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Abstract. Transformations using retiming and resynthesis operations
are the most important and practical (if not the only) techniques used in
optimizing synchronous hardware systems. Although these transforma-
tions have been studied extensively for over a decade, questions about
their optimization capability and verification complexity are not answered
fully. Resolving these questions may be crucial in developing more effec-
tive synthesis and verification algorithms. This paper settles the above
two open problems. The optimization potential is resolved through a con-
structive algorithm which determines if two given finite state machines
(FSMs) are transformable to each other via retiming and resynthesis op-
erations. Verifying the equivalence of two FSMs under such transforma-
tions, when the history of iterative transformation is unknown, is proved
to be PSPACE-complete and hence just as hard as general equivalence
checking, contrary to a common belief. As a result, we advocate a conser-
vative design methodology for the optimization of synchronous hardware
systems to ameliorate verifiability. Our analysis reveals some properties
about initializing FSMs transformed under retiming and resynthesis. On
the positive side, established is a lag-independent bound on the length
increase of initialization sequences for FSMs under retiming. It allows a
simpler incremental construction of initialization sequences compared to
prior approaches. On the negative side, we show that there is no analo-
gous transformation-independent bound when resynthesis and retiming
are iterated. Fortunately, an algorithm computing the exact length in-
crease is presented.

1 Introduction

Retiming [7, 8] is an elementary yet effective technique in optimizing synchronous
hardware systems. By simply repositioning registers, it is capable of reschedul-
ing computation tasks in an optimal way subject to some design criteria. As
both an advantage and a disadvantage, retiming preserves the circuit structure
of the system under consideration. It is an advantage in that it supports incre-
mental engineering change with good predictability, and a disadvantage in that
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the optimization capability is somewhat limited. Therefore, resynthesis [9, 1, 10]
was proposed to be combined with retiming, allowing modification of circuit
structures. This combination of retiming and resynthesis certainly extends the
optimization power of retiming, but to what extent remains an open problem,
even though some notable progress has been made since [9], e.g. [14, 15, 20].
Fully resolving this problem is crucial in understanding the complexity of ver-
ifying the equivalence of systems transformed by retiming and resynthesis and
in constructing correct initialization sequences. In fact, despite its effectiveness,
the transformation of retiming and resynthesis is not widely used in hardware
synthesis flows due to the verification hindrance and the initialization problem.
Progress in these areas could enhance the practicality and application of retim-
ing and resynthesis, and advance the development of more effective synthesis
and verification algorithms.

This paper tackles three main problems regarding retiming and resynthesis:

Optimization power: What is the transformation power of retiming and resyn-
thesis? How can we tell if two synchronous systems are transformable to each
other with retiming and resynthesis operations?

Verification complexity: What is the computational complexity of verifying
if two synchronous systems are equivalent under retiming and resynthesis?

Initialization: How does the transformation of retiming and resynthesis affect
the initialization of a synchronous system? How can we correct initialization
sequences?

Our main results include

• (Section 3) Characterize constructively the transformation power of retiming
and resynthesis.

• (Section 4) Prove the PSPACE-completeness of verifying the equivalence of
systems transformed by retiming and resynthesis operations when the trans-
formation history is lost.

• (Section 5) Demonstrate the effects of retiming and resynthesis on the initial-
ization sequences of synchronous systems. Present an algorithm correcting
initialization sequences.

