single-Output Ashenhurst Decomposition

We first consider Ashenhurst decomposition for a single
function f(X) = h(XH, Xc, g(Xg, Xc))

3.1.1 Decomposition with known variable partition

Proposition 1 in the context of Ashenhurst decomposition
of a single function can be formulated as satisfiability solving
as follows.

PROPOSITION 2. A completely specified Boolean function
f(X) can be expressed as h(Xwu,Xc,9(Xa,Xc)) for some
functions g and h if and only if the Boolean formula

(f(Xk,X& Xe) 2 f(Xi, X&, X)) A
(f(X#, X&, Xc) £ f(Xi, X&, X)) A

is unsatisfiable, where a superscript i in Y denotes the i*™®
copy of the instantiation of variables Y .

Observe that Formula (1) is satisfiable if and only if there
exists more than two distinct column patterns in some ma-
trix of the decomposition chart. Hence its unsatisfiability is
exactly the condition of Ashenhurst decomposition.

Note that, unlike BDD-based counterparts, the above SAT-
based formulation of Ashenhurst decomposition naturally ex-
tends to non-disjoint decomposition. It is because the unsat-
isfiability checking of Formula (1) essentially tries to assert
that under every valuation of variables X¢ the corresponding
matrix of the decomposition chart has at most two column
patterns. In contrast, BDD-based methods have to check the
decomposability under every valuation of X separately.

Whereas the decomposability of function f can be checked
through SAT solving of Formula (1), the derivations of func-
tions g and h can be realized through Craig interpolation and
functional dependency, respectively, as shown below.
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Figure 2: Circuit representing the conjunction con-
dition of Formulas (2) and (3)

(b)

Figure 3: (a) Relation characterized by ¥ (X%, X&,c)
for some ¢ € [X¢]; (b) relation after cofactoring
pa(XE =p, X%, c) with respect to some p € [X}]

To derive function g, we partition Formula (1) into two
sub-formulas

pa = f(Xi,X& Xc)# f(Xh, X&, Xc), and  (2)
$YB = (f(XIQ-hXé'aXC)i—éf(X%thhXc))/\
(f(XE, X8, Xc) # (X, X&, X0)). (3)

Figure 2 shows the corresponding circuit representation of
Formulas (2) and (3). The circuit representation can be con-
verted into a CNF formula in linear time [15], and thus can
be checked for satisfiability.

LEMMA 1. For function f(X) decomposable under Ashen-
hurst decomposition with variable partition X = {Xu|Xa|Xc},
the interpolant 14 with respect to @4 of Formula (2) and pp
of Formula (8) corresponds to a characteristic function such
that,

(i) for pa satisfiable under some ¢ € [X¢], ¥a(b,be,c) =
1 with by € [X&] and by € [XZ] if and only if the
column vectors indexed by by and ba in the matriz of ¢
of the decomposition chart of f are different;

(i) for @ a unsatisfiable under some ¢ € [Xc], there is only
one column pattern in the matriz of ¢ of the decompo-
sition chart of f;

(i4i) for unsatisfiable pa, variables X are not the support
variables of f and thus {Xu|Xa|Xc} is a trivial vari-
able partition for f.

Figure 3(a) illustrates the relation characterized by inter-
polant ¥4 (X¢, X&, c) for some ¢ € [Xc]. The left and right

sets of gray dots denote the elements of [X&] and [X&], re-
spectively. For function f to be decomposable, there are at
most two equivalence classes for the elements of [X§] for
i = 1,2. In the figure, the two clusters of elements in [X§]
signify two equivalence classes of column patterns indexed by
[X&]- An edge (b1, b2) between by € [X¢] and b2 € [XZ]
denotes that b1 is not in the same equivalence class as bs,
ie., Ya(b1, bz, c) = 1. For example, p and r in the figure are
in different equivalence classes and 14 (p,r,c) = 1, whereas p
and ¢ are in the same equivalence class and ¥a(p,q,c) = 0.
Essentially the set of such edges are characterized by the
equivalence relation wA(Xé;, X2, ¢). So every element in one
equivalence class of [X¢] is connected to every element in
the other equivalence class of [[Xé]], and vice versa, in Fig-
ure 3(a).

We next show how to extract function g from the inter-
polant 4.

