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ABSTRACT

Testing integrated circuits under delay defects becomes an
essential quality control step in nanometer fabrication tech-
nologies, which encounter inevitable process variations. Prior
methods on automatic test pattern generation (ATPG) for
delay defects, however, are either overly simplified (e.g., tim-
ing unaware) or computationally too expensive. This pa-
per proposes a viable ATPG method based on a satisfiabil-
ity (SAT) formulation using timed characteristic functions
(TCFs), which gained notable scalability enhancement very
recently. The approach provides a balanced trade-off be-
tween accuracy and efficiency. Experimental results show
promising runtime and fault coverage improvements over
prior SAT-based timing-aware ATPG methods. Moreover,
our method provides a nice complement to commercial tools
in enhancing test quality.

1. INTRODUCTION

With feature sizes shrinking, defects causing timing faults
by the intrinsic imperfection of manufacturing process have
become one of the most important considerations in test-
ing modern very large scale integration (VLSI) designs [2].
Such defects introduce into a circuit extra delays with cer-
tain delay sizes, and may potentially result in behavior de-
viating from correct operation. When the delay sizes are
large, delay defects can be reasonably tested with the con-
ventional (timing-unaware) automatic test pattern genera-
tion (ATPG) technique for stuck-at faults. However, when
the delay sizes are small, delay defects can be hardly trig-
gered in the test mode at a low frequency, and have to
be tested at the normal operation speed with timing-aware
ATPG methods. For high performance circuits, the influ-
ence of small delay defects (SDDs) cannot be neglected [13].
SDD testing intends to capture faults caused by unintended
extra delays in certain small ranges, called fault sizes, and
is an important and challenging issue in modern nanometer
technologies.

Among various delay fault models, path delay fault (PDF)
and transition delay fault (TDF) models are widely used in
industry. The PDF model considers the paths of a circuit
and tests to see if any path delay exceed some timing re-
quirement. Hence the PDF model can be used in a less
conservative statistical design methodology. However, since
the number of paths of a circuit can be exponential in the
number of gates, the number of faults to be considered can
be formidable [2]. Also, PDFs may require more sophisti-
cated algorithms for test generation. Therefore most of the
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timing-related defects in industry are modeled using TDFs,
where the number of faults is linear in the number of gates.

ATPG techniques for TDF's can be classified into two cate-
gories: timing-unaware and timing-aware methods. Timing-
unaware ATPG, commonly adopted in industry, assumes the
fault sizes of TDFs are large enough such that the sensiti-
zation conditions used to propagate the standard stuck-at
faults are applicable for TDF detection. Although timing-
unaware ATPG can be computationally efficient, it may
be too crude to provide accurate test solutions. In fact,
timing-unaware ATPG tends to propagate faults through
short paths. However, SDDs can be difficult to be detected
in this regard because an SDD often needs to be propa-
gated along a critical path (with a small timing slack) pass-
ing through the fault site.

To address the shortcoming of timing-unaware ATPG, N-
detect TDF ATPG was provided as another solution for de-
tecting SDDs [1]. The N-detect ATPG detects a fault N
times by tracing different paths for test pattern generation.
The intuition is that, when N is sufficiently large, an SDD
can be detected with a high probability since some of the
N detections may sensitize some long paths for fault prop-
agation. The drawback of this method is the enlarged test
lengths. As a remedy, a selection strategy for filtering useful
test patterns from a timing-unaware N-detect ATPG test set
was proposed in [10]. Nevertheless, it is still time consuming
since path delay calculation for every fault is needed.

Timing-aware ATPG tools [15] [11] have been proposed to
overcome the shortcomings of timing-unaware ATPG. How-
ever, the increases on CPU runtime and test length (number
of test patterns) are substantial. These methods cannot han-
dle large circuits in practice. There are recent efforts, e.g.,
[18, 19, 16], taking advantage of the advancement of satisfia-
bility (SAT) solving for timing-aware ATPG. Because encod-
ing circuit delay information into a conjunctive normal form
(CNF) formula may result in variable blow-up under prac-
tical timing precision, PHAETON [18] and WaveSAT [16]
impose expensive computation. Based on PHAETON and
interpolation-based model checking, recent work [19] pro-
posed a sequential ATPG technique for SDDs. Although
the quality of generated test patterns was improved, the
computational scalability is still an issue and can be further
improved.

This paper proposes a timing-aware ATPG technique for
SDDs based on SAT solving of timed characteristic func-
tions (TCFs) [14, 5, 6]. Under the TCF formulation, de-
lay paths are implicitly enumerated and the induced for-
mulas are more manageable in preventing variable blow-up
and easier to solve compared to prior timing-aware ATPG
methods. Practical techniques are also proposed to enhance
computational scalability and test pattern quality. Prelimi-



nary experimental results show substantial runtime improve-
ment over prior timing-aware ATPG methods and promising
test coverage enhancement over commercial timing-unaware
ATPG tools.

The rest of this paper is organized as follows. Section 2
provides essential preliminaries. Section 3 introduces our
approach to SAT-based formulation of timing-aware ATPG.
Section 4 presents the overall ATPG procedure. Implemen-
tation issues are discussed in Section 5. Experimental results
are evaluated in Section 6. Section 7 finally concludes this

paper.