2 Preliminaries

In this paper, to avoid later complication we shall not restrict ourselves to bi-
nary variables and Boolean functions. Thus, we assume that variables can take
values from arbitrary finite domains, and similarly functions can have arbitrary
finite domains and co-domains. When (co)domains are immaterial in the dis-
cussion, we shall omit specifying them. We introduce the following notational
conventions. Let V1 be a set of variables. Notation [[V1]] represents the set of all
possible valuations over V1. Let V2 ⊆ V1. For x ∈ [[V1]], we use x[V2] ∈ [[V2]]
to denote the valuation over variables V2 which agrees with x on V2. Suppose
s is a (current-)state variable. Its primed version s′ denotes the corresponding
next-state variable.
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Synchronous Hardware Systems. Based on [7], a syntactical definition of
synchronous hardware systems can be formulated as follows. A hardware system
is abstracted as a directed graph, called a communication graph, G = (V, E)
with typed vertices V and weighted edges E. Every vertex v ∈ V represents
either the environment or a functional element. The vertex representing the en-
vironment is the host, which is of type undefined; a vertex is of type f if the
functional element it represents is of function f (which can be a multiple-output
function consisting of f1, f2, . . .). Every edge e〈w〉 = (u, v)〈w〉 ∈ E with a non-
negative integer-valued weight w corresponds to the interconnection from vertex
u to vertex v interleaved by w state-holding elements (or registers). (From the
viewpoint of hardware systems, any component in a communication graph dis-
connected from the host is redundant. Hence, in the sequel, we assume that a
communication graph is a single connected component.) A hardware system is
synchronous if, in its corresponding communication graph, every cycle contains
at least one positive-weighted edge. This paper is concerned with synchronous
hardware systems whose registers are all triggered by the same clock ticks. More-
over, according to the initialization mechanism, a register can be reset either
explicitly or implicitly. For registers with explicit reset, their initial values are
determined by some reset circuitry when the system is powered up. In contrast,
for registers with implicit reset, their initial values can be arbitrary, but can be
brought to an identified set of states (i.e. the set of initial states1) by applying
some input sequences, the so-called initialization (or reset) sequences [13]. It
turns out that explicit-reset registers can be replaced with implicit-reset ones
plus some reset circuitry [10, 17]. (Doing so admits a more systematic treatment
of retiming synchronous hardware systems because retiming explicit-reset regis-
ters needs special attention to maintain equivalent initial states.) Without loss of
generality, this paper assumes that all registers have implicit reset. In addition,
we are concerned with initializable systems, that is, there exist input sequences
which bring the systems from any state to some set of designated initial states.

The semantical interpretation of synchronous hardware systems can be mod-
elled as finite state machines (FSMs). An FSM M is a tuple (Q, I, Σ, Ω, δ,λ),
where Q is a finite set of states, I ⊆ Q is the set of initial states, Σ and Ω
are the sets of input and output alphabets, respectively, and δ : Σ × Q → Q
(resp. λ : Σ × Q → Ω) is the transition function (resp. output function). Let
VS , VI , and VO be the sets of variables that encode the states, input alphabets,
and output alphabets respectively. Then Q = [[VS ]], Σ = [[VI ]] and Ω = [[VO]]. To
uniquely construct an FSM from a communication graph G = (V, E), we divide
each edge (u, v)〈w〉 ∈ E into w+1 edges separated by w registers and connected
with the two end-vertices u and v. We then associate the outgoing (incoming)
edges of registers with current-state variables VS (next-state variables VS′); asso-
ciate the outgoing (incoming) edges of the host with variables VI (VO). All other
edges are associated with internal variables. The transition and output functions

1 When referring to “initial states,” we shall mean the starting states of a system after
initialization.
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are obtained, starting from VS′ and VO, respectively, by a sequence of recursive
substitutions of variables with functions of their input functional elements until
the functions depend only on variables VI ∪ VS .

We define a strong form of state equivalence which will govern the study of
the transformation power of retiming.

Definition 1. Given an FSM M = (Q, I, Σ, Ω, δ,λ), two states q1, q2 ∈ Q are
immediately equivalent if δ(σ, q1) ≡ δ(σ, q2) and λ(σ, q1) ≡ λ(σ, q2) for any
σ ∈ Σ.

Also, we define dangling states inductively as follows.

Definition 2. Given an FSM, a state is dangling if either it has no prede-
cessor state or all of its predecessor states are dangling. All other states are
non-dangling.