LEMMA 2. For an arbitrary a € [X&], the cofactored in-
terpolant Ya(X& = a, X&, Xc) is a legal implementation of
function g(X&, Xc).

After renaming X& to Xg, we get the desired g(Xg, X¢).

Consider Figure 3. After cofactoring 4 (X¢&, X&,c) with
respect to p € [X&], all the edges in Figure 3(a) will disap-
pear except for the ones connecting p with the elements in
the other equivalence class of [XZ] as shown in Figure 3(b).
Hence 14 (p, Xé,c) can be used as an implementation of g
function.

So far we have successfully obtained function g by inter-
polation. Next we need to compute function h. The prob-
lem can be formulated as computing functional dependency
as follows. Let f(X) be our target function; let function
g(X¢, Xc) and identity functions 12,(x) = =z, one for ev-
ery variable x € Xy U X¢, be our base functions. So the
computed dependency function corresponds to our desired
h. Since functional dependency can be formulated using SAT
solving and interpolation [10], it well fits in our computation
framework.

REMARK 1. For disjoint decomposition, i.e., Xc = 0, we
can simplify the derivation of function h, without using func-
tional dependency.

Given two functions f(X) and g(X¢) with variable par-
tition X = {Xu|Xa}, we aim to find a function h(Xm,zy)
such that f(X) = h(Xu,9(Xg)), where x4 is the output vari-
able of function g(Xg). Let a,b € [X¢] with g(a) = 0 and
g(b) = 1. Then by Shannon expansion

MXH,xg) = (729 A hoay (Xu)) V (2 A hay (XH)),

where h-z, (Xw) = f(Xu,Xe = a) and hy ) (Xm) = (X5, Xc =
b). The derivation of the offset and onset minterms is easy
because we can pick an arbitrary minterm c in [Xg] and see
if g(c) equals 0 or 1. We then perform SAT solving on ei-
ther g(X¢) or ~g(X¢) depending on the value g(c) to derive
another necessary minterm.

The above derivation of function h, however, does not
scale well for decomposition with large | Xc| because we may
need to compute h(Xu, Xc = ¢,x4), one for every valuation
¢ € [Xc]. There are 2lXel cases to analyze. Consequently
when common variables exist, functional dependency may be
a better approach to computing h.

The correctness of the so-derived Ashenhurst decomposi-
tion follows from Lemma 2 and Proposition 1, as the following
theorem states.

THEOREM 2. Given a function f decomposable under Ashen-
hurst decomposition with variable partition X = {Xu|Xc|Xc},



then f(X) = h(Xu,Xc,9(Xa, X)) for functions g and h
obtained by the above derivation.

3.1.2 Decomposition with unknown variable partition

The previous construction assumes that a variable par-
tition X = {Xg|X¢|Xc} is given. We show how to auto-
mate the variable partition within the decomposition pro-
cess of function f. A similar approach was used in [11] for
bi-decomposition of Boolean functions.

For each variable z; € X we introduce two control vari-
ables az; and 3,,. In addition we instantiate variable X into
six copies X1, X2, X3, X4, X°® and X©. Let

pa = U ZIXEN AN

(TG # FX) A () £ 00%) 1
A =aD) A el =aD) A af =)V as) A

A(@ =) A (@f = 29) v i), (5)

%

)V Bz,) and  (4)

¥YB =

where xz € X7 for j =1,...,6 are the instantiated versions
of x; € X. Observe that (as,, 8z;) = (0,0), (0,1), (1,0), and
(1,1) indicate that xz; € X¢, z; € X, i € Xu, and z; can
be in either of X and Xy, respectively.

In SAT solving the conjunction of Formulas (4) and (5), we
make unit assumptions [6] on the control variables. Similar
to [11] but with a subtle difference, we introduce the following
seed variable partition to avoid trivial variable partition and
to avoid |X@| = 1. For the unit assumption, initially we
specify three distinct variables with one, say, z;, in Xy and
two, say, zg,x;, in X¢g, and specify all other variables in
Xc. That is, we have (az;, 8z;) = (1,0), (axy, Bz,) = (0,1),
(zy, Bz;) = (0,1), and (o, , Bz;) = (0,0) for ¢ # 4, k, 1.

LEMMA 3. For an unsatisfiable conjunction of Formulas
(4) and (5) under a seed variable partition, the final conflict
clause consists of only the control variables, which indicates
a valid non-trivial variable partition.

