
Boolean Matching of Function Vectors with Strengthened
Learning

Chih-Fan Lai
GIEE

National Taiwan University
Taipei 10617, Taiwan

Jie-Hong R. Jiang
EE Dept./GIEE

National Taiwan University
Taipei 10617, Taiwan

jhjiang@cc.ee.ntu.edu.tw

Kuo-Hua Wang
CSIE Dept.

Fu Jen Catholic University
Hsinchuang 24205, Taiwan

ABSTRACT
Boolean matching for multiple-output functions determines
whether two given (in)completely-specified function vectors
can be identical to each other under permutation and/or
negation of their inputs and outputs. Despite its importance
in design rectification, technology mapping, and other logic
synthesis applications, there is no much direct study on this
subject due to its generality and consequent computational
complexity. This paper extends our prior Boolean matching
decision procedure BooM to consider multiple-output func-
tions. Through conflict-driven learning and partial assign-
ment reduction, Boolean matching in the most general set-
ting can still be accomplishable even when all other tech-
niques lose their foundation and become unapplicable. Ex-
periments demonstrate the indispensable power of strength-
ened learning for practical applications.

1. INTRODUCTION
Given two (in)completely-specified Boolean function vec-

tors, Boolean matching (under NPNP-equivalence) determines
if they can be equivalent to each other under certain permu-
tation and/or negation of their inputs and outputs. It is
an important subject both in theory, see, e.g., [7, 4], and in
practice, e.g., [5, 8, 17, 14]. However, most prior efforts on
Boolean matching focused mainly on single-output functions,
e.g., [5, 23, 22, 1, 3, 2, 24], and very few on multiple-output
functions, e.g., [13]. This bias can be attributed to the fact
that single-output Boolean matching is more fundamental in
theory, easier in computation, and more pervasive in applica-
tions. Nevertheless, there are reasons that multiple-output
Boolean matching can be equally important. Firstly, the
problem itself subsumes the single-output case and is more
general. Secondly, there are more unique (output) signatures
to be exploited for computational scalability, despite the fact
that the theoretical complexity is higher. Thirdly, it has
niche applications, e.g., in design rectification [14].

Matching two n-input and m-output functions under NPNP-
equivalence can be complex. A näıve exhaustive computation
may require functional equivalence checking of O(2m+nm!n!)
configurations. A better implementation may reduce the
complexity to O(m22nn!) by checking, over the 2nn! input
configurations, whether each output of one function can be
equivalent or complementary to some output of the other
function. To be shown, with our proposed learning scheme
the time complexity can be further reduced to O(22n) as a
result of effective search space reduction.

In our earlier work [15], a decision procedure BooM, sim-
ilar to satisfiability (SAT) and quantified Boolean formula
(QBF) solving [10, 11, 9], was proposed for Boolean matching
of single-output functions under NPN-equivalence. Based on
the previous result, we go one step further extending conflict-

driven learning for multiple-output Boolean matching under
NPNP-equivalence. In addition the learning is strengthened
by exploiting partial truth assignments essential to satis-
fiability checking. Practical experience suggests that such
strengthening is often capable of reducing learned informa-
tion by 9 times and making deduction much more power-
ful. On the other hand, learning for other specialized equiv-
alences, namely, NPP-, PNP-, and PP-equivalences, follows
straightforwardly from that for the general NPNP-equivalence.
Essentially the special problem structure of Boolean match-
ing allows effective learning for search space reduction, which
is beyond the capability of a generic QBF solver.

The main features of our method include: 1) It handles
NPNP-equivalence, and both completely and incompletely
specified function vectors. 2) It is equipped with a strength-
ened learning technique for effective search space reduction.
3) It supports the search of one matching solution and of all
solutions. 4) It admits easy integration with signature-based
techniques for search space reduction, and helps signature-
based Boolean matching be complete. 5) It uses memory effi-
cient data structures, specifically, and-inverter graphs (AIGs)
[16] and conjunctive normal form (CNF) formulas, for scal-
able Boolean function representation. Experimental results
show the effectiveness of our method in conquering instances
hard to solve without strengthened learning.

Among prior efforts, the work closest to ours is [13], where
support signature (characterizing I/O dependencies), simula-
tion, and SAT solving techniques were integrated for multiple-
output Boolean matching under PP-equivalence. Even though
support information is a power invariant legitimate under
NPNP-equivalence, the applied simulation and SAT solv-
ing are applicable to PP-equivalence only. In contrast, we
focus on the most general NPNP-equivalence. When PP-
equivalence is considered, our method complements the prior
method. Our current implementation uses support, unate-
ness, and symmetry signatures for preprocessing. However
they can be tightly integrated into the main computation
kernel.

This paper is organized as follows. Section 2 gives the
preliminaries. Boolean matching under NPNP-equivalence is
presented in Section 3, and other specialized equivalences in
Section 4. Implementation issues are discussed in Section 5.
The proposed methods are evaluated with experimental re-
sults in Section 6. Finally Section 7 concludes this paper and
outlines future work.

2. PRELIMINARIES
As conventional notation, a set of Boolean variables is de-

noted with an upper-case letter, e.g., X; its elements are
in lower-case letters, e.g., xi ∈ X. The ordered version
(namely, vector) of a set X = {x1, . . . , xn} is denoted as ~x =

(x1, . . . , xn). The cardinality of a set X (respectively ~x) is de-
noted as |X| (respectively |~x|). The set of truth valuations of
~x is denoted [[~x]], e.g., [[(x1, x2)]] = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Let ⊥ denote an unknown value. The set of partial valuations
of ~x is denoted [[~x]]⊥, e.g., [[(x1, x2)]]

⊥ = {(⊥,⊥), (⊥, 0), (⊥, 1),
(0,⊥), (0, 0), (0, 1), (1,⊥), (1, 0), (1, 1)}. The weight of a vec-
tor ~u of truth values, denoted wt(~u), is the number of 1’s in
the vector, e.g., wt((0, 1, 1)) = 2.

2.1 Boolean Matching
A permutation π over X is a bijection function π : X →

X; a negation ν over X is a componentwise mapping with
ν(xi) = xi or ¬xi. We let π(~x) and ν(~x) be the shorthand
for (π(x1), . . . , π(x|~x|)) and (ν(x1), . . . , ν(x|~x|)), respectively.

Given two (completely specified) function vectors ~f(~x)

and ~g(~y) with |~x| = |~y| and |~f | = |~g|, Boolean matching
under NPNP-equivalence determines if these two function
vectors can be equivalent under some input negation νI (the
first “N” of “NPNP”) and permutation πI (the first “P”), and
under some output negation νO (the second “N”) and per-

mutation πO (the second “P”), that is, ~f(~x) = νO ◦πO(~g(νI ◦
πI(~x))). Let ν ◦ π denote the combined mapping of νI ◦ πI

and νO ◦πO. We call ν ◦π a matching solution for NPNP-

equivalence if ~f(~x) = νO ◦ πO(~g(νI ◦ πI(~x))). In the sequel,

we shall assume |~x| = |~y| = n and |~f | = |~g| = m.
Boolean matching for two incompletely specified function

vectors is similar, except that the functional equivalence is
asserted only under the care-conditions of both function vec-
tors.

2.2 Propositional Satisfiability
By assuming the reader’s familiarity with circuit-to-CNF

conversion [21] and SAT solving, including conflict-based learn-
ing [19] and other commonly used techniques in modern SAT
solvers, e.g., [18, 12], we omit to provide the background
knowledge.

3. MATCHING FOR NPNP-EQUIVALENCE
Given two function vectors ~f(~x) and ~g(~y), optionally with

their care-conditions ~fc(~x) and ~gc(~y), respectively, we de-

cide whether ~f and ~g can be NPNP-equivalent under the
care-conditions. Formally speaking, this task is to decide the
validity of the second-order formula

∃νO ◦ πO, ∃νI ◦ πI ,∀~x.

m∧
i=1

((fc
i (~x) ∧ gc∗

i (νI ◦ πI(~x)))

⇒ (fi(~x) ≡ g∗i (νI ◦ πI(~x)))), (1)

where ~gc∗ = (gc∗
1 , . . . , gc∗

m) = νO◦πO(~gc) and ~g∗ = (g∗1 , . . . , g∗m) =
νO ◦πO(~g). It is convertible to a first-order formula as shown
below.

To represent ~y = νI ◦ πI(~x) and ~g∗ = νO ◦ πO(~g) (also
~gc∗ = νO ◦ πO(~gc)), we introduce the 0-1 matrices

MI =




x1 ¬x1 x2 ¬x2 · · · xn ¬xn

y1 a11 b11 a12 b12 · · · a1n b1n

y2 a21 b21 a22 b22 · · · a2n b2n

...
...

...
...

...
...

...
...

yn an1 bn1 an2 bn2 · · · ann bnn


 (2)

and

MO =




g1 ¬g1 g2 ¬g2 · · · gm ¬gm

g∗1 c11 d11 c12 d12 · · · c1m d1m

g∗2 c21 d21 c22 d22 · · · c2m d2m

...
...

...
...

...
...

...
...

g∗m cm1 dm1 cm2 dm2 · · · cmm dmm


 (3)

respectively. By asserting

n∑
j=1

(aij + bij) = 1 for i = 1, . . . , n, (4)

n∑
i=1

(aij + bij) = 1 for j = 1, . . . , n, (5)

m∑

l=1

(ckl + dkl) = 1 for k = 1, . . . , m, and (6)

m∑

k=1

(ckl + dkl) = 1 for l = 1, . . . , m, (7)

these matrices represent some legal mapping ν ◦ π. Valua-
tions aij = 1 and bij = 1 indicate mapping xj to yi and map-
ping ¬xj to yi, respectively; valuations ckl = 1 and dkl = 1
indicate mapping gl to g∗k and mapping ¬gl to g∗k, respec-
tively. These cardinality constraints (4), (5) (6), and (7) can
be expressed by a propositional formula ϕC of 2(n2 + m2)
Boolean variables, aij , bij , ckl, and dkl, for i, j = 1, . . . , n
and k, l = 1, . . . , m. By asserting the formula

ϕA =

n∧
i,j=1

((aij ⇒ (yi ≡ xj))(bij ⇒ (yi ≡ ¬xj))) ∧

m∧

k,l=1

((ckl ⇒ (g∗k ≡ gl))(dkl ⇒ (g∗k ≡ ¬gl))) ∧

m∧

k,l=1

((ckl ∨ dkl) ⇒ (gc∗
k ≡ gc

l)), (8)

a solution to ϕC induces some unique ν ◦ π. Conversely any
ν ◦ π correspond to some unique solution to ϕC . Hence in
the sequel we shall not distinguish mapping ν ◦ π from its
corresponding solution to ϕC , and vice versa. In practice,
ϕC and ϕA are written in the conjunctive normal form.

Clearly solving Formula (1) is equivalent to solving the
following (first-order) QBF

∃~a,∃~b, ∃~c,∃~d, ∀~x, ∀~y.(ϕC ∧ ϕA ∧
m∧

i=1

((fc
i ∧ gc∗

i) ⇒ (fi ≡ g∗i)), (9)

where ~a = (a11, . . . , ann),~b = (b11, . . . , bnn), ~c = (c11, . . . , cmm),

and ~d = (d11, . . . , dmm). That is, we look for a truth assign-

ment to variables ~a, ~b, ~c, and ~d that satisfies ϕC and makes
the miter constraint

Ψ = ϕA ∧
m∨

i=1

(fc
i ∧ gc∗

i ∧ (fi 6≡ g∗i)) (10)

unsatisfiable. (Note that fi, fc
i , gi, gc

i , g∗i , gc∗
i in Formu-

las (8), (9), and (10) are meant to be the variables corre-
sponds to functions fi(~x), fc

i (~x), gi(~y), gc
i (~y) g∗i (~y), gc∗

i (~y),
respectively, after the circuit-to-CNF conversion.) For sim-
plicity, unless otherwise said we shall assume that the care

conditions ~fc and ~gc are tautologies in the sequel. Figure 1
shows the construct of satisfiability formulation for Boolean
matching under NPNP-equivalence.

The key to solving Formula (9) is to effectively reduce the
search space. By exploiting the functional properties specific

�� �� � �� �� �� � ��

��� ��� � ���

	
。�

�� ⊕ ���

���

� � �

�

�� �� � �� �� �� � ��

	�。��

� �� � � �� �

Figure 1: Boolean Matching under NPNP-equivalence

to ~f and ~g (such as variable symmetry, unateness, support
sizes, and other functional properties), a preprocessing step is
possible to screen out from ϕC a substantial amount of infea-
sible solutions. Let formula Φ〈0〉 characterize the remaining

solutions of variables ~a, ~b, ~c, and ~d after the preprocessing.
We show below how the solution space corresponding to legal
ν ◦ π can be effectively refined in a sequence Φ〈0〉, Φ〈1〉, . . . ,
Φ〈k〉, (for Φ〈i+1〉 ⇒ Φ〈i〉), along the solution search process.

3.1 Boolean Matching with Dynamic Learning
We discuss two different Boolean matching goals: to search

one matching solution and to search all matching solutions.

3.1.1 Searching one matching solution

(f1,�,fm) &

(fc1,�,fcm)

Preprocess

(sig.)

Solve mapping Φ〈i〉

Solve miter Ψ

SAT?

SAT?

yes

no

yesno

No match

Match found

Add learned

clause to Φ〈i〉

i := 0

i := i+1

(g1,�,gm) &

(gc
1,�,gc

m)

Figure 2: Search one Boolean matching solution

Figure 2 sketches the procedure for finding one solution.

It takes on two input function vectors ~f and ~g, possibly with

their care-conditions ~fc and ~gc. A preprocessing step is first
conducted to strengthen ϕC yielding Φ〈0〉. It fast prunes in-
feasible matching solutions based on functional properties.

After preprocessing, an iterative procedure is conducted be-
tween two interacting SAT solving instances to refine the so-
lution space. The first SAT solving instance solves Φ〈i〉, i.e.,
the remaining matching solutions after the ith iteration. No
solution to Φ〈i〉 indicates that f and g cannot be matched;
otherwise, a solution to Φ〈i〉 corresponds to a candidate map-
ping ν ◦ π. Further justification by the second SAT solving
instance is needed to check whether this solution makes the
miter formula Ψ unsatisfiable. If yes, the procedure termi-
nates since ν◦π is indeed a matching solution. Otherwise, the
procedure learns from this (conflict) solution and strengthens

Φ〈i〉 to Φ〈i+1〉 accordingly. This action blocks not only this
current solution of Φ〈i〉 but also other infeasible solutions
from occurrence in later search. (Ordinary learning blocks
only the current conflict solution.) The procedure continues

with Φ〈i+1〉 in the new iteration.
Below we show how to strengthen Φ〈i〉 through learning.

Fact 1. Given two function vectors ~f(~x) and ~g(~y) for Boolean
matching under NPNP-equivalence, if fi(~u) 6= gj(~v) (respec-
tively fi(~u) = gj(~v)) for ~u ∈ [[~x]] and ~v ∈ [[~y]], then any map-
ping ν ◦π with νO ◦πO having g∗i = gj (respectively g∗i = ¬gj)
and with νI ◦ πI(~u) = ~v is infeasible.

Example 1. For two function vectors ~f(x1, x2, x3) and
~g(y1, y2, y3) with f1(1, 0, 1) = 0, f2(1, 0, 1) = 1, g1(0, 1, 1) =

1, and g2(0, 1, 1) = 1, then ~f and ~g cannot be matched un-
der NPNP-equivalence by any of the six input mappings with
~y = (¬x1,¬x2, x3), (¬x1, x3,¬x2), (x2, x1, x3), (x2, x3, x1),
(¬x3, x1,¬x2), and (¬x3,¬x2, x1) under any of the four out-
put mappings with g∗1 = g1, g∗1 = g2, g∗2 = ¬g1, and g∗2 = ¬g2.

Fact 1 can be rephrased in the language of formulas Φ〈i〉

and Ψ as follows.

Proposition 1. Given two function vectors ~f(~x) and ~g(~y)
for Boolean matching under NPNP-equivalence, if under ν◦π
satisfying Φ〈i〉 there exists some fi(~u) 6= g∗i (~v) with ~v = νI ◦
πI(~u) for ~u ∈ [[~x]] and ~v ∈ [[~y]], then conjuncting Φ〈i〉 with
κ = (

∧m
p,q=1 lOpq ∨

∨n
i,j=1 lIij) =

∧m
p,q=1(l

O
pq ∨

∨n
i,j=1 lIij) for

literals

lIij =

{
aij , if vi 6= uj;
bij , otherwise,

lOij =

{ ¬cpq, if fp(~u) 6= gq(~v);
¬dpq, otherwise,

excludes from Φ〈i〉 exactly the input mappings {ν′I ◦ π′I | ν′I ◦
π′I(~u) = νI ◦ πI(~u)} under the output mappings with g∗p =
gq (respectively g∗p = ¬gq) for fp(~u) 6= gq(~v) (respectively
fp(~u) = gq(~v)) for p, q = 1, . . . , m.

In essence a satisfying solution to the miter formula Ψ with
respect to a solution of Φ〈i〉 reveals additional infeasible match-
ing solutions. Letting Φ〈i+1〉 = Φ〈i〉 ∧ κ prevents the above
procedure from searching the learned infeasible solutions in
later iterations. As a result, m2 clauses with n2 + 1 literals
each is added in each iteration.

Example 2. Continue Example 1. The learned clause set
is {(¬c11 ∨ a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33),
(¬c12 ∨ a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33),
(¬d21 ∨ a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33),
(¬d22 ∨ a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33)}. It
excludes the previously listed infeasible mappings.

To be shown in Section 3.2, the number of learned clauses
and their literals can be much reduced by exploiting par-
tially assigned satisfying solutions in SAT solving. On the

other hand, the literal count of κ can be alternatively re-
duced by introducing a new variable representing

∧m
p,q=1 lOpq.

More precisely it can be reexpressed with one clause of n2 +1
literals, one clause of m2 + 1 literals, and m clauses of two
literals each.

Example 3. The learned clause set of Example 2 can be
rewritten as {(e∨a11∨b12∨a13∨b21∨a22∨b23∨b31∨a32∨b33),
(c11 ∨ c12 ∨ d21 ∨ d22 ∨ e), (¬e ∨ ¬c11), (¬e ∨ ¬c12), (¬e ∨
¬c21), (¬e ∨ ¬c22)}, where e is a newly introduced variable.

The pruning power of a learned clause can be character-
ized as follows.

Proposition 2. For Boolean matching of NPNP-equivalence,
the clause set κ learned from a satisfying solution to f(~x) 6≡
g(~y) with ~y = ν ◦ π(~x) for some ν ◦ π prunes (2m − 1)m!n!
infeasible mappings.

However the sets of mappings pruned by two different learned
clause sets may not be disjoint.

Since there are 22n distinct truth assignments to variables
~x and ~y and each introduces a unique learned-clause set, the
number of different learned-clause sets is upper bounded by
22n. This fact asserts the termination of the procedure.

Proposition 3. The Boolean matching procedure of Fig-
ure 2 for NPNP-equivalence terminates within O(22n) itera-
tions.

This upper bound is surprisingly at first glance because of
its independence of the output number m. Nevertheless it
is understandable because the output values are essentially
induced by the input assignments.

3.1.2 Searching all matching solutions

Preprocess

(sig.)

Solve Φ〈i〉∧Ψ

SAT?

no

yes

Φ〈i〉 characterizes all matches

Add learned

clause to Φ〈i〉

i := 0

i := i+1

(f1,$,fm) &

(fc1,$,fcm)

(g1,$,gm) &

(gc
1,$,gc

m)

Figure 3: Search all Boolean matching solutions

When the Boolean matching objective is to find all match-
ing solutions rather than just one, applying the procedure of
Figure 2 to find the solutions one by one can be overkill.
Figure 3 sketches a more effective procedure for this pur-
pose. This procedure is the same as that of Figure 2 except
that there is only one SAT solving kernel for one combined
formula Φ〈i〉 ∧Ψ.

Unlike the procedure of Figure 2 (where, effectively, vari-

ables ~a, ~b, ~c, and ~d have higher decision orders than the other

variables in making truth assignments), the procedure of Fig-
ure 3 imposes no restriction on the variable decision order.
This freedom makes it much more effective. On the other
hand, since this procedure terminates only when all infeasi-
ble solutions are pruned, sometimes its termination may take
a long time. Nevertheless its number of SAT solving itera-
tions has the same upper bound as that of Figure 2 for a
similar reason.

Proposition 4. The procedure of Figure 3 for Boolean
matching under NPNP-equivalence terminates within O(22n)
iterations.

Note that the computation of Figure 3 can be understood
as performing quantifier elimination of variables ~x and ~y of
Formula (9). The resultant formula (in terms of variables

~a,~b,~c, ~d) characterizes all matching solutions.

3.2 Strong Learning with Partial Assignment
In prior discussion of learned-clause generation, we as-

sumed that a satisfying assignment to the miter constraint Ψ
(in searching one matching solution) or Ψ ∧ Φ〈i〉 (in search-
ing all matching solutions) is fully assigned, that is, every
variable of ~x and ~y receives some truth assignment. This
assumption however makes learning conservative. Often the
valuation of a small subset of the variables is sufficient to con-
clude the satisfiability. In fact, as to be shown, by exploiting
the essential variable valuations responsible for satisfiability,
the number of learned clauses and the number of literals can
be substantially reduced. Thus the deductive power of learn-
ing can be much strengthened to improve Boolean matching.

A SAT solver may or may not be capable of producing par-
tially assigned satisfying solutions. Nevertheless a minimal
partial assignment can be identified from a full assignment
[20]. We focus on learning from a given partial assignment.

Fact 2. Given two function vectors ~f(~x) and ~g(~y) for Boolean
matching under NPNP-equivalence, if fi(~u) 6= gj(~v) (respec-

tively fi(~u) = gj(~v)) for ~u ∈ [[~x]]⊥ and ~v ∈ [[~y]]⊥, then any
mapping ν ◦ π with νO ◦ πO having g∗i = gj (respectively

g∗i = ¬gj) and with νI◦πI such that there exists some ~u′ ∈ [[~x]]
satisfying u′i = ui if ui 6= ⊥ and satisfying v′i = vi if vi 6= ⊥
for ~v′ = νI ◦ πI(~u′) is infeasible.

Example 4. Continue Example 1. Suppose x1 = 1, x2 =
0, and y1 = 0 are the only necessary assignments for f1 = 0
and g1 = 1. Then any input mapping with y1 = ¬x1 or
y1 = x2 under output mapping with g∗1 = g1 is infeasible.

Fact 2 can be rephrased in the language of formulas Φ〈i〉

and Ψ as follows.

Proposition 5. Given two function vectors ~f(~x) and ~g(~y)

for Boolean matching under NPNP-equivalence, if under Φ〈i〉

fp(~u) 6= gq(~v) (respectively fp(~u) = gq(~v)) for ~u ∈ [[~x]]⊥ and

~v ∈ [[~y]]⊥, then conjuncting Φ〈i〉 with κ = (¬cpq ∨
∨n

i,j=1 lij)

(respectively κ = (¬dpq ∨
∨n

i,j=1 lij)) for literals

lij =




∅, if vi = ⊥ or uj = ⊥,
aij , else if vi 6= uj ,
bij , else,

excludes from Φ〈i〉 any mapping ν ◦ π with νO ◦ πO having
g∗p = gq (respectively g∗p = ¬gq) and with νI ◦ πI such that

there exists some ~u′ ∈ [[~x]] satisfying u′i = ui if ui 6= ⊥ and

satisfying v′i = vi if vi 6= ⊥ for ~v′ = νI ◦ πI(~u′)

Example 5. Continue Example 1. Suppose only the as-
signment of x1 = 1, x2 = 0 is responsible for f1 = 0; x3 = 1

for f2 = 1; y1 = 0 for g1 = 1; y2 = 1 for g2 = 1. Then the
learned clauses are {(¬c11∨a11∨b12), (¬c12∨b21∨a22), (¬d21∨
a13), (¬d22 ∨ b23)}.

4. MATCHING FOR OTHER EQUIVALENCES
The general results for NPNP-equivalence can be applied

for other specialized equivalences. Moreover learning can
possibly be further strengthened. As an example, we discuss
only NPP-equivalence. While the partial assignment reduc-
tion can be extended straightforwardly, we elaborate learning
under full assignment.

For NPP-equivalence, νO becomes an identity mapping,
and thus dij of matrix MO equals 0 for i, j = 1, . . . , m.
Proposition 1 can be accordingly simplified. Moreover learn-
ing can be further strengthened by the following observation.

Fact 3. Given two function vectors ~f(~x) and ~g(~y) for Boolean

matching under NPP-equivalence, if wt(~f(~u)) 6= wt(~g(~v))
with ~u ∈ [[x]] and ~v ∈ [[y]], then any mapping with νI ◦πI(~u) =
~v is infeasible.

Example 6. Consider the function vectors of Example 1.
They cannot be matched under NPP-equivalence by any of the
six input mappings with ~y = (¬x1,¬x2, x3), (¬x1, x3,¬x2),
(x2, x1, x3), (x2, x3, x1), (¬x3, x1,¬x2), and (¬x3,¬x2, x1)
under any output mappings.

Fact 3 can be rephrased as follows.

Proposition 6. Given two function vectors ~f(~x) and ~g(~y)

for Boolean matching under NPP-equivalence, if wt(~f(~u)) 6=
wt(~g(νI ◦πI(~u))) for ~u ∈ [[~x]] and νI ◦πI satisfying Φ〈i〉, then

conjuncting Φ〈i〉 with κ =
∨n

i,j=1 lIij for literals

lIij =

{
aij , if vi 6= uj ;
bij , otherwise,

excludes from Φ〈i〉 exactly the input mappings {ν′I ◦ π′I | ν′I ◦
π′I(~u) = νI ◦ πI(~u)} under any output mappings.

5. IMPLEMENTATION ISSUES
Our current implementation adopts (input/output) sup-

port signature [13], unateness signature, and symmetry sig-
nature for preprocessing to prune infeasible matching solu-
tions. Similar to [13], the pruning process alternates between
input matching and output matching, and iterates until a
fixed-point is reached. The final candidate matching solu-
tions are used to create Φ〈0〉, and passed to the subsequent
main computation loop to skip invalid output matching pairs
in learned-clause generation.

To realize learned-clause reduction of Section 3.2, we iden-
tify a partial assignment from a fully assigned satisfying so-
lution to a miter constraint Ψ returned by the SAT solver.
Since the miter constraint is originally in AIG, we exploit the
circuit structure to derive a partial assignment. Specifically,
given an AIG and a truth assignment on it, we selectively tra-
verse it in a reverse topological order starting from a specified
output towards the inputs. For each node visited, if it is an
input node, then its corresponding truth value is claimed to
be responsible for the output value and thus constitutes our
partial assignment. Otherwise, we decide which of its fanin
nodes to proceed according to the following three cases: 1)
When both of its fanins are of non-controlling value, both
fanins need to be visited. 2) When exactly one of its fanins
is of controlling value, this fanin needs to be visited. 3) When
both of its fanins are of controlling value, only one needs to
be visited and we heuristically choose the one with a smaller
fanin cone.

6. EXPERIMENTAL RESULTS
Our method was implemented in the C language within

the ABC [6] package using MiniSAT [12] as the underlying
solver. All experiments were conducted on a Linux machine
with Xeon 2.5GHz CPU and 18GB RAM.

Circuits from the MCNC, ISCAS89 and ITC99 bench-
mark suites were chosen. Sequential circuits were converted
to combinational ones by the ABC command comb. A cir-
cuit is matched against its synthesized version with its inputs
and outputs permuted and/or negated randomly. Boolean
matching under NPNP-equivalence was evaluated.

���

���

����

����

����

�
�
	

�
��

�

�
��
�
��
��
�

��
�
�
�
�
�

�

���

� ��� ��� ��� ���� ���� ����
������ !" #$% & '��()*+��*, *""�-�� ��

.
�
�
��
�

Figure 4: Runtime with and without partial assignment

for NPNP-equivalence

To evaluate strengthened learning, for searching one match-
ing solution with partial assignment reduction, Boolean match-
ing under NPNP-equivalence solved 55 out of 67 circuits
within 1800 seconds. Without partial assignment reduction,
only 10 out of the 55 circuits remain solvable within the same
time limit. Figure 4 compares the runtimes with (indicated
in x-axis) and without (y-axis) partial assignment reduction
under NPNP-equivalence. A spot in the figure corresponds
to the result of matching a circuit. As can be seen, strength-
ened learning by partial assignment reduction achieved re-
markable improvement. As a matter of fact, reducing literal
counts of learned clauses strengthens the deductive power of
learning, and results in fewer learning iterations. By par-
tial assignment reduction, the average number of literals per
learned clause is reduced by 71.59% and the average number
of learning iterations is reduced by 89.95% under NPNP-
equivalence. Since computing partial assignment costs only
0.46% of the total runtime, the overhead is negligible.

Table 1 shows the detailed information for some of the
circuits (with input or output sizes greater than 60) solv-
able within a 1800-second limit under NPNP-equivalence.
Columns “#I,” “#O” and “#Node” correspond to the num-
bers of inputs, outputs, and AIG nodes, respectively, of each
circuit. Columns “%var MI” and “%var MO” show the per-
centages of non-constant variables in matrices MI and MO,
respectively, after signature-based preprocessing. Column
“%cls” shows the percentage of remaining clauses after pre-
processing. Columns “%lits” list the percentages of essential
literals of partial assignment reduction. Columns “Time”
list the total matching time for every circuit. Columns 8
and 9 show the data for searching one matching solution;
Columns 10 and 11 show those for searching all matching
solutions. As can be seen from these tables, after preprocess-

Table 1: Results for Boolean matching under NPNP-equivalence
One Sol All Sols

Circuit #I #O #Node %var MI %var MO %cls %lits Time (sec) %lits Time (sec)

b04 77 74 546 1.30% 1.35% 0.02% 0.33% 4.12 6.73% 3.14
b12 126 127 1002 26.44% 26.07% 12.91% 0.05% 164.62 0.20% 315.47
b13 63 63 261 4.71% 3.25% 0.33% 0.66% 2.03 2.11% 2.08
b14 277 299 6069 1.65% 1.72% 0.12% - >1800 0.37% 941.74

C2670 233 140 717 12.37% 30.32% 5.75% - >1800 - >1800
C5315 178 123 1773 1.04% 1.65% 0.02% 0.08% 30.31 1.67% 18.81
C7552 207 108 2074 2.68% 1.59% 0.15% 0.06% 72.04 0.63% 60.27
C880 60 26 327 2.28% 4.14% 0.07% 0.43% 1.61 8.89% 1.18
s1423 91 79 462 1.41% 1.65% 0.03% 0.14% 7.43 3.88% 5.94
s1512 86 78 470 2.49% 2.20% 0.13% 0.42% 4.08 2.15% 3.5

s15850.1 611 684 3560 0.77% 0.75% 0.03% - >1800 - >1800
s3271 142 130 1102 0.93% 0.92% 0.01% 0.14% 13.28 3.10% 10.35
s3330 172 205 907 15.22% 1.38% 2.11% 0.03% 493.78 0.07% 186.68
s3384 226 209 1070 4.63% 4.21% 0.52% 0.09% 182.66 0.12% 211.48
s5378 214 228 1389 0.72% 0.83% 0.01% 0.001% 1287.14 - >1800
s838.1 66 33 336 24.29% 3.03% 10.08% 2.67% 3.26 0.63% 4.63
s938 66 33 336 24.29% 3.03% 10.08% 2.67% 3.49 0.63% 4.68
s991 84 36 297 2.55% 2.78% 0.07% 0.13% 3.45 4.96% 2.43

ing a substantial portion of the variables of MI and MO is
removed by asserting to constants 0 or 1. It also reduces the
number of clauses representing the cardinality constrains of
MI and MO to less than 5% on average. Although the initial
CNFs can be greatly simplified, some circuit instances can
still be difficult to solve. For example, even though the re-
maining MI variables of C7552 is only 2.68%, there are still
2294 (2× 2072× 2.68%) variables. In addition to the prepro-
cessing reduction, the literal counts for most learned clauses
can be reduced by partial assignment to less than 10%. Pre-
processing and learning strengthening are very effective to
reduce search space.

7. CONCLUSIONS AND FUTURE WORK
We have formulated a decision procedure for Boolean match-

ing of function vectors under the most general NPNP-equivalence.
Essentially, the particular problem structure of Boolean match-
ing under various equivalences allows effective conflict-driven
learning beyond the reach of general QBF solving. By ex-
ploiting essential partial truth assignment in SAT solving,
learned clauses can be substantially simplified and strength-
ened. Experimental results confirmed the indispensable power
of learning and its strengthening techniques. Using our deci-
sion procedure as a platform for development, we anticipate
tight integrations with other complementary techniques to
make Boolean matching a practical engineering technique for
broad applications.

Acknowledgments
The authors are grateful to Alan Mishchenko for suggestion
about finding partial assignments, and to National Science
Council for grant 99-2221-E-002-214-MY3.

REFERENCES
[1] A. Abdollahi. Signature based Boolean matching in the presence

of don’t cares. In Proc. DAC, pp. 642-647, 2008.

[2] G. Agosta, F. Bruschi, G. Pelosi, and D. Sciuto. A
trasnform-parametric approch to Boolean matching. IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28, no.
6, pp. 805-817, Jun. 2009.

[3] A. Abdollahi and M. Pedram. Symmetry detection and Boolean
matching utilizing a signature-based canonical form of Boolean
functions. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 27, no. 6, pp. 1128-1137, Jun. 2008.

[4] M. Agrawal and T. Thierauf. The Boolean isomorphism problem.
In Proc. IEEE Symp. on Foundations of Computer Science, pp.
422-430, 1996.

[5] L. Benini and G. De Micheli. A survey of Boolean matching
techniques for library binding. ACM Trans. on Design

Automation of Electronic Systems, vol. 2, no. 3, pp. 193-226,
Jul. 1997.

[6] Berkeley Logic Synthesis and Verification Group. ABC: A system
for sequential synthesis and verification.
http://www.eecs.berkeley.edu/∼alanmi/abc/

[7] B. Borchert, D. Ranjan, and F. Stephan. On the computational
complexity of some classical equivalence relations on Boolean
functions. Forschungsberichte Mathematische Logik, Universität
Heidelberg, Bericht Nr. 18, Dec. 1995.

[8] J. Cong and Y.-Y. Hwang. Boolean matching for LUT-based logic
blocks with applications to architecture evaluation and
technology mapping. IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 20, no. 9, pp. 1077-1090, Sep. 2001.

[9] M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An
algorithm to evaluate quantified Boolean formulae and its
experimental evaluation. Journal of Automated Reasoning,
28(2), pp.101-142, 2002.

[10] M. Davis and H. Putnam. A computing procedure for
quantification theory. Journal of the Association for Computing
Machinery, vol. 7, no. 3, pp.201-215, 1960.

[11] M. Davis, G. Logemann, and D. Loveland. A machine program
for theorem-proving. Communications of the ACM, vol. 5, no. 7,
pp.394-397, 1962.

[12] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc.
SAT, pp. 502-518, 2003.

[13] H. Katebi and I. Markov. Large-scale Boolean matching. In
Proc. DATE, 2010.

[14] S. Krishnaswamy, H. Ren, N. Modi, and R. Puri. DeltaSyn: An
efficient logic-difference optimizer for ECO synthesis. In Proc.
ICCAD, 2009.

[15] C.-F. Lai, J.-H. R. Jiang, and K.-H. Wang. BooM: A decision
procedure for Boolean matching with abstraction and dynamic
learning. In Proc. DAC, pp. 499-504, 2010.

[16] A. Mishchenko, S. Chatterjee, J.-H. R. Jiang, and R. K.
Brayton. FRAIGs: A unifying representation for logic synthesis
and verification. Tech. Rep., EECS Dept., UC Berkeley, 2005.

[17] J. Mohnke, P. Molitor, and S. Malik. Application of BDDs in
Boolean matching techniques for formal logic combinational
verification. International Journal on Software Tools for
Technology Transfer, vol. 3, no. 2, pp. 1-10, Springer, May 2001.

[18] M. Moskewicz, C. Madigan, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proc. DAC, pp. 530-535,
2001.

[19] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Trans. on Computers, vol.
48, no. 5, pp. 506-521, May 1999.

[20] K. Ravi and F. Somenzi. Minimal assignments for bounded
model checking. In Proc. TACAS, pp.31-45, 2004.

[21] G. Tseitin. On the complexity of derivation in propositional
calculus. Studies in Constructive Mathematics and
Mathematical Logic, pp. 466-483, 1970.

[22] K.-H. Wang and C.-M. Chan. Incremental learning approach
and SAT model for Boolean matching with don’t cares. In Proc.
ICCAD, pp. 234-239, 2007.

[23] Z. Wei, D. Chai, A. Kuehlmann, and A. R. Newton. Fast
Boolean matching with don’t cares. In Proc. Int. Symp. on
Quality Electronic Design, pp. 346-351, 2006.

[24] K.-H. Wang, C.-M. Chan, and J.-C. Liu. Simulation and
SAT-based Boolean matching for large Boolean networks. In
Proc. DAC, pp. 396-401, 2009.