Retiming. A retiming operation over a synchronous hardware system consists
of a series of atomic moves of registers across functional elements in either a for-
ward or backward direction. (The relocation of registers is crucial in exploring
optimal synchronous hardware systems with respect to various design criteria,
such as area, performance, power, etc. As not our focus, the exposition of retim-
ing in the optimization perspective is omitted in this paper. Interested readers
are referred to [8].) Formally speaking, retiming can be described with a retime
function [7] over a communication graph as follows.

Definition 3. Given a communication graph G = (V, E), a retime function
ρ : V → Z maps each vertex to an integer, called the lag of the vertex, such
that w + ρ(v) − ρ(u) ≥ 0 for any edge (u, v)〈w〉 ∈ E. If ρ(host) ≡ 0, ρ is called
normalized; otherwise, ρ is unnormalized.

Given a communication graph G = (V, E), any retime function ρ over G uniquely
determines a “legally” retimed communication graph G† = (V, E†) in which
(u, v)〈w〉 ∈ E if, and only if, (u, v)〈w + ρ(v) − ρ(u)〉 ∈ E†. It is immediate that
the retime function −ρ reverses the retiming from G† to G.

Retime functions can be naturally classified by calibrating their equivalences
as follows.

Definition 4. Given a communication graph G, two retime functions ρ1 and ρ2
are equivalent if they result in the same retimed communication graph.

Proposition 1. Given a retime function ρ with respect to a communication
graph, offsetting ρ by an integer constant c results in an equivalent retime func-
tion.

Hence any retime function can be normalized. This equivalence relation, which
will be useful in the study of the increase of initialization sequences due to
retiming, induces a partition over retime functions. Equivalent retime functions
(with respect to some communication graph) form an equivalence class.
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Proposition 2. Given a communication graph G, any equivalence class of re-
time functions is of infinite size; any equivalence class of normalized retime
functions is of size either one or infinity (only when G contains components dis-
connected from the host). Furthermore, any equivalence class of retime functions
has a normalized member.

Resynthesis. A resynthesis operation over a function f rewrites the syntacti-
cal formula representation of f while maintaining its semantical functionality.
Clearly, the set of all possible rewrites is infinite (but countable, namely, with
the same cardinality as the set N of natural numbers). When a resynthesis op-
eration is performed upon a synchronous hardware system, we shall mean that
the transition and output functions of the corresponding FSM are modified in
representations but preserved in functionalities. This modification in represen-
tations will be reflected in the communication graph of the system. (Again, such
rewrites are usually subject to some optimization criteria. Since this is not our
focus, the optimization aspects of resynthesis operations are omitted. See, e.g.,
[1] for further treatment.)

3 Optimization Capability

The transformation power of retiming and resynthesis can be understood best
with state transition graphs (STGs) defined by FSMs. We investigate how re-
timing and resynthesis operations can alter STGs.

3.1 Optimization Power of Retiming

We study how the atomic forward and backward moves of retiming affect the
corresponding FSM M = ([[VS ]], I, Σ, Ω, δ,λ) of a given communication graph
G = (V, E).

To study the effect of an atomic backward move, consider a normalized retime
function ρ with ρ(v) = 1 for some vertex v ∈ V and ρ(u) = 0 for all u ∈ V \{v}.
(Because a retiming operation can be decomposed as a series of atomic moves,
analyzing ρ defined above suffices to demonstrate the effect.) Let VS = VS� ∪VS∗

be the state variables of M, where VS� = {s1, . . . , si} and VS∗ = {si+1, . . . , sn}
are disjoint. Suppose v is of type f : [[{t1, . . . , tj}]] → [[{s′

1, . . . , s
′
i}]], where the

valuation of next-state variables s′
k is defined by fk(t1, . . . , tj) for k = 1, . . . , i.

Let M† = ([[V†
S ]], I†, Σ, Ω, δ†,λ†) be the FSM after retiming, where state vari-

ables V†
S = VT ∪ VS∗ with VT = {t1, . . . , tj}. For any two states q†

1, q
†
2 ∈ [[V†

S ]],
if q†

1[VS∗ ] ≡ q†
2[VS∗ ] and f(q†

1[VT ]) ≡ f(q†
2[VT ]), then q†

1 and q†
2 are immediately

equivalent. This immediate equivalence results from the fact that the transition
and output functions of M† can be valuated after the valuation of f, which
filters out the difference between q†

1 and q†
2. Comparing state pairs between M

and M†, we can always find a relation R ⊆ [[VS ]] × [[V†
S ]] such that
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1. Pairs (q1, q
†
1) and (q1, q

†
2) are both in R for the state q1 of M with q1[VS∗ ] ≡

q†
1[VS∗ ] and q1[VS� ] ≡ f(q†

1[VT ]).
2. It preserves the immediate equivalence, that is, (q, q†) ∈ R if, and only if,

λ(σ, q) ≡ λ†(σ, q†) and (δ(σ, q), δ†(σ, q†)) ∈ R for any σ ∈ Σ.

Since f is a total function, every state of M† has a corresponding state in M
related by R. (It corresponds to the fact that backward moves of retiming cannot
increase the length of initialization sequences, the subject to be discussed in Sec-
tion 5.) On the other hand, since f may not be a surjective (or an onto) mapping
in general, there may be some state q of M such that ∀x ∈ [[VT ]]. q[VS� ] 
≡ f(x),
that is, no states can transition to q. In this case, q can be seen as being anni-
hilated after retiming. To summarize,

Lemma 1. An atomic backward move of retiming can 1) split a state into mul-
tiple immediately equivalent states and/or 2) annihilate states which have no
predecessor states.

With a similar reasoning by reversing the roles of M and M†, one can show

Lemma 2. An atomic forward move of retiming can 1) merge multiple imme-
diately equivalent states into a single state and/or 2) create states which have
no predecessor states.

(Similar results of Lemmas 1 and 2 appeared in [15], where the phenomena of
state creation and annihilation were omitted.)

Note that, in a single atomic forward move of retiming, transitions among
the newly created states are prohibited. In contrast, when a sequence of atomic
forward moves m1, . . . , mn are performed, the newly created states at move
mi can possibly have predecessor states created in later moves mi+1, . . . , mn.
Clearly all the newly created states not merged with original existing states due
to immediate equivalence are dangling. However, to be shown in Section 5.1, the
transition paths among these dangling states cannot be arbitrarily long.

Since a retiming operation consists of a series of atomic moves, Lemmas 1
and 2 set the fundamental rules of all possible changes of STGs by retiming.
Observe that a retiming operation is always associated with some structure (i.e.
a communication graph). For a fixed structure, a retiming operation has limited
optimization power, e.g., the converses of Lemmas 1 and 2 are not true. That
is, there may not exist atomic moves of retiming (over a communication graph)
which meet arbitrary targeting changes on an STG. Unlike a retiming operation,
a resynthesis operation provides the capability of modifying the vertices and
connections of a communication graph.

3.2 Optimization Power of Retiming and Resynthesis

A resynthesis operation itself cannot contribute any changes to the STG of
an FSM. However, when combined with retiming, it becomes a handy tool. In
essence, the combination of retiming and resynthesis validates the converse of
Lemmas 1 and 2 as will be shown in Theorem 1. Moreover, it determines the
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transitions of newly created states due to forward retiming moves, and thus has
decisive effects on initialization sequences as will be discussed in Section 5.2.
On the other hand, we shall mention an important property about retiming and
resynthesis operations.

Lemma 3. Given an FSM, the newly created states (not merged with original
existing states due to immediate equivalence) due to atomic forward moves of re-
timing remain dangling throughout iterative retiming and resynthesis operations.

Remark 1. As an orthogonal issue to our discussion on how retiming and resyn-
thesis can alter the STG of an FSM, the transformation of retiming and resyn-
thesis was shown [10] to have the capability of exploiting various state encodings
(or assignments) of the FSM.