If the conjunction of Formulas (4) and (5) is unsatisfi-
able under a seed variable partition, then the corresponding
decomposition (indicated by the final conflict clause) is suc-
cessful. Otherwise, we should try another seed variable par-
tition. For a given function f(X) with |X| = n, the existence
of non-trivial Ashenhurst decomposition can be checked with
at most 3 - C3 different seed partitions.

Rather than just looking for a valid variable partition, we
may further target one that is more balanced (i.e., | X | and
|X¢| are of similar sizes) and closer to disjoint (i.e., |X¢| is
small) by enumerating different seed variable partitions. As
SAT solvers usually refer to a small unsatisfiable core, the re-
turned variable partition is desirable because |X¢| tends to
be small. Even if a returned unsatisfiable core is unnecessar-
ily large, the corresponding variable partition can be further
refined by modifying the unit assumption to reduce the un-
satisfiable core and reduce | X¢| as well. The process can be
iterated until the unsatisfiable core is minimal.

After automatic variable partition, functions g and h can
be derived through a construction similar to the foregoing
one. The correctness of the overall construction can be as-
serted.

THEOREM 3. For a function f decomposable under Ashen-
hurst decomposition, we have f(X) = h(Xu, Xc,9(Xa, Xc))
for functions g and h, and a non-trivial variable partition
X ={Xu|Xc|Xc} derived from the above construction.

3.2 Multiple-Output Ashenhurst Decomposi-
tion

So far we considered single-output Ashenhurst decompo-
sition for a single function f. We show that the algorithm is
extendable to multiple-output Ashenhurst decomposition for
a set {fi,..., fm} of functions.

Proposition 1 in the context of Ashenhurst decomposition
of a set of functions can be formulated as satisfiability solving
as follows.

PRrROPOSITION 3. A set {f1(X), ..., fm(X)} of completely
specified Boolean functions can be expressed as

[i(X) = hi(Xn, Xc,9(Xe, Xc))

for some functions h; and g withi =1,...
the Boolean formula

(V fi(Xh, X&, Xe) # fi(Xh, X&, Xe) A

i

(\ fi(XE, X&, Xe) # fi(Xir, X&, Xe) A

,m if and only if

(\/ fi(Xi, X&, Xe) £ fi( X, X&, He)) (6)

is unsatisfiable.

Since the derivation of functions g and h;, and automatic
variable partitioning are essentially the same as the single-
output case, we omit the detailed exposition.

3.3 Beyond Ashenhurst Decomposition

Is the above algorithm extendable to general functional
decomposition, namely,

f(X)=h(Xn,Xc,01(Xa, Xc),...,9:(Xa, X))

for £k > 17 The answer is yes, but with prohibitive cost.
Taking £ = 2 for example, we need 20 copies of f to assert
the non-existence of five different column patterns for every
matrix of a decomposition chart, in contrast to the six for
Ashenhurst decomposition shown in Figure 2. This number
grows in 2%(2% 4+ 1). Aside from this duplication issue, the
derivation of functions g1, ..., g, and h may involve several
iterations of finding satisfying assignments and performing
cofactoring. The number of iterations varies depending on
how the interpolation is computed and can be exponential in
k. Therefore we focus mostly on Ashenhurst decomposition.

4. EXPERIMENTAL RESULTS

The proposed approach to Ashenhurst decomposition was
implemented in C++ within the ABC package [2] and used
MiniSAT [6] as the underlying solver. All the experiments
were conducted on a Linux machine with Xeon 3.4GHz CPU
and 6Gb RAM.

Large ISCAS, MCNC and ITC benchmark circuits were
chosen to evaluate the proposed method. Only large tran-
sition and output functions (with no less than 50 inputs in
the transitive fanin cone) were considered. We evaluated
both single-output and two-output Ashenhurst decomposi-
tions. For the latter, we decomposed simultaneously a pair
of functions with similar input variables. For a circuit, we
heuristically performed pairwise matching among its tran-
sition and output functions for decomposition. Only func-
tion pairs with joint input variables no less than 50 were
decomposed. Note that the experiments target the study
of scalability, rather than comprehensiveness as a synthesis
methodology.

Tables 1 and 2 show the decomposition statistics of single-
output and two-output decompositions, respectively. In these



Table 1: Single-output Ashenhurst decomposition

[ circuit “ #func [ F£var [ F#fail [ #SAT_TO [ #£succ [ F£var_succ [ #VP_avg [ rate_valid-VP [ time_avg (sec) [ mem (Mb) ]
bl4 153 50-218 0 108 45 50-101 1701 0.615 144.22 90.01
bl5 370 143-306 | O 51 319 143-306 1519 0.917 96.62 107.20
b17 1009 76-308 0 148 861 76-308 1645 0.904 87.12 125.84
C2670 6 78-122 0 1 5 78-122 1066 0.835 83.80 58.91
Cb5315 20 54-67 0 4 16 54-67 3041 0.914 50.90 51.34
C7552 36 50-194 0 2 34 50-194 1350 0.455 64.38 36.65
5938 1 6666 0 0 1 66—66 3051 0.726 19.03 24.90
51423 17 51-59 0 0 17 51-59 3092 0.723 13.66 25.34
53330 1 87-87 0 0 1 87-87 3336 0.599 58.30 27.75
59234 13 54-83 0 0 13 54-83 3482 0.857 37.86 35.33
513207 3 212-212 | O 0 3 212-212 569 0.908 70.26 50.62
38417 256 53-99 6 72 178 53-99 1090 0.523 103.33 136.04
538584 7 50-147 0 0 7 50-147 1120 0.924 47.13 51.56

Table 2: Two-output Ashenhurst decomposition

[ circuit [[ #pair [ #var [ #fail [ #SAT_TO [ #succ [ #varsucc | #VP_avg [ rate_valid-VP [ time_avg (sec) | mem (Mb) |
bid 123 50223 | 18 65 10 50-125 1832 0.568 96.86 226.70
bl5 201 145-306 | O 31 170 145-269 1176 0.845 113.86 224.07
bl7 583 79-310 0 88 495 79-308 676 0.824 103.12 419.35
C2670 5 78-123 0 1 4 78-123 254 0.724 66.95 55.71
C5315 11 56—-69 0 2 9 56—69 370 0.594 59.20 60.05
C7552 21 56-195 0 2 19 56-141 188 0.465 89.57 78.67
s938 1 66—66 0 0 1 6666 3345 0.720 61.24 34.77
51423 14 50-67 0 0 14 50-67 3539 0.591 55.34 45.66
s3330 1 87-87 0 0 1 87-87 1278 0.423 66.83 47.43
9234 12 54-83 0 0 12 54-83 2193 0.708 48.11 55.15
s13207 3 212-228 | O 0 3 212-228 585 0.700 93.36 118.03
s38417 218 53-116 13 30 175 53-116 689 0.498 109.06 319.48
538584 9 50-151 0 0 9 50-151 1656 0.713 46.17 207.78

tables, circuits to be decomposed are listed in Column 1.
Columns 2 and 3 list the numbers of instances (i.e., functions
for single-output decomposition and function pairs for two-
output decomposition) with no less than 50 inputs and the
ranges of the input sizes of these instances, respectively. Col-
umn 4 lists the numbers of instances that we cannot find any
successful variable partition within 60 seconds or within 1500
seed variable partitions. Column 5 lists the numbers of in-
stances that are decomposable but spending over 30 seconds
in SAT solving for the derivation of function g or h. Columns
6 and 7 list the numbers of successfully decomposed instances
and the ranges of the input sizes of these instances, respec-
tively. Columns 8 and 9 list the average numbers of tried seed
partitions in 60 seconds and the average rates hitting valid
seed partitions. Column 10 shows the average CPU times
spending on decomposing an instance. Finally, Column 11
shows the memory consumption. As can be seen, our method
can effectively decompose functions or function pairs with up
to 300 input variables.

We measure the quality of a variable partition in terms
of disjointness, indicated by |X¢|/|X|, and balancedness, in-
dicated by || X¢| — | Xu]||/|X]|. The smaller the values are,
the better a variable partition is. Figures 4 and 5 depict,
for each decomposition instance, the quality of best variable
partition found within 60 seconds® in terms of the above two
metrics, with emphasis on disjointness. A spot on these two
figures corresponds to a variable partition for some decom-
position instance. Figure 4 and Figure 5 show the variable
partition data without and with further minimal unsatisfi-
able (UNSAT) core refinement?, respectively. Since a final
conflict clause returned by a SAT solver may not reflect a
minimal UNSAT core, very likely we can further refine the
corresponding variable partition. Suppose the variable par-

!The search for a best variable partition may quit before
60 seconds if both disjointness and balancedness cannot be
improved in consecutive 1500 trials.

2For every decomposition instance, the UNSAT core refine-
ment is applied only once to the best found variable partition.
The CPU times listed in Tables 1 and 2 include those spent
on such refinements.

X6 1-1Xu 1 1/1X]

IXA/1X]

Figure 4: Best variable partition found in 60 seconds
— without minimal UNSAT core refinement

X% I-1X4] 1/1X]

IX1/1X]

Figure 5: Best variable partition found in 60 seconds
— with minimal UNSAT core refinement
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tition is X = {X#u|X¢|Xc} before the refinement. We iter-
atively and greedily try to move a common variable of X¢
into X¢ or Xg, if available, making the new partition more
balanced as well. The iteration continues until no such move-
ment is possible. On the other hand, for a variable x with
control variables (o, 3:) = (1, 1), indicating x can be placed
in either of Xy and X¢, we put it in the one such that the
final partition is more balanced. Comparing Figures 4 and
5, we see that minimal UNSAT core refinement indeed can
substantially improve the variable partition quality. Specifi-
cally, the improvement is 42.37% for disjointness and 5.74%
for balancedness.

Figure 6 compares the qualities of variable partitioning
under four different efforts. In the figure, “Ist” denotes the
first-found valid partition and “tsec” denotes the best-found
valid partition in ¢ seconds. The averaged values of | X¢|/| X]|
and || X¢| — | X#u||/|X]| with and without minimal UNSAT
core refinement are plotted. In our experiments, improving
disjointness is preferable to improving balancedness. These
two objectives, as can be seen, are usually mutually exclu-
sive. Disjointness can be improved at the expense of sacrific-
ing balancedness, and vice versa. The figure reveals as well
the effectiveness of the minimal UNSAT core refinement in
improving disjointness. It is interesting to note that, on aver-
age, 1337 seed partitions are tried in 60 seconds, in contrast
to 3 seed partitions tried to identify the first valid one.

Practical experience suggests that the AIG sizes and lev-
els of the composition functions g and h are typically much
larger than those of the original function f by an order of
magnitude, despite the reduction of support variables. How
to minimize interpolants effectively becomes an important
subject for our method to directly benefit logic synthesis.

5. PRIOR WORK

Aside from BDD-based functional decomposition, we com-
pare some related work using SAT. In bi-decomposition [11],
a function f is written as f(X) = h(¢g1(Xa, X¢), 92(XB, X))
under variable partition X = {Xa|Xp|Xc}, where func-
tion h is known a priori and is of special function types
(namely, two-input OR, AND, and XOR gates) while func-
tions g1 and g2 are the unknown to be computed. In con-
trast, the complication of Ashenhurst decomposition f(X) =
h(Xwu,Xc,9(Xa,Xc)) comes from the fact that both func-
tions h and g are unknown. The problem needs be formu-
lated and solved differently while the basic technique used is
similar to that in [11].

FPGA Boolean matching, see, e.g., [3], is a subject closely
related to functional decomposition. In [12], Boolean match-

ing was achieved with SAT solving, where quantified Boolean
formulas were converted into CNF formulas. The intrinsic ex-
ponential explosion in formula sizes limits the scalability of
the approach. Our method may provide a partial solution to
this problem, at least for some special PLB configurations.

6. CONCLUSIONS AND FUTURE WORK

A new formulation of Ashenhurst decomposition was pro-
posed based on SAT solving, Craig interpolation, and func-
tional dependency. Traditionally difficult non-disjoint and
multiple-output decompositions can be handled naturally.
Moreover variable partition needs not be specified a priori
and can be embedded into the decomposition process. It
allows effective enumeration over a wide range of partition
choices, which is not possible before. Although Ashenhurst
decomposition is a special case of functional decomposition,
its simplicity is particularly attractive and preferable.

Because of its scalability to large designs as justified by
experimental results, our approach can be applied at a top
level of hierarchical decomposition in logic synthesis, which
may provide a global view on optimization. It can be a step
forward towards topologically constrained logic synthesis.

For future work, how to perform general functional de-
composition and how to minimize interpolants await future
investigation. Also the application of our approach to FPGA
Boolean matching can be an interesting subject to explore.
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