2. PRELIMINARIES
2.1 Circuit and Delay Models

A combinational circuit C(V, E) consists of a set V' of
nodes and a set £ C V x V of directed edges. The set of
nodes, according to their attributes, can be partitioned into
three subsets, including primary inputs (PIs), primary out-
puts (POs), and function gates. A function gate can be of
simple gate types such as buffer, invertor, AND, OR, NAND,
NOR, XOR, XNOR, etc., or complex gate types such as mul-
tiplexer, AO1, etc. We assume a pin-to-pin delay model and
delay values may vary between rise and fall time. Intercon-
nect delays are assumed to be combined into gate delays.

For a node ¢ in a circuit, its sets of fanin and fanout nodes
are denoted as FI(g) and FO(g), respectively. A path in
a circuit consists of a consecutive nodes (often from some
PI to some PO) connected by edges. The transitive fanin
(respectively fanout) cone of a gate g is the set of gates that
can reach g (respectively can be reached from g) through
some paths.

For some cared gate g € FI(f), the fanins other than g to
f are called the side inputs. If ¢g’s value vy can completely
determine the value of f regardless of the values of other
inputs, then vy is a controlling value of f with respect to
g. Otherwise vy is a non-controlling value. E.g., logic value
0 and 1 are the controlling value of an AND and OR gate,
respectively. The notion of the controlling value can be gen-
eralized to a controlling cube, which is a partial assignment
to FI(f) that determines the value of f without referring
to the variables in FI(f) not present in the cube. Let Ci
and Cy be the sets of prime implicants of onset and offset of
f, respectively. Then the set of all controlling cubes can be
obtained by the union of Ci and Cj excluding the minterm
primes. The reason of excluding minterm primes is that the
output value of f can be determined only when all inputs of
f are determined.

2.2 Path Sensitization Criteria

Two circuit operation modes are commonly used in differ-
ent contexts. One is the so-called floating mode operation,
widely assumed in logic synthesis. It considers all signals in a
circuit are of an unknown initial value not until they stablize
to their final values induced by some PI assignment. Under
this mode, the exact sensitization criterion can be defined as
follows. A path 7 is sensitizable if, for every node g € FI(f)
for g, f on 7, either g has the earliest arrival controlling value
to f or g has the latest arrival noncontrolling value provided
other side inputs are all of noncontrolling values to f.

The other is the well-known two-pattern operation, inten-
sively applied in delay testing. It requires the first pattern
to initialize the circuit, and the second one to trigger the
signal transition effects. A signal is of value either 0 or 1,
without in an unknown value. Under this mode of opera-

tion, a path 7 is sensitizable if, for every node g along T,
node g has a transition and it further triggers the corre-
sponding transition at g’s fanout f on the path under the
current assignments to the side inputs of f.

In the floating mode operation, there is only one transition
on every signal, from unknown to 0 or from unknown to 1.
In the two-pattern mode, there can be more than one tran-
sitions on a signal. This difference hints that floating mode
timing simulation can be much faster than two-pattern sim-
ulation. On the other hand, floating-mode analysis is con-
servative since intermediate transitions in the two-pattern
operation are abstracted as an unknown value in the float-
ing mode. The path delay reported by floating-mode analy-
sis on timing is greater than or equal to that by two-pattern
simulation. Nevertheless floating mode analysis is able to
identify false paths and can be much more accurate than
static timing analysis.

2.3 Transition Delay Faults and their Testing

The faults caused by unintended extra rising and falling
signal delays are known as the transition delay faults (TDF).
The transition fault model commonly assumes that only one
delay fault is present in the circuit. There are two types of
TDFs: slow-to-rise (STR) and slow-to-fall (STF). An STR
(STF) fault introduces extra 0-to-1 (1-t0-0) transition delay
at the fault site. The main merit of using the transition fault
model is that the number of faults in the circuit is linear in
circuit gate count. To test a delay fault, two patterns are
needed to demonstrate a discrepancy. The first pattern gives
a proper initial value (0 for STR and 1 for STF) at the fault
site. The second pattern provides an intended final value
at fault site and propagates the fault to some observable
output. Conventionally the extra delay caused by a TDF
is assumed to be large without quantifying the amount of
extra delay, called the fault size. For the fault model without
specifies the fault size, stuck-at fault test generation tools are
often used. However, defects which can be modeled using
small delays are much more than those modeled using large
delays. It is not realistic to model defects by a large delay
model in some cases.

This paper assumes that a given circuit operates at some
target speed determined by the clock period, and the fault
size can be small. We assume that, for a fault-free circuit,
the clock period is greater than all possible arrival times at
POs. For a faulty circuit, there may exist some arrival times
exceed the clock period. We say that a fault is detected by
two patterns if the transition fault can be activated and there
exists at least one transition event after the clock period
under fault simulation. In our test pattern generation, a
fault size is considered as a lower bound of the delay’s range
that the generated test patterns can detect. That is, we use
a specified fault size for test pattern generation to detect
transition faults with delay greater than or equal to the fault
size.

2.4 Propositional Satisfiability

The satisfiability (SAT) problem asks whether a proposi-
tional formula represented in the comjunction normal form
(CNF) can be satisfied. A CNF formula is a conjunction of
clauses, each of which is a disjunction of literals. A literal
is a Boolean variable or its negation. The corresponding
literal of a variable z in a cube c is denoted as lit(z) € c,
and the polarity of lit(z), denoted as pol(lit(z)) is set to 1
if z = lit(z) and to 0 if z = —lit(x). A SAT solver can be
applied to find a truth assignment of a CNF formula if it is
satisfiable, or report the formula unsatisfiable. Modern SAT



solvers have reached their practicality in solving industrial
challenging problems. This paper relies on SAT solving for
test pattern generation of delay defects.

To translate a circuit constraint into a CNF formula for
SAT solving, Tseitin transformation [20], which allows lin-
ear time translation, is widely used. For example, a NAND
gate a with two fanins b and ¢ can be translated as (—a V
—bV —c)(aVb)(aVc). For a given circuit, the translation
encodes every gate into several clauses, whose conjunction
corresponds to the CNF formula of the circuit. In the sequel,
we use pc to represent the CNF formula translated from a
circuit C.

2.5 Timed Characteristic Functions

Under the floating mode assumption, a timed character-
istic function (TCF) x%Zt of a node f characterizes a set
of PI assignments that make the output value of f change
from its initial unknown value to a final stabilized value no-
earlier than time t [14]. A 0/l-specified TCF x/="2¢ for
v € {0,1}, further constrains the final stabilized value of f to
be logic value 0 or 1. Unlike the 0/1-unspecified TCF, the
0/1-specified TCF, though more complex, allows different
rise and fall times in the timing model and is more accurate.

A TCF formula can be constructed recursively from the
POs to PIs of a circuit, and converted into a CNF formula for
SAT solving. This paper adopts the following formulations
proposed in [5, 6]. Let S be the set of controlling cubes
of a gate f in a circuit. The 0/1-unspecified TCF can be
expressed as follows.

Xf,zt _ \/ ng‘,vzt_di A /\ \/ (Xgi’zt_di V —lit(g:))

gi €EFI(f) ceSlit(g;)€c
(1)

Moreover, let Sy and S be the sets of prime implicants of
the offset and onset of f, respectively. The 0/1-specified
TCF can be written as follows.

Xfil,Zt =fA /\ \/ (ng‘:Pol(lit(gi))vzt*dri vV —lit(gs))
ceSq lit(g;)€Ec
2)

szo,zt — “f A /\ \/ (Xg,',:pol(lit(gi)),zt—dfi V. ﬁllt(gl))
c€So lit(g;)Ec
3)

where d,, and dy, is the rising and falling pin-to-pin delay
from g¢; to f, respectively. As noted in [5, 6], the above
equalities can be replaced by logical implications — for di-
rect CNF translation and fast SAT solving without loss of
accuracy. Moreover, an equivalence relation can be defined
on TCFs [9, 5, 6] based on arrival-time information. Two
TCFs of a node f are equivalent if they have the same next
larger-or-equal possible arrival time. Let {ai,...,am} be
all possible arrival times of f sorted in an ascending order.
The TCF equivalence reduction can be performed as fol-
lows [5, 6]. x©2t =1 for 0 <t < a1, x\'2t = xH2% for
ai—1 < t < a,, Xf’zt = 0 for ¢ > a,,. Similar reduction
applies to 0/1-specified TCFs as well.

3. FROM FUNCTIONAL TIMING ANALY-
SIS TO DELAY TESTING

In TCF-based functional timing analysis [14], a circuit
is assumed to operate under the floating mode. Without
explicit path enumeration, an input pattern is to be found
such that, after the input pattern is applied, the signals of
the circuit settle from the unknown initial value to their

final values in time exceeding a specified delay upper bound.
If such an input pattern exists, a true delay path can be
further traced as a witness of timing violation. Otherwise,
the circuit is guaranteed to operate correctly within the delay
bound. A recent advancement showed that functional timing
analysis based on the TCF formulation can be efficiently
applied on multi-million gate designs [5, 6]. It motivates our
investigation of applying TCF for delay testing.

There is a subtle difference between functional timing anal-
ysis and delay testing that need to be addressed. Essentially
functional timing analysis is a single-pattern conservative
analysis, it is particularly desirable in logic synthesis be-
cause the so-called monotone speed-up property has to be
satisfied in the design phase [8]. In contrast, delay testing
requires a two-pattern analysis to demonstrate timing vio-
lation. Since the unknown value is only a conceptual value
used in logic simulation, it does not correspond to a real
physical value needed in testing. In the following we extend
the single-pattern analysis to two-pattern test generation.

Given a circuit C with its circuit formula pc and a fault
site s in C of either an STR or STF fault with a fault size
6, suppose the circuit is to operate under a clock period T
We intend to search for a two-pattern test (p1,p2) to detect
potential timing violation. We start with deriving the second
pattern pa by solving

( V x°‘>T> A A (s) (4)

ocePO

for the circuit under the presence of an STR fault, and

( V x°’>T> Agc A (=s) (5)

o0cPO

for the circuit under the presence of an STF fault. Note
that the third parts (s) and (—s) of the above conjuncts are
unit clauses (which contain only one literal) to assert fault
activation for STR and STF, respectively.

If Formula (4) or (5) is unsatisfiable, the fault is guaran-
teed not testable for the given fault size § because of the
conservativeness of the floating mode analysis. On the other
hand, if the formula is satisfiable, the circuit exhibits tim-
ing violation (under the floating mode assumption). The
corresponding satisfying assignments to the PI variables are
collected as the second pattern ps of the test vector (p1,p2)
for the fault. With p2, some true delay path(s) with delay
longer than T' can be identified by tracing the circuit using
the exact sensitization criterion [5, 6].

Given the so-obtained pattern p2, the next task is to derive
the first pattern p: of the test. For (pi,p2) to be a valid
test, p1 has to satisfy two conditions: First, p1 must provide
proper initial value for the target fault. That is, at the fault
site s in the circuit C, the logic value of s should reset to
0 for an STR fault and set to 1 for an STF fault. Second,
a transition induced by (p1,p2) at some PI must propagate
through the fault site s to some PO along some long true
delay path induced by p2. Exact derivation of p1 can be
difficult, however, due to the fact that sensitization may arise
from dynamic hazards. Therefore we approximate the above
constraints by the formula

v A=) A N\ (9@ cq) (6)
gem
for an STR fault, and by the formula
e OLWANCE XD (7)

gem
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Figure 1: Circuit for timing-aware ATPG

for an STF fault, where 7 is a true delay path sensitized
under p2 and ¢4 € {0, 1} is the stable logic value of signal g
when ps is applied. Note that there can be multiple true de-
lay paths sensitized under ps. Empirical experience suggests
that in most cases only very few paths need to be examined
before a satisfying solution to Formula (6) or (7) is found.

Notice that Formulas (6) and (7) are only approximative
since the transition propagation constraint is a static condi-
tion, which does not take into account dynamic timing infor-
mation. Both false negatives and false positives may possibly
arise. That is, if no p1 can be found, it does not prevent the
possibility that dynamic hazards propagate through 7 and
cause timing violation from happening. On the other hand,
if some p; is found, it does not guarantee that transitions
will propagate all the way through 7 since a side-input may
trigger a transition at a signal on 7 and block the intended
propagation arrived later from an on-input. In general a
fault simulator is needed to verify whether a generated test
vector (p1,p2) indeed detects the target delay fault.

Our practical experience suggests that Formulas (6) and
(7) may sometimes overly constrain p; pattern generation

while dynamic transition events can still make a fault testable.

Hence, in the implementation of p; generation, we relax the
static path transition constraints and simply apply the re-
set constraint pc A (—s) and the set constraint pc A (s) for
STR and STF faults, respectively. We then resort to a fault
simulation to justify the validity of the generated pattern as
a by-product of fault dropping.

ExXAMPLE 1. Consider the circuit of Figure 1 with a target
operation clock period T = 3 unit delays. For simplicity,
assume every pin-to-pin delay is of 1 unit delay, and the
signal arrival times of Pls are 0. Suppose an STR fault is
present at signal m with fault size 1. The two-pattern test
vector (p1,p2) can be generated by SAT solving the following
formulas.

p1 e A(—m), and

p2 - X2 Ape A (m),

with
pc = (maV-bVvm)(aV-m)bV-m)(mVcV-f)
(=mV f)(=eV f),
WEB o (@23 (g 2By g2y g
(—wrf Z3 @22y ﬂc)(ﬂmf’zr’ NEHRESRY. —m)
(_‘xm>1 FBZ0 \ yHZ0Y (LgmiZly g0y o)

(_‘ m,>1 \/xb >0 \/b)7

where variable 72t is used to represent the output vari-

able of it corresponding characteristic function x*'=t to avoid
confusion.

Originally, the longest delay of fault-free circuit is 2, which
is smaller than T'. After injecting the delay fault, there exists

TCFTestGen
input: circuit C, clock period T, fault list L
output: test set P, detected faults Fp,

undetected faults Fyp, untestable faults Fyr

begin
01 P, Fp, Fup, Fur = 0;
02 L* :=copy L;
03 while L* #0
04 fault :== GetFault(L*);
05 (p1,p2) := GeneratePattern(C, T, fault);
06 if p;1 = NULL or po = NULL

07 move fault from L* to Fyr;

08 else

09 (L', F;p) := DropFault(C, (L*, Fyp), (p1,p2));
10 if L' # L* or F;p # Fup

11 P := PU{(p1,p2)};

12 FD = FD U {L*\L/} @] {FUD\F{JD};
13 if L* =1’

14 move fault from L' to F{;p;

15 L* = L FUD = FUD’

16 return (P FD, FUD7 FUT)

end

Figure 2: Algorithm: TCF Test Generation

a delay path with delay > 3. By solving the above two SAT-
instances, we have satisfying assignments p1 = (a = 0,b =
1,¢=0) and p2 = (a = 1,b=1,c=0). By fault simulation,
it can be verified that the STR fault on m is activated and
propagated to f with 8 unit delays.

4. ALGORITHMICFLOW OF DELAY TEST-
ING

In this section, we first show an ATPG flow with respect
to pre-specified fault sizes, and then extend it to a compre-
hensive flow with adapted fault sizes to target various delay
faults. Note that ATPG for delay defects with small fault
sizes tends to sensitize long paths, whereas ATPG for de-
fects with large fault sizes may sensitize short paths and is
similar to timing-unaware ATPG.

4.1 ATPG with Specified Fault Sizes

Given a circuit C, its operation clock period T, and a fault
list L, the test generation procedure of Figure 2 computes
a test set P, along with the set Fp of detected faults, Fup
of undetected faults, and Fyr of untestable faults. Assume
the fault list L provides the fault type (i.e., STR or STF)
and fault size for each fault site. After the initialization
steps (lines 1 and 2), a fault in the fault list L™ is exam-
ined iteratively for test generation (lines 3-15). The TCF
based two-pattern test generation is performed (line 5). If
p1 or p2 has no solution (line 6), then the fault is declared
as untestable (with respect to the specified fault size) and
placed in Fyr (line 7). Then a new iteration (line 3) begins
with a new fault if it exists. Otherwise, fault simulation
is performed under two-pattern input vector (pi,p2). By
the simulation, faults in L* and Fyp testable under the test
vector are removed from L* and Fyp yielding L' and F{;p,
respectively (line 9). If the test vector can effectively re-
move some fault (line 10), then it is added to the test set P
(line 11) and the newly tested faults are added to Fp (line
12). On the other hand, if L™ cannot be reduced by fault
dropping (line 13), then the current fault is moved from L’
to temporarily untestable set F{;p (line 14). Before a new
iteration begins (line 3), L* and Fyp are updated (line 15).
When L* is empty (line 3), the procedure returns the col-
lected test vectors P, detected faults Fp, undetected faults



SDD_ATPG
input: circuit C, clock period T, fault list L
output: test set P, detected faults Fp,
undetected faults Fyp, untestable fault Fyr
begin
01 P, Fp, Fyp, Fur = 0;
02 L* := copy L;
03 repeat
04 L* := AdaptFaultSize(C, T, L*);
05 (P', F,, Fup, Fur) := TCFTestGen(C, T, L*);
06 L* := TrimFaultList(L*, F},);
07 P:= PUP,
08 Fp := Fp U F]/);
09 until L* = 0 or fault size > T}
10 return (}D7 FDyFUDvFUT);
end

Figure 3: Algorithm: SDD ATPG

Fup, and untestable faults Fyr.

4.2 ATPG with Adapted Fault Sizes

The procedure of Figure 2 generates test vectors with re-
spect to a given fault list. Since a fault with its longest path
delay smaller than the clock period minus its fault size is
not testable, different specifications of fault sizes may have
strong impacts on the fault coverage. It is often beneficial
to adapt the fault size according to the degree of circuit sen-
sitivity in the delay fault and to the level of computation
efforts needed for the test generation. Figure 3 presents a
generic framework for SDD ATPG, which adjusts fault sizes
to improve test quality.

In Figure 3, after initialization steps (lines 1 and 2), the
procedure repeatedly generates test vectors (lines 3-9) for
every fault list with adapted fault sizes (line 4). Given a
fault list L, the procedure TCFTestGen of Figure 2 is per-
formed for test generation (line 5). The detected faults FY,
are removed from the fault list L* (line 6); the test set P is
expanded accordingly (line 7); the set Fp of detected faults
is updated as well (line 8). The process repeats until all
faults are covered or the fault size has been increased ex-
ceeding the clock period (line 9). The final results are then
returned (line 10).

The strategy of adapting fault sizes plays a key role de-
termining both test quality and test efficiency. A reasonable
strategy is to first prune easy-to-detect delay faults, e.g., by
timing-unaware ATPG. The remaining hard-to-detect faults
can then be covered by gradually increasing the fault sizes
whenever they are needed. This fault-size relaxation strat-
egy is complete in the sense that every detectable fault can
be tested under some fault size possibly close to its small-
est possible. Ultimately when the fault size is increased to
exceed the clock period, every fault that can be activated
and sensitized through some path should be covered by the
ATPG.

5. IMPLEMENTATION ISSUES

We propose the following enhancement techniques to im-
prove ATPG efficiency for SDDs.

5.1 Fault Simulation

Fault simulation is essential in delay testing for two rea-
sons. First, it validates the generated test vectors are indeed
legitimate. Second, it facilitates fault dropping to remove
additional undetected faults covered by the newly generated
test vector from the fault list. Since fault simulation needs

to be frequently applied, its efficiency strongly affects the
runtime of ATPG. Deploying a proper fault simulation by
striking a balance between accuracy and efficiency is vital to
achieve efficient and effective ATPG.

Event-driven simulation is a common technique for ac-
curate waveform simulation to faithfully capture transition
events at the switch level. Due to its effectiveness, it has
been widely used in logic simulation. Nevertheless, in appli-
cation to delay testing, it has to be executed for many times
and imposes great computation overhead. Essentially, there
can be enormous transition events present in simulating a
single delay fault. Moreover, there are numerous faults to
be tested for a given circuit. For practicality, the high cost
of event-driven simulation should be avoided whenever pos-
sible.

In our implementation, we adopt the exact sensitization
criterion [3] for delay simulation. That is, the simulation im-
plicitly assumes the floating mode operation, which is con-
sistent with the underlying assumption of TCF formulation.
Although floating-mode based simulation is not as accurate
as event-driven simulation, it is desirably conservative and
computational more affordable than event-driven simulation.
Under the two-pattern test generation scenario, we assume
the first test pattern reaches propagation stablization before
the second test pattern is applied. As a result, the accuracy
of floating-mode analysis can be refined to take into account
the early stablization of the first test pattern. Precisely, a
signal x has arrival time 0 if both the first pattern and the
second pattern of a test vector impose the same stable values
at every signal in the transitive fanin cone of x. Otherwise,
x is assumed to have an unknown initial value as usual.

5.2 Incremental Arrival-Time List Computa-
tion

As mentioned in Section 2.5, an arrival-time list is useful
for TCF equivalence reduction. However the list of every
gate cannot be computed once and for all because injecting a
delay fault into a circuit changes the possible arrival times in
the circuit. Since the induced arrival-time lists of every fault
can be different, the arrival-time lists for the gates of a circuit
have to be updated for every fault. We only incrementally
update the arrival-time lists of the gates in the transitive
fanout cone of the fault site.

5.3 TCF Time-Order Strengthening

The TCF's of any gate f obey the monotone property that
the logic implication x©'2% — x©'2%2 holds for t; > t». This
property can be explicitly added to ¢rcr to strengthen the
search space of SAT solving. Precisely, suppose, in some test
pattern generation instance, several TCFs Xf’zzl, .. ,Xf’zt",
with ¢t > --- > t,, are invoked for gate f. Then we may
add the constraints y/Zt — yH2tz H2te 5\ fizts
xHZtn-1 5 2% into ¢rer. Empirical experience sug-
gests that such time-order constraints often improve solving
performance.

5.4 Delay Search Strategy

To determine whether a delay fault can be tested, there
can be different strategies in choosing target circuit delays
for verification. One obvious choice is to set the target delay
slightly greater than the clock period and determine whether
there exists a two-pattern test vector sensitizing the fault
and causing delay violation. Following this strategy, how-
ever, the correspondingly constructed TCF can be too com-
plex to be solved efficiently, especially when the longest true
delay is much larger than the target delay. As was pro-



posed in [5, 6], a linear search strategy of pruning spurious
arrival times from the largest one is particularly desirable.
Although the linear search strategy may potentially require
several runs of SAT checking, it allows constant propagation
during TCF construction and may substantially simplify the
formulas to be solved. In addition, as a by-product the so-
generated test vector tends to sensitize a longer delay path
and is particularly desirable.

5.5 Formula Complexity Filtering

One effective way to control the runtime of ATPG is to
avoid solving time-consuming TCF formulas. To quantify
the complexity of a TCF formula, the formula size and the
number of decision conflicts during SAT solving are good
measures. When the formula size or the number of decision
conflicts of an SAT instance exceeds a pre-specified thresh-
old, the test derivation of the corresponding delay fault is
skipped. Nevertheless, it may possibly be covered by the
test patterns of other faults, whose test derivations are more
efficient.

6. EXPERIMENTAL RESULTS

The proposed ATPG procedure for SDDs was implemented
in the C++ language and used MiniSat version 2.2 [7] for
SAT solving. All experiments were executed on a Linux ma-
chine with a Xeon 2 GHz CPU and 40 GB RAM.

Circuits from the ISCAS benchmark suits were selected
for experiments. The circuits were technology mapped with
respect to a library consisting of simple gate types, including
INV, AND, NAND, OR, NOR, XOR, and XNOR gates, although
our method is applicable to arbitrary complex gate types.
Table 1 shows the gate counts and logic levels of the circuits.
The timing model is based on TSMC 0.18um library with
combined rise/fall times and with delay precision set to the
first digit after the decimal point. In this paper we focused
on testing combinational circuits. So for sequential circuits
we assumed the launch-on-capture (LOC) testing method
for scanning in test patterns.

Table 1: Circuit Profile
[ Circuit | #gate | #level

€880 383 24
C1355 554 25
C1908 932 42
C2670 1202 33
C3540 1703 47
C5315 2330 49
C6288 2480 124
C7552 3568 43
$9234 6094 58
513207 9365 59
515850 11053 82
535932 19588 29
538417 25367 47

In practice, many faults can be handled by traditional
timing-unaware ATPG methods. Hence there is no need
to perform timing-aware ATPG for every fault in a circuit.
Under this observation, for every circuit in the experiments,
1,000 faults are created under testing, the clock period is
set to be about 1% larger than the maximal arrival time at
the POs of a circuit, and the fault size is set to be some
percentage of the clock period depending on different sets of
experiments. Fault coverage (denoted FC, the percentage of
detected faults among all 1,000 faults), test length (denoted
TL, the total number of generated test patterns), and CPU
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Figure 4: Comparison on the number of generated
clauses

runtime are under evaluation. In addition, SDQL (statisti-
cal delay quality level) [17], a well-known standard for test
quality measure, is also adopted for evaluation.

Three experiments were performed and a time limit of
3,600 seconds was set. We compared our method against the
SAT-based timing-aware ATPG tool PHAETON [18] (based
on our re-implementation, which might not directly reflect
the actual performance of the original tool) and a commer-
cial ATPG tool for TDFs. On the other hand, attempts
were made to have a fair setting on the commercial tool for
comparison.

Table 2 shows the results of the three methods under three
different fault size settings, namely 10%, 20%, and 40% of
the clock period. In the experiment, limits were set on the
CNF formula size. For our method, we experimented with
the limits of 10,000 and 1,000,000 clauses per SAT instance.
For PHAETON, a limit of 1,000,000 clauses per SAT in-
stance was set. (Reducing the clause limit to 100,000 or
less results in many unavailable data of PHAETON due to
formulas beyond the size limit.) Note that the fault cov-
erage reported by our floating-mode fault simulator is fault
size dependent since some faults going through short paths
are ATPG untestable with small fault sizes. That is, the
best fault coverage is not necessarily 100%, and the com-
parison is relative among the three methods. When our
method and PHAETON are compared, the former is sig-
nificantly faster and achieved better fault coverage than the
latter in almost all benchmark circuits. The large computa-
tion overhead of PHAETON is due to its excessive number
of T-variables [18] in a CNF formula. When the commercial
tool is compared, our method has larger CPU runtime since
the commercial tool determines timing violations by com-
puting timing slacks whose computation overhead is much
lighter than SAT-solving. For faults whose minimum slacks
are greater than the maximum timing margin, the com-
mercial tool applies timing-unaware ATPG and may lose
fault coverage although computational efficiency is gained.
Our method yielded better fault coverage and shorter test
lengths, which means our method has better quality of the
generated patterns for SDDs. Notice that comparison on
SDQL was not performed in this experiment. It is because
our method and PHAETON generated test patterns only
for faults that are testable with respect to the specified fault
size, whereas the commercial tool generated patterns for all
faults regardless of their fault sizes. This difference makes
SDQL comparison unfair.

To justify the performance gap between our method and
PHAETON, Figure 4 compares for every circuit the average



Table 2: Comparison of ATPG techniques for SDDs with specified fault size

| Fault size = 10% l

Ours (limit=10k) T

Ours (limit=1M)

[[ PHAETON (limit=1M) [18] Commercial tool |

’ Circuit H Time (s) | FC (%) | _TL || Time (s) | FC (%) | _TL || Time (s) | FC (%) | __TL || Time (s) | FC (%) | _TL |
€880 0.5 13.5 23 0.5 13.5 23 8.1 4.4 2 0.2 0 119
C1355 3.9 85.0 121 6.1 90.8 171 18.6 88.6 82 0.4 83.4 170
C1908 7.7 16.4 39 7.7 16.4 39 95.3 16.5 27 0.3 14.3 131
C2670 7.7 86.7 144 13.2 90.2 151 5.2 90.0 11 0.2 79.5 124
C3540 17.8 31.1 33 188.6 35.1 75 383.4 34.4 43 0.3 31.8 187
C5315 3.3 9.1 35 3.9 9.5 39 20.6 4.9 13 0.2 7.4 130
C6288 17.1 13.9 4 933.9 18.2 10 717.5 20.2 24 0.4 0 54
C7552 5.5 11.0 56 5.5 11.0 56 32.8 7.1 20 0.3 9.0 132
59234 2.2 74.2 16 2.9 74.2 16 20.8 58.2 3 0.4 65.9 214
513207 6.5 2.6 23 8.2 2.6 23 138.8 2.0 14 0.6 2.1 176
515850 37.8 96.7 198 48.2 96.7 198 1499.7 51.7 1 0.5 99.0 152
535932 46.9 13.3 116 69.5 13.3 116 1093.5 7.2 64 0.9 12.4 53
538417 27.4 17.5 120 45.7 17.5 121 876.4 18.4 72 1.2 13.3 176

average 14.2 36.2 71.4 102.6 37.6 79.8 377.7 29.5 29.3 0.5 32.2 | 139.8

[ Fault size = 20% |

’ Circuit ‘ Ours (limit=10k) Ours (limit=1M) [[ PHAETON (limit=1M) [18] | Commercial tool |

[ Time (s) [ FC (%) [ TL || Time (s) [ FC (%) [ TL [[ Time (s) [ FC (%) | TL [ Time (s) [ FC (%) [  TL |
c880 0.6 22.3 50 0.7 22.3 50 8.2 9.1 9 0.2 4.2 139
c1355 2.9 87.3 128 7.8 92.3 175 50.3 92.4 83 0.4 85.4 170
c1908 5.8 20.9 60 8.3 20.9 60 140.6 19.0 29 0.3 17.1 145
c2670 6.1 91.7 154 13.0 91.3 163 4.4 90.3 19 0.2 59.1 125
c3540 15.8 35.5 39 274.4 40.2 90 1042.6 40.8 63 0.4 39.0 207
cb315 2.6 9.5 36 4.0 9.9 41 24.6 5.7 14 0.3 7.9 154
c6288 14.4 26.2 5 1342.3 30.4 13 3600 0 0 0.5 0 68
c7552 4.6 11.6 62 6.3 11.6 62 40.2 7.3 20 0.4 10.2 166
9234 2.2 74.2 16 2.9 74.2 16 16.5 58.2 3 0.4 66.1 240
513207 6.6 2.6 23 8.2 2.6 23 107.1 2.2 14 0.7 2.2 183
515850 36.6 96.7 198 53.2 96.7 198 1266.6 51.7 1 0.7 99.2 172
535932 47.7 13.3 116 68.1 13.3 116 447.4 7.2 64 0.9 12.9 60
538417 28.2 17.5 120 46.1 17.5 121 389.3 18.5 68 1.3 13.2 209
average 13.4 39.2 77.5 141.2 40.2 86.7 549.0 33.5 32.2 0.5 32.0 | 156.8

| Fault size = 40% l

’ Circuit ‘ Ours (limit=10k) Ours (limit=1M) [[ PHAETON (limit=1M) [18] | Commercial tool |

[ Time (s) [ FC (%) | TL || Time (s) [ FC (%) [ TL | Time (s) [ FC (%) | TL || Time (s) [ FC (%) |  TL |
c880 1.0 50.8 127 1.2 50.8 127 6.2 41.4 59 0.2 39.1 190
c1355 2.5 89.4 120 7.8 94.4 162 231.9 94.3 81 0.4 87.2 170
c1908 7.2 37.2 96 10.3 37.2 96 141.3 37.5 66 0.5 38.5 194
c2670 5.0 91.9 166 11.8 92.4 159 6.8 93.1 39 0.4 97.3 195
c3540 13.8 35.5 39 284.1 40.2 90 139.8 39.3 53 0.6 39.7 276
cb5315 2.3 10.3 43 4.1 10.7 48 29.7 7.4 15 0.4 9.0 218
c6288 13.3 45.3 13 1451.9 53.5 31 3600 0 0 0.8 45.8 120
c7552 4.1 12.9 69 6.0 12.9 69 55.6 9.0 24 0.6 12.1 251
59234 2.5 74.4 20 3.3 74.4 20 23.5 58.2 3 0.5 51.2 274
513207 6.6 2.6 23 7.8 2.6 23 146.4 1.6 12 0.7 2.3 194
515850 37.6 96.7 198 52.6 96.7 198 1705.0 51.7 1 0.9 98.8 200
s35932 67.1 17.5 157 84.8 17.5 157 472.3 14.3 87 0.9 18.4 75
538417 42.3 32.5 246 69.1 32.6 247 657.3 33.7 135 1.4 34.0 263
average 15.8 45.9 101.3 153.4 47.3 109.7 555.0 40.1 47.9 0.6 44.1 201.5

number of clauses generated for SAT solving by our method
and PHAETON (under the upper limit of 1,000,000 clauses).
As can be seen, our method produces much fewer clauses
than PHAETON in all circuits.

In the second experiment, we combined our ATPG tech-
nique with the commercial tool in the following setting to en-
hance SDQL. We intended to focus on hard-to-detect faults
that the commercial tool cannot generate patterns to sen-
sitize them through a long enough path. Firstly, the com-
mercial tool was run with its SDD algorithm applied for
all faults. A fault is classified as detected if it can be de-
tected through a path whose delay is more than 95% of the
maximum delay of all paths through the fault site. After
fault simulation, the faults that the commercial tool claimed
undetected through the longest path were collected. Our
method then tried to generate patterns for these faults with
adapted fault sizes. This hybrid method is compared against
with the pure commercial tool ATPG targeting pattern gen-
eration for sensitizing the longest path for all faults in the

given fault list. Table 3 shows the runtime, SDQL, and
test length data for the two methods. The runtime and
test length of the hybrid method were broken down into
Timec (runtime by the commercial tool) and Timeo (run-
time by ours), and TLc (test length of the commercial tool)
and TLo (test length of ours), respectively. As can be seen,
our ATPG can enhance SDQL by generating patterns for
the faults which cannot be detected through long path sen-
sitization. On average, the hybrid method achieved better
(smaller) SDQL with small test lengths.

In the third experiment, we studied the ATPG perfor-
mance of our method with three different formula size lim-
its, namely, 1,000,000, 100,000, and 10,000. The results
are shown in Table 4. It shows a tradeoff between the test
length and runtime. For circuits C1355, C2670, C3540 and
6288, sacrificing some test patterns that are hard to gener-
ate would improve the runtime. The speed-up can be signifi-
cant especially for large or structurally complex circuits such
as €6288 and yet without much fault coverage degradation.



Table 3: Comparison of our hybrid ATPG technique with commercial approach

Commercial tool

Hybrid method

’ Circuit H Time () [ SDQL | TL || Timec (5) | Timeo (5) | SDQL | TLc [ TLo | TLiotal %
C880 0.5 0.3 [ 210 0.5 1 01 214] 156 370
C1355 14 15 | 346 0.4 2.8 51| 133 | 134 267
C1908 19| 17| 310 T1 76.9 79 | 175 | 108 283
C2670 7 15| 340 16 29.9 15| 311 ] 175 86
C3540 2.0 | 151 | 446 1 1193 | 159 | 219 32 251
C5315 17 38 | 369 0.8 111 38 | 127 7 204
C6288 71| 124 | 352 71 1244 | 118 | 327 64 391
C7552 35 3.0 | 429 15 20.1 47 | 117 86 203

average || 25 ] 6.5 ] 3502 | 18 | 194 | 6.3 | 202.8 | 104.0 | 3068 ]

Table 4: Our ATPG with different clause limits (10% fault size)

[ Clause limit = 1000000

“ Clause limit = 100000 “

Clause limit = 10000

’ Circuit ‘

[ Time (s) [ FC] TL || Time(s) [ FC | TL [ Time (s) [ FC ] TL
€880 0.5 | 13.5 23 0.5 | 13.5 23 0.5 | 13.5 23
C1355 6.1 | 90.8 171 6.1 | 90.8 170 3.9 | 85.0 121
C1908 7.7 | 16.4 39 7.7 | 16.4 39 7.7 | 16.4 39
C2670 13.2 | 90.2 151 13.2 | 90.2 151 7.6 | 86.7 144
C3540 188.6 | 35.1 75 80.8 | 34.7 71 17.8 | 31.1 33
C5315 3.9 9.5 39 3.9 9.5 39 3.3 9.1 35
C6288 933.9 | 18.2 10 96.1 | 15.9 6 17.1 | 13.9 4
C7552 5.5 | 11.0 56 5.5 | 11.0 56 5.5 | 11.0 56
average || 144.9 [ 35.6 | 705 [| 265 | 35.2 | 69.4 [ 7.9 | 33.3 | 56.8 |

7. CONCLUSIONS AND FUTURE WORK

This paper has proposed a timing-aware ATPG technique
for SDDs based on TCF's. Experimental results showed that
our method outperforms state-of-the-art SAT-based timing-
aware ATPG method PHAETON in terms of both runtime
and test pattern quality. Moreover, in comparison with the
commercial tool, our method improves test quality in terms
of both fault coverage and test length, though with some
performance loss. For future work, the application of timing-
aware ATPG on large sequential designs awaits further de-
velopment. Enhancing the test coverage without loss of false
negatives is also an important issue. Furthermore, for ATPG
of SDDs in an industrial setting for multi-million gate de-
signs, our method can be used to cover the most critical
SDDs that commercial timing-aware ATPG can not manage
to detect.
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