Notice that the induced state space of the dangling states originating from
atomic moves of retiming is immaterial in our study of the optimization capabil-
ity of retiming and resynthesis because an FSM after initialization never reaches
such dangling states. An exact characterization of the optimization power of
retiming and resynthesis is given as follows.

Theorem 1. Ignoring the (unreachable) dangling states created due to retiming,
two FSMs are transformable to each other through retiming and resynthesis if,
and only if, their state transition graphs are transformable to each other by a
sequence of splitting a state into multiple immediately equivalent states and of
merging multiple immediately equivalent states into a single state.

(A similar result of Theorem 1 appeared in [15], where however the optimiza-
tion power of retiming and resynthesis was over-stated as will be detailed in
Section 6.) From Theorem 1, one can relate two FSMs before and after the
transformation of retiming and resynthesis as follows.

Corollary 1. Given M = (Q, I, Σ, Ω, δ,λ) and M† = (Q†, I†, Σ, Ω, δ†,λ†),
FSMs M and M† are transformable to each other through retiming and resyn-
thesis operations if, and only if, there exists a relation R ⊆ Q × Q† satisfying

1. Any non-dangling state q ∈ Q (resp. q† ∈ Q†) has at least one non-dangling
state q† ∈ Q† (resp. q ∈ Q) such that (q, q†) ∈ R.

2. State pair (q, q†) ∈ R if and only if, for any σ ∈ Σ, λ(σ, q) ≡ λ†(σ, q†) and
(δ(σ, q), δ†(σ, q†)) ∈ R.

Notice that the statements of Theorem 1 and Corollary 1 are nonconstructive in
the sense that no procedure is given to determine if two FSMs are transformable
to each other under retiming and resynthesis. This weakness motivates us to
study a constructive alternative.

3.3 Retiming- esynthesis Equivalence and Canonical
Representation

Given an FSM, the transformation of retiming and resynthesis operations can
rewrite it into a class of equivalent FSMs (constrained by Corollary 1). We ask

R
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ConstructQuotientGraph
input: a state transition graph G
output: a state-minimized transition graph w.r.t. immediate equivalence
begin
01 remove dangling states from G
02 repeat
03 compute and merge immediately equivalent states of G
04 until no merging performed
05 return the reduced graph
end

Fig. 1. Algorithm: Construct quotient graph

if there exists a computable canonical representative in each such class, and
answer this question affirmatively by presenting a procedure constructing it.
Rather than arguing directly over FSMs, we simplify our exposition by arguing
over STGs.

Because retiming and resynthesis operations are reversible, we know

Proposition 3. Given STGs G, G1, and G2. Suppose G1 and G2 are deriv-
able from G using retiming and resynthesis operations. Then G1 and G2 are
transformable to each other under retiming and resynthesis.

We say that two FSMs (STGs) are equivalent under retiming and resynthesis
if they are transformable to each other under retiming and resynthesis. Thus,
any such equivalence class is complete in the sense that any member in the class
is transformable to any other member. To derive a canonical representative of
any equivalence class, consider the algorithm outlined in Figure 1. Similar to
the general state minimization algorithm [6], the idea is to seek a representative
minimized with respect to the immediate equivalence of states. However, unlike
the least-fixed-point computation of the general state minimization, the compu-
tation in Figure 1 looks for a greatest fixed point. Given an STG, the algorithm
first removes all the dangling states, and then iteratively merges immediately
equivalent states until no more states can be merged.

Theorem 2. Given an STG G, Algorithm ConstructQuotientGraph produces
a canonical state-minimized solution, which is equivalent to G under retiming
and resynthesis.

For a näive explicit enumerative implementation, Algorithm ConstructQuotient-
Graph is of time complexity O(kn3), where k is the size of input alphabet and
n is number of states. (Notice that the complexity is exponential when the in-
put is an FSM, instead of an STG, representation.) For an implicit symