
Towards Completely Automatic Decoder Synthesis

Hsiou-Yuan Liu1, Yen-Cheng Chou1, Chen-Hsuan Lin2, and Jie-Hong R. Jiang1,2

1Department of Electrical Engineering; 2Graduate Institute of Electronics Engineering
National Taiwan University, Taipei 10617, Taiwan

jhjiang@cc.ee.ntu.edu.tw

ABSTRACT
Upon receiving the output sequence streaming from a sequen-
tial encoder, a decoder reconstructs the corresponding input
sequence that streamed to the encoder. Such an encoding
and decoding scheme is commonly encountered in commu-
nication, cryptography, signal processing, and other applica-
tions. Given an encoder specification, decoder design can be
error-prone and time consuming. Its automation may help
designers improve productivity and justify encoder correct-
ness. Though recent advances showed promising progress,
there is still no complete method that decides whether a de-
coder exists for a finite state transition system. The quest
for completely automatic decoder synthesis remains. This
paper presents a complete and practical approach to au-
tomating decoder synthesis via incremental SAT solving and
Craig interpolation. Experiments show that, for decoder-
existent cases, our method synthesizes decoders effectively;
for decoder-nonexistent cases, our method concludes the non-
existence instantly while prior methods may fail.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—automatic synthesis

General Terms
algorithms, logic synthesis, verification

Keywords
Craig interpolation, decoder, finite state transition system,
SAT solving

1. INTRODUCTION
Encoding and decoding processes are the cornerstone of

information processing in digital communication, cryptogra-
phy, digital signal processing, fault tolerant computing, and
various other applications. Depending on the application, the
characteristic of an encoding/decoding scheme varies. Cod-
ing systems can be designed so as to, for example, detect or
correct errors in reliable communication [11], to make mes-
sages unintelligible in cryptography [16], to compress infor-
mation in data processing and storage [12], to be resilient

to soft errors in chip design [1, 13], and so on. Despite the
diversity, encoding/decoding systems can often be modelled
as finite state machines1, e.g., convolutional codes in error
correction, line codes in Ethernet and RFID, stream ciphers
in symmetric encryption, etc. This paper considers the fol-
lowing encoding/decoding scheme. The encoder receives an
input sequence and produces an output sequence; the decoder
re-derives the input sequence by length-bounded partial ob-
servation of the output sequence.

As a decoder is usually harder to design than its corre-
sponding encoder due to the fact that additional features
(such as error correction) may need to be imposed, decoder
design can be error prone and time consuming. Automating
the process of decoder design may substantially reduce de-
sign cycle and improve circuit designers’ productivity. Even
if an automatically synthesized decoder would not match the
same quality as a manual design, it could still be useful to jus-
tify whether the encoder is properly specified and to check if
the manually crafted decoder is functionally correct. These
reasons strongly motivate the study of automatic decoder
synthesis.

Recently Shen et al. [14, 15] studied the decoder synthesis
problem. A bounded decoder existence checking method was
proposed [14], where the checking is with respect to a pre-
specified parameter on observable output windows. If a de-
coder exists, an ALLSAT-based procedure is invoked to com-
pute and simplify the corresponding decoding functions. The
necessity of pre-specifying the checking bound prevents de-
coder synthesis from being a fully automatic process. A later
attempt [15] got one step closer to unbounded decoder exis-
tence checking. Despite its soundness, the proposed checking
is unfortunately incomplete. Essentially there are cases that
the checking never halts, in particular, when a decoder does
not exist. Figure 1 shows one such example, where a decoder
does not exist, but the checking fails to decide.2 Neverthe-
less, the approach works well on practical design instances.

This paper continues the quest for a sound and com-
plete approach to automatic decoder synthesis. The main
advances include the following results: Firstly, a necessary
and sufficient condition for decoder existence is identified.
Secondly, a complete decoder existence checking procedure
is proposed with guaranteed termination within O(N2) iter-
ations, where N is the number of states of a state transition
system. Thirdly, an interpolation-based decoder synthesis
approach is proposed, which eliminates the need for ALL-
SAT in enumerating all satisfying assignments and makes a

1Memoryless (or combinational) encoding/decoding can be
thought of as a single-state finite state machine.
2The problem results from the misconception that the notion
of unique states [15] exactly captures the essence of decoder
existence. However, there are state transition systems that
consist of purely unique states and yet have no decoder as
the example of Figure 1 suggests.

1/1

0/0 1/0

0/1

q0 q1

Figure 1: A 0-1 alternation detector with unspecified

initial states.

decoder derivable along the existence checking. (Shen et al.
[14] suggested as future work using interpolation-based rela-
tion determinization [7] for decoder generation. Our interpo-
lation formulation for decoder synthesis can be more direct
and simpler than the prior method [7].) Finally, two tech-
niques, CNF encoding of disjunctive constraints and incre-
mental time-frame expansion with reused looping constraints,
are proposed to enhance the efficiency of incremental SAT
solving. Experiments show that our algorithm successfully
decides decoder existence, while the prior method may fail,
and effectively synthesizes decoders if they do exist.

This paper is organized as follows. Section 2 gives the
preliminaries. Our main results on decoder existence check-
ing and synthesis are presented in Section 3. Implementation
issues are discussed in Section 4. The proposed methods are
evaluated with experimental results in Section 5. Finally Sec-
tion 6 concludes this paper.

2. PRELIMINARIES
As conventional notation, the cardinality of a vector ~x =

(x1, . . . , xk) is denoted as |~x| = k. For ~x being a vector of
Boolean variables, its set of truth valuations is denoted [[~x]],
e.g., [[(x1, x2)]] = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Let V = {v1, . . . , vk} be a finite set of Boolean variables.
A literal l is either a Boolean variable vi or its negation ¬vi.
A clause C is a disjunction of literals. A conjunction of
clauses is in the so-called conjunctive normal form (CNF).
In the sequel, a clause set S = {C1, . . . , Ck} shall mean to be
the CNF formula C1 ∧ · · · ∧Ck. An assignment over V gives
every variable vi a Boolean value either 0 or 1. A CNF for-
mula is satisfiable if there exists a satisfying assignment such
that the formula evaluates to 1. Otherwise it is unsatisfiable.

2.1 SAT Solving and Craig Interpolation
We assume the reader’s familiarity with satisfiability (SAT)

solving, Craig interpolation, and circuit-to-CNF conversion.
We omit essential backgrounds and refer the reader to [8].

To introduce terminology and convention for later use, we
restate the following theorem.

Theorem 1 (Craig Interpolation Theorem). [4]
For two Boolean formulas φA and φB, with φA ∧ φB unsat-
isfiable, there exists a Boolean formula ψA referring only to
the common variables of φA and φB such that φA implies ψA

and ψA ∧ φB remains unsatisfiable.

The Boolean formula ψA is referred to as the interpolant of
φA with respect to φB . We shall assume that φA and φB

are in CNF. So a refutation proof of φA ∧ φB is available
from a SAT solver. Further, an interpolant circuit ψA can be
constructed from the refutation proof in linear time [9].

2.2 State Transition Systems
We model a synchronous sequential circuit as a (finite

state) transition system in terms of two characteristic func-
tions I(~s), representing the initial states, and T (~x,~s, ~y,~s ′),

representing the transition relation, where ~s, ~s ′, ~x, and ~y are
referred to as the current-state variables, next-state variables,
input variables, and output variables, respectively. In the se-
quel, we shall specify a transition system with its transition
relation only when its initial states are immaterial. More-
over, as we are concerned about deterministic systems, we
sometimes abuse the relation notation to mean the transi-
tion function T : [[~x]]× [[~s]] → [[~y]]× [[~s ′]].

For a state transition system T , we distinguish three types
of states: First, a dangling state is a state without pre-
decessors or, recursively, a state with only dangling prede-
cessors. (For a state pair (~q ∈ [[~s]], ~q ′ ∈ [[~s ′]]) satisfying
∃~x,∃~y.T (~x, ~q, ~y, ~q ′), we call ~q the predecessor of ~q ′.) Sec-
ond, a recurrent states is a state that can reach itself within
a finite number of transition steps. (So a recurrent state must
be non-dangling.) Third, a transient state is a non-dangling
state not in any loop. (Therefore these three types form a
partition on the state space of T .)

For decoder synthesis to be discussed, we apply time-
frame expansion on a transition system T (~x,~s, ~y,~s ′), similar
to bounded model checking [2]. In the sequel, the variable
vector ~v instantiated at time-frame t shall be denoted as ~vt.
With a slight extension, the transition relation unrolled at
time t shall be denoted as T t to mean T (~x t, ~s t, ~y t, ~s t+1),
where t can be positive or negative with respect to a refer-
ence time point at t = 0. Similarly, we let T ∗ denote the
transition relation the same as T except that variables ~x, ~s,
~y, and ~s ′ of T are substituted with fresh new variables ~x∗,
~s∗, ~y∗, and ~s∗

′
, respectively.

2.3 Problem Statement
Given an encoder in the form of a state transition sys-

tem T , which transforms an input sequence to an output
sequence according to the transition relation, the decoder
to-be-synthesized aims to reproduce the input sequence by
observing the output sequence.

For a decoder to be realizable, we shall base assumptions
on the following facts. Firstly, since the lengths of input and
output sequences can be unbounded, decoding must be done
online (processing data piece-by-piece serially) rather than
offline (processing entire data at once). Secondly, since the
decoder should have only finite memory, the input value at
a time point should be decided upon observing only a finite
portion of the output sequence. Thirdly, in general the input
sequence cannot be recovered since the very first input value
because, to determine the input value at time t, some output
values before t need to be known. Therefore a certain de-
lay may be necessary before an input value can be uniquely
determined. In certain applications (such as communicating
and reactive systems) losing first few input values is imma-
terial. A decoder may or may not recover a certain prefix of
an input sequence depending on whether or not past output
values are needed.

For decoder synthesis, only the reachable non-dangling
states of a transition system T are of our interests. Given an
exact or over-approximated care-state set SC , it can be ex-
ploited to accelerate decoder existence checking and improve
decoder synthesis. (The care-state set SC can be generated
by exact or approximated reachability analysis. For exam-
ple, the latter approach was taken in [14] by time-frame ex-
pansion for dangling-state removal.) In the sequel, we shall
simply assume that a care-state set SC is given. Moreover,
we shall not distinguish a characteristic function and the set
that it represents. (When care states are not known, we treat
all states as care states, thus having characteristic function
SC(~s) = 1.) Similar to the conventions T t and T ∗ of T , we
let St

C mean SC(~s t) and S∗C mean SC(~s∗).

Another source of don’t cares comes from inputs. Often
we are only interested in decoding a design under its certain
operation modes. This paper assumes a transition system
has been constrained to its proper operation modes from its
original design.

3. MAIN ALGORITHMS

3.1 Decoder Existence
The necessary and sufficient condition for decoder exis-

tence with respect to a pre-specified observation constraint
can be stated as follows.

Theorem 2 (see also [14]). Given a transition system

T (~x,~s, ~y,~s ′), suppose that to determine is the input~i 0 ∈ [[~x 0]]
at some relative reference time point of t = 0 by observing the
outputs ~o t ∈ [[~y t]] at time t = −n, . . . , p for n, p ≥ 0. Input
~i 0 can be uniquely determined from ~o−n, . . . , ~o p if and only
if the formula

p∧
t=−n

(
T t ∧ T ∗t ∧ (~y t = ~y∗

t
)
)
∧ (~x 0 6= ~x∗

0
) ∧

p+1∧
t=−n

(
St

C ∧ S∗C
t
)

, (1)

is unsatisfiable, where predicate“=”asserts the bit-wise equiv-
alence of its two argument variable vectors and “ 6=” asserts
the negation.

Intuitively, the input sequence of a state transition system
can be reverse engineered if the input at some time point can
be uniquely determined from its proximate output string. In
essence, the parameter (n, p) defines an observation window
on the output sequence for decoder synthesis. By sliding the
window along an output sequence, the original input sequence
can be recovered. (When n is non-zero, the first n values of
an input sequence cannot be determined. Hence in decoder
synthesis it is desirable for n to be small.) For simplicity,
unless otherwise said we shall assume that SC(~s) = 1 in the
sequel.

Formula (1) can be visualized as the circuit construction
shown in Figure 2(a), where T is meant to be the transition
function instead of relation. In the sequel, we call it the
(n, p)-miter, denoted M(n, p), of transition system T from
the −nth to pth time-frame. Hence M(n, p) equally denotes
Formula (1).

Notice that Formula (1) tests decoder existence only with
respect to a pre-specified n, p parameter. Its satisfiability
yields no conclusive answer whether the decoder does not
exist at all or the decoder exists at some larger n, p. When
there is no decoder at all, the test for even larger n, p may
continue forever. A terminate condition must be imposed to
prevent infinite trials.

The following lemma asserts the necessary and sufficient
condition for decoder existence.

Lemma 1. The decoder of a transition system T (~s, ~x,~s ′, ~y)
does not exist if and only if there exist two distinct inputs
~i1

0
, ~i2

0 ∈ [[~x 0]] at time t = 0 that are consistent (in terms of
input-output traces) with some same infinite output sequence

..., ~o−1, ~o 0, ~o 1, ...,

for ~o t ∈ [[~y t]], constrained by the transition relation T .

Proof. (⇐) The encoder input cannot be uniquely deter-
mined by output sequences of bounded lengths as this infinite
output sequence provides a counterexample.

(⇒) Consider the contrapositive. For every pair of distinct

inputs ~i1
0

and ~i2
0
, any output sequence consistent with both

~i1
0

and ~i2
0

is bounded from below or above. Because T is of
finite states, as long as the output sequence is long enough
a state pair (~q1, ~q2) ∈ [[~s]] × [[~s]], for ~q1 and ~q2 on the state

traces consistent with ~i1
0

and ~i2
0
, respectively, will even-

tually repeat. This repetition makes the output sequences
unboundedly extendable. Therefore, for those output se-
quences bounded from below (above), there exists a global
lower bound l ≤ 0 (upper bound u ≥ 0) such that none of
them starts before t = l (ends after t = u). Let l∗ and u∗

be the minimum lower bound and maximum upper bound,

respectively, among all distinct input pairs ~i1
0

and ~i2
0
. By

observing any output sequence with t = l∗−1, . . . , u∗+1, its
corresponding input at t = 0 is unique. Thus the decoder of
T exists.

It is important to notice that the infinity of the output se-
quence must go in both positive and negative directions. A
decoder exists if every output sequence consistent with two

distinct inputs ~i1
0
, ~i2

0
, if unbounded in length, extends to

infinity in only one direction.
Based on Lemma 1, the following theorem lays the com-

putational foundation for decoder existence checking.

Theorem 3. The decoder of a transition system T (~s, ~x,~s ′, ~y)
does not exist if and only if the formula

M(n, p) ∧ (
L±n,p ∨ (L−n ∧ L+

p)
)
, (2)

where

L±n,p =

0∨
i=−n

p+1∨
j=1

(
(~s i = ~s j) ∧ (~s∗

i
= ~s∗

j
)
)

, (3)

L−n =

−1∨
i=−n

0∨
j=i+1

(
(~s i = ~s j) ∧ (~s∗

i
= ~s∗

j
)
)

, and (4)

L+
p =

p∨
i=1

p+1∨
j=i+1

(
(~s i = ~s j) ∧ (~s∗

i
= ~s∗

j
)
)

, (5)

is satisfiable under some n, p. (L−n and L+
p are defined to be

false for n = 0 and p = 0, respectively.)

Proof. Consider T ∧T ∗ as the product transition system
of T and T ∗. It induces state transitions in the product state
space [[~s]]× [[~s∗]].

(⇐) The satisfiability of Formula (2) under some n, p in-
dicates M(n, p) ∧ L±n,p or M(n, p) ∧ L−n ∧ L+

p is satisfiable.

Let (~q 0, ~q∗
0
) be a satisfying state at time t = 0. The former

suggests (~q 0, ~q∗
0
) is in a loop of the product transition sys-

tem T ∧ T ∗. As a consequence, a satisfying output sequence

~o−n = ~o∗
−n

, . . . , ~o p = ~o∗
p

can be infinitely extended in both
positive and negative directions. By Lemma 1, the decoder

does not exist. The latter suggests that (~q 0, ~q∗
0
) is a state

that can be reached by a loop satisfying L−n and can reach
another loop satisfying L+

p . Because of these two loops, a
satisfying output sequence can be infinitely extended in both
positive and negative directions, and thus the decoder does
not exist as well.

(⇒) Consider the contrapositive. Suppose there is no
n, p that make Formula (2) satisfiable. It implies that any

(~q 0, ~q∗
0
) satisfying M(n, p) is neither in some loop, nor be-

tween two loops. Moreover, because T ∧ T ∗ is a finite state
transition system, any output sequence satisfying M(n, p)
cannot be infinitely extended to both positive and negative
directions. By Lemma 1, a decoder must exist.

T0T–1 T1 TpT–n � �

= ≠ = = ==

T*0T*–1 T*1 T*pT*–n � �

=

=

=

=

=

=

=

L− L+

=

=

=

=

=

=

=

L±

(a)

(b)

Figure 2: (a) Decoder (n, p)-miter of transition system T ; (b) looping constraints L−, L+, and L± for the state variables

of the (n, p)-miter in (a).

Note that the looping constraint L±n,p of Formula (2) is not
essential. If M(n, p) ∧ L±n,p is satisfiable, then there must

exist some n′ ≥ n and p′ ≥ p making M(n′, p′) ∧ L−n′ ∧ L+
p′

satisfiable. This constraint however can be useful in shorten-
ing the witnessed counterexample to decoder existence. On
the contrary, L−n ∧ L+

p is irreplaceable by L±n′,p′ for some

n′, p′ because the state (~q 0, ~q∗
0
) ∈ [[~s 0]] × [[~s∗

0
]] satisfying

M(n, p) ∧ L−n ∧ L+
p can be a transient state between two

loops rather than in a loop.
By Theorems 2 and 3, the existence of a decoder for a

given transition system T can be checked with the algorith-
mic flow in Figure 3. Among the three SAT solving instances
of the procedure, the first and second follow from Theorems 2
and 3, respectively. The third, on the other hand, is optional.
That is, if the second formula M(n, p) ∧ (L±n,p ∨ (L−n ∧ L+

p))
is unsatisfiable, then both n and p can directly be incre-
mented by 1 to start a new iteration. Solving the third for-
mula M(n, p) ∧ (L−n ∨ L+

p), however, may result in better
termination condition with smaller n and p as the following
proposition suggests.

Proposition 1. Assume that M(n, p) is satisfiable but not
M(n, p) ∧ (L±n,p ∨ (L−n ∧ L+

p)). If M(n, p) ∧ L−n (respectively
M(n, p)∧L+

p) is satisfiable, then incrementing p (respectively
n) only achieves the tightest increase on current (n, p) with-
out missing any termination condition.

Proof. Consider first the formula M(n, p) ∧ L−n . For
M(n, p) satisfiable but not M(n, p)∧(L±n,p∨(L−n ∧L+

p)), then
a satisfying solution to it must correspond to a valid loop in
the negative time-frames while there is no valid loop in the
positive time-frames. Since the truth assignments in this loop
can be arbitrary extended to the negative direction, the cur-
rent satisfying assignment of M(n, p)∧L−n must remain valid
for M(n + 1, p) ∧ L−n+1. Moreover, for this assignment, no
new loop can be created in the positive time-frames satisfy-
ing M(n+1, p)∧L+

p because M(n+1, p)∧L+
p ⇒ M(n, p)∧L+

p .
Therefore incrementing n can neither exclude the current sat-
isfying solution, nor make this assignment a counterexample.
On the other hand, even if incrementing n results in sat-
isfiable M(n + 1, p) ∧ L±n+1,p, the same loop can be created

M(n, p+1)∧L±n,p+1. Consequently, we only need to increment

p. Similarly, for M(n, p) ∧ L+
p , we only need to increment n.

The procedure of Figure 3 always terminates as the fol-
lowing theorem asserts.

Theorem 4. Given a transition system T (~x,~s, ~y,~s ′) and
its care-state set SC ⊆ [[~s]], the decoder existence checking
procedure of Figure 3 terminates with n + p ≤ |SC |2.

Proof. When no decoder exists, a counterexample must
be in the form of either a loop or two connected (state-
disjoint) loops in the product space of T ∧T ∗. In either case,
the transition span of a counterexample is upper bounded by
|SC |2. Hence n + p ≤ |SC |2.

When a decoder exists, the unsatisfiability of M(n, p) can
always be established whenever the transition span of the
longest loop and the transition span of the longest connected
two loops have been reached, which are both upper bounded
by |SC |2. Hence n + p ≤ |SC |2.

(When SC(~s) = 1, of course n + p ≤ 2|~s|.)

Corollary 1. The procedure of Figure 3 always termi-
nates with a correct answer.

Upon termination, however, the corresponding (n, p) may not
be minimal because in a solving iteration, when the first SAT
instance is satisfiable but not the second and third, the in-
crement of both n and p is not tight. Essentially in this case
we do not know whether incrementing p only or n only leads
to a better solution.

In the decoder existence checking, both n and p start from
0 and increase by 1 until either a decoder is found or its exis-
tence is falsified. This increment permits simplification to the
looping constraints of Formulas (3), (4), and (5). Consider
the simplification of Formula (3). Observe that n and p are si-
multaneously incremented only because of the unsatisfiability
of M(n, p)∧(L−n ∨L+

p). Moreover, M(n+1, p+1) ⇒ M(n, p),

L−n ⇒ L−n+1, and L+
p ⇒ L+

p+1. Therefore the satisfiability of

M(n+1, p+1)∧ (L−n+1∨L+
p+1) can only be attributed to the

extra equalities existing in L−n+1 but not in L−n . Formula (3)

T and C

solve M(n,p)

SAT?

yes

no decoder exists

return (n, p)

solve M(n,p)∧(L±∨(L−∧L+))

SAT?
yes

solve M(n,p)∧(L−∨L+)

no decoder

return counterexample

no yes

case: L− satisfied

case: L+ satisfied

n := n+1

p := p+1

no

n := n+1

p := p+1

SAT?

n := 0

p := 0

Figure 3: Decoder existence checking.

can thus be simplified to Formula (6) below. Similarly, we
have Formulas (7) and (8).

L±n,p =

p+1∨
j=1

(
(~s−n = ~s j) ∧ (~s∗

−n
= ~s∗

j
)
)
∨

0∨
j=−n

(
(~s p+1 = ~s j) ∧ (~s∗

p+1
= ~s∗

j
)
)

, (6)

L−n =

0∨
j=−n+1

(
(~s−n = ~s j) ∧ (~s∗

−n
= ~s∗

j
)
)

, and (7)

L+
p =

p∨
j=1

(
(~s p+1 = ~s j) ∧ (~s∗

p+1
= ~s∗

j
)
)

. (8)

As a result, the original quadratic numbers of equality con-
straints are reduced to linear. The looping constraints of
Formula (2) are shown in Figure 2(b) in connection to the
miter constraint M(n, p) shown in Figure 2(a). The equality
signs in this figure signify the equality constraints imposed
on the state variables among the time-frames of M(n, p).

3.2 Decoder Synthesis
When a decoder exists, we proceed synthesizing it under

the (n, p) observation window returned by the above decoder
existence checking procedure. The decoder can be synthe-
sized for all bits ~x 0 at once or for every bit x0

i ∈ ~x 0 one at
a time. For the sake of optimality, we adopt the latter strat-
egy. By synthesizing the decoding function fi for each bit
x0

i ∈ ~x 0, the actual necessary window, specified by (ni, pi)
for some 0 ≤ pi ≤ p and −pi ≤ ni ≤ n, can be substantially

DecoderSynthesis
input: transition system T , care states SC , parameter (n, p)
output: decoding functions
begin
01 for i = 1, . . . , |~x|
02 search minimal ni and pi for Mi(n, p, ni, pi) unsat
03 derive fi by interpolation on φiA ∧ φiB
04 return (f1, . . . , f|~x|)
end

Figure 4: Algorithm: Decoder synthesis.

reduced. Specifically, the formula

p∧
t=−n

(
T t ∧ T ∗t

)
∧

p+1∧
t=−n

(
St

C ∧ S∗C
t
)
∧

pi∧
t=−ni

(
~y t = ~y∗

t
)

∧(x0
i 6= x∗i

0
). (9)

denoted Mi(n, p, ni, pi), must remain unsatisfiable as M(n, p).
So the corresponding decoding function fi to be derived by
interpolation from the refutation proof of Mi(n, p, ni, pi) may
have fewer support variables and a simpler circuit structure.

The validity of synthesizing one decoding function at a
time stems from the following fact, provable by M(n, p) =∨|~x|

i=1 Mi(n, p, n, p).

Proposition 2. For a state transition system T (~x,~s, ~y,~s ′),
M(n, p) is unsatisfiable if and only if Mi(n, p, n, p) is unsat-
isfiable for every i = 1, . . . , |~x|.

For unsatisfiable Mi(n, p, ni, pi), Craig interpolation (The-
orem 1) can be exploited to derive the decoding function fi

of x0
i as Theorem 5 suggests. (A similar construction using

Craig interpolation has been proposed in [8] for logic synthe-
sis application.)

Theorem 5. For a transition system T (~x,~s, ~y,~s ′) with un-
satisfiable Mi(n, p, ni, pi), let formulas φiA and φiB be

φiA :

p∧
t=−n

T t ∧
p+1∧

t=−n

St
C ∧ x0

i , and (10)

φiB :

p∧
t=−n

T ∗t ∧
p+1∧

t=−n

S∗C
t ∧

pi∧
t=−ni

(
~y t = ~y∗

t
)
∧ ¬x∗i

0
. (11)

Then the interpolant ψiA of φiA with respect to φiB is a valid
decoding function for x0

i ∈ ~x 0.

Proof. Observe first that Mi(n, p, ni, pi) and φiA ∧ φiB

are satisfiability equivalent. So φiA ∧ φiB is unsatisfiable.
By Theorem 1, we know that the interpolant ψiA refers

only to ~y−ni , . . . , ~y pi , the common variables of φiA and φiB .
For φiA ⇒ ψiA by Theorem 1, any output sequence ~o−ni ∈
[[~y−ni]], . . ., ~o pi ∈ [[~y pi]] that makes φiA satisfiable and thus
asserts x0

i will be in the onset of ψiA. For ψiA ∧ φiB un-
satisfiable by Theorem 1, any output sequence ~o−ni , . . . , ~o pi

that makes φB satisfiable and thus asserts ¬x∗i
0 will be in

the offset of ψiA. On the other hand, since φiA ∧ φiB is un-
satisfiable, there is no output sequence ~o−ni , . . . , ~o pi in both
onset and offset of ψiA. Hence ψiA defines a valid decoding
function for x0

i of ~x 0.

Based on Theorem 5, the procedure of interpolation-based
decoder synthesis is sketched in Figure 4.

4. IMPLEMENTATION DETAILS
We discuss two implementation issues and their solutions.

4.1 CNF Encoding of Disjunctive Constraints
The disjunctive constraints encountered in this paper are

of the form ϕ1 ∨ · · · ∨ ϕ`, where ϕi’s are CNF formulas. Let
ϕi consist of ki clauses {Ci1, . . . , Ciki}. Then

∨̀
i=1

(Ci1 ∧ · · · ∧ Ciki) (12)

can be converted to CNF as

∧̀
i=1

((Ci1 ∨ ¬ci) ∧ · · · ∧ (Ciki ∨ ¬ci)) ∧ (c1 ∨ · · · ∨ c`), (13)

where ci’s are fresh new variables.

Proposition 3. Formulas (12) and (13) are equisatisfi-
able.

Thereby the vector inequality can be easily expressed in CNF.
In decoder existence checking, however, the disjunction

list ϕ1 ∨ · · · ∨ ϕ` may increase over time, i.e., ` increases.
To support incremental SAT solving, we further modify the
above conversion and recursively define

Φi = Φi−1 ∧
ki∧

j=1

(Cij ∨ ¬ci) ∧ (bi−1 ∨ ci ∨ ¬bi), (14)

for Φ0 = 1 and b0 = 0.

Proposition 4. Formula (13) and formula Φ` ∧ b` are
equisatisfiable.

Note that, since literal b` can be asserted by unit assumption
[5], Formula (14) is extendable to arbitrary ` for incremental
solving. Thereby the looping constraints can be incremen-
tally expressed in CNF.

4.2 Incremental Time-Frame Expansion
There are different strategies of inserting a new time-frame

into an expanded array of time-frames. Due to the looping
constraints, in the decoder existence checking procedure of
Figure 3 we prefer the following insertion strategy.

For n to be incremented, a new time-frame is inserted be-
tween the 0th and the −1st time-frames, rather than append-
ing before the −nth. Effectively, the variables with original
time-indices t = −1,−2, . . ., and −n of Formula (2) are rela-
belled with t = −2,−3, . . ., and −(n + 1), respectively. For
p to be incremented, on the other hand, a new time-frame
is inserted between the 0th and the 1st time-frames, rather
than appending after the pth. Effectively, the variables with
original time-indices t = 1, 2, . . ., and p are relabelled with
t = 2, 3, . . ., and p + 1, respectively. Moreover the reconnec-
tion between the new time-frame and existing time-frames
can be done via proper utilization of unit assumptions.

Under this strategy, all the clauses of looping constraints
added before remain in use. Only two equality constraints
(i.e., ~s−(n+1) = ~s 0 and ~s p+1 = ~s 0 for n incremented, and
~s−n = ~s 1 and ~s p+2 = ~s 1 for p incremented) need to be
added per time-frame expansion. In contrast, if we were to
append a new time-frame at the end of the array, we would
have to add (n+p+2) looping constraints related to the new
time-frame added. It results in a more complicated formula
and less effective reuse of learned clauses.

5. EXPERIMENTAL RESULTS
The proposed method, named Decosy, were implemented

in ABC [3]. The experiments were conducted on a Linux ma-
chine with Xeon 2.53GHz CPU and 48GB RAM. The bench-
mark circuits and executable codes of prior work [14, 15] were

obtained online [6]. The profiles of circuits XGXS, XFI, Scram-
bler, PCIE, and T2Ethernet can be found in [14]. Two ad-
ditional designs: the HM series, implementing the Hamming
codes for correcting any 1-bit error, and AD, implementing
the 0-1 alternation detector of Figure 1, were created. The
circuits in Verilog were converted to the blif format for op-
timization in ABC. The final decoder circuits were mapped
into standard cells with the mcnc.genlib library.

We conducted three sets of experiments: comparison with
[14] on decoder generation in Table 1, comparison with [15]
on decoder existence checking and generation in Table 2, and
comparison with [15] on decoder existence checking for cir-
cuits without decoders in Table 3. Note that the executables
of [14, 15] were implemented in OCaml running zChaff [10],
whereas ours were implemented in C running MiniSat [5].
The reported runtimes in [14] and [15], which were obtained
on different machine settings, were repeated in the parenthe-
ses in the fifth column of Table 2 and the second column of
Table 3 for reference. It is interesting to notice the curious
runtime inconsistencies.

Table 1 compares decoder generation results of [14] and
Decosy with respect to the pre-specified parameters given
in [14], which are not repeated here to save space. The
obtained decoder circuits were optimized with ABC under
script strash; dsd; strash; dc2; dc2; dch; map. The de-
coder area, delay, and computation time (including decoder
generation time plus script optimization time in seconds)
are shown. (The decoders generated by [14] were in Ver-
ilog format, and were converted to blif for optimization un-
der the same script.) As shown, the optimization script ef-
fectively reduced all of the decoders generated by the prior
method and Decosy within 2.13 seconds. Except for PCIE

and T2Ethernet, Decosy achieved similar or better results.
For PCIE and T2Ethernet, the xor-minimization efforts of
[14] were likely taking effect (as noted in [14] that communi-
cation circuits are commonly xor-dominated). On the other
hand, for the larger circuits XFI and HM(15,11), Decosy
achieved more impressive improvements. (For the HM cir-
cuits, the prior method missed decoder generation at the
time-frame expansion where the decoder is supposed to exist,
perhaps due to implementation problems. The data, marked
‘§’ in Table 1 as well as in Table 2, were obtained by our own
re-implementation of [14] for referential purposes.)

Table 2 compares the results of [15] and Decosy for de-
coder existence checking plus decoder generation. It lists
obtained parameters (n, p, n†, p†), numbers of decoder in-
puts/registers, circuit area/delay, and runtime, where n† =
maxi ni and p† = maxi pi by the notation of Section 3.2.
The runtime includes checking decoder existence and script
optimization, same as those of Table 1.

Table 3 compares the runtime (in seconds) of [15] and De-
cosy for decoder nonexistence checking. Circuits XGXS_err,
XFI_err, Scrambler_err, PCIE_err, and T2Ethernet_err are
obtained via design error insertion in [14]. The HM_err cir-
cuits, on the other hand, were derived by embedding noisy
channels with memory and multi-bit flipping capability into
the HM circuits. These circuits and AD have no decoders. In all
the cases Decosy concluded decoder nonexistence under pa-
rameters (n, p) = (0, 0), i.e., without time-frame expansion,
except for the HM_err series requiring multiple time-frame
expansion. It tends to suggest that Decosy can be effective
in detecting decoder non-existence and beneficial to assist-
ing design verification. In contrast, the prior method [15] is
incomplete and less effective.

6. CONCLUSIONS
We have presented the first sound and complete approach

Table 1: Comparison on Decoder Generation.

circuit
[14] Decosy

area ratio delay ratio
area/delay time area/delay time

XGXS 269/7.4 1.23 = 1.17+0.06 286/7.3 0.08 = 0.02+0.06 1.06 0.99
XFI 5697/14.4 492.58 = 490.45+2.13 3978/14.3 4.02 = 3.21+0.81 0.70 0.99

Scrambler 736/3.8 1.88 = 1.83+0.05 640/3.8 0.25 = 0.19+0.06 0.87 1
PCIE 171/5.8 1.04 = 1.02+0.02 190/6.6 0.08 = 0.04+0.04 1.11 1.14

T2Ethernet 299/7.5 22.67 = 22.62+0.05 583/9.0 1.47 = 1.37+0.10 1.95 1.20

HM(7,4) 255§/7.3§ 0.12§ = 0.03§+0.09§ 255/7.3 0.08 = 0.01+0.07 1 1

HM(15,11) 4232§/13.8§ 56.82§ = 55.86§+0.96§ 3279/13.2 1.33 = 0.35+0.98 0.77 0.96

Table 2: Comparison on Decoder Existence Checking and Decoder Generation.

circuit
[15] Decosy area delay

(n, p, n†, p†) #in/#reg area/delay time (n, p, n†, p†) #in/#reg area/delay time ratio ratio

XGXS (1, 1,−1, 1) 11/0 293/7.5 3.31 (2.70) (1, 1,−1, 1) 11/0 295/7.1 0.07 1.01 0.95
XFI (3, 0, 1, 0) 67/66 5697/14.4 1001.77 (1144.32) (3, 1, 1, 0) 67/66 3913/12.5 8.59 0.69 0.87

Scrambler (2, 0, 1, 0) 65/64 736/3.8 13.55 (10.46) (1, 1, 1, 0) 65/64 640/3.8 0.42 0.87 1
PCIE (1, 2,−2, 2) 11/0 163/6.1 5.1 (3.91) (1, 2,−2, 2) 11/0 190/6.6 0.07 1.17 1.08

T2Ethernet (1, 4,−4, 4) 11/0 269/6.9 137.26 (113.89) (1, 4,−4, 4) 11/0 526/9.7 1.81 1.96 1.41

HM(7,4) (0, 0, 0, 0) 7/0 255§/7.3§ 0.12§ (NA) (0, 0, 0, 0) 7/0 255/7.3 0.05 1 1

HM(15,11) (0, 0, 0, 0) 15/0 4232§/13.8§ 56.92§ (NA) (0, 0, 0, 0) 15/0 3279/13.2 2.02 0.77 0.96

Table 3: Comparison on Decoder Existence Checking.

circuit [15] Decosy
(w/o decoder) time time

XGXS_err 2.17 (1.23) 0.01
XFI_err 39.71 (44.58) 0.01

Scrambler_err 3.96 (3.26) 0.08
PCIE_err 2.94 (1.67) 0.01

T2Ethernet_err 128.73 (21.49) 0.04
HM(7,4)_err 1.35 (NA) 0.01

HM(15,11)_err 3.01 (NA) 0.01
AD > 6000 (NA) 0.01

to automatic decoder synthesis. Experiments showed that
our method, based on incremental SAT-solving and Craig
interpolation, effectively determined decoder (non)existence
and generated decoders, if they exist. To optimize decoder,
using a script of synthesis commands has turned out to be
effective, despite potential further improvements. The syn-
thesized decoders exhibit qualities comparable to prior work,
which equipped with xor-based decoder optimization. Hence
our approach may potentially benefit the design and verifi-
cation of encoding/decoding systems in various applications.

Acknowledgments
This work was supported in part by the National Science
Council under grants NSC 99-2221-E-002-214-MY3 and NSC
99-2923-E-002-005-MY3.

7. REFERENCES
[1] D. Bertozzi, L. Benini, and G. De Micheli. Low power

error resilient encoding for on-chip data buses. In Proc.
Design, Automation and Test in Europe (DATE), pages
102-109, 2002.

[2] A. Biere, A. Cimatti, E. Clarke, Y. Zhu. Symbolic model
checking without BDDs. In Proc. Int’l Conf. on Tools
and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 193-207, 1999.

[3] Berkeley Logic Synthesis and Verification Group. ABC:
A system for sequential synthesis and verification.
http://www.eecs.berkeley.edu/∼alanmi/abc/

[4] W. Craig. Three uses of the Herbrand-Gentzen theorem
in relating model theory and proof theory. J. Symbolic

Logic, 22(3):269-285, 1957.

[5] N. Eén and N. Sörensson. An extensible SAT-solver. In
Proc. Int’l Conf. on Theory and Applications of
Satisfiability Testing (SAT), pages 502-518, 2003.

[6] http://www.ssypub.org/ (access date: September,
2010)

[7] J.-H. R. Jiang, H.-P. Lin, and W.-L. Hung. Interpolating
functions from large Boolean relations. In Proc. Int’l
Conf. on Computer-Aided Design (ICCAD), pages
779-784, 2009.

[8] J.-H. R. Jiang, C.-C. Lee, A. Mishchenko, and C.-Y.
Huang. To SAT or not to SAT: Scalable exploration of
functional dependency. IEEE Trans. on Computers,
59(4):457-467, April 2010.

[9] K. McMillan. Interpolation and SAT-based model
checking. In Proc. Int’l Conf. on Computer Aided
Verification (CAV), pages 1-13, 2003.

[10] M. Moskewicz, C. Madigan, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proc.
Design Automation Conference (DAC), pages 530-535,
2001.

[11] T. Moon. Error Correction Coding: Mathematical
Methods and Algorithms, Wiley-Interscience, 2005.

[12] K. Sayood. Introduction to Data Compression, 3rd
edition, Morgan Kaufmann, 2005.

[13] S. Sridhara and N. Shanbhag. Coding for
system-on-chip networks: A unified framework. IEEE
Trans. on VLSI Systems, 13(6):655-667, 2005.

[14] S. Shen, Y. Qin, K. Wang, L. Xiao, J. Zhang, and S.
Li. Synthesizing complementary circuits automatically.
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 29(8):1191-1202, August 2010.

[15] S. Shen, Y. Qin, J. Zhang, and S. Li. A halting
algorithm to determine the existence of decoder. In
Proc. Formal Methods in Computer Aided Design
(FMCAD), pages 91-99, 2010.

[16] W. Trappe and L. Washington. Introduction to
Cryptography with Coding Theory, 2nd edition, Prentice
Hall, 2005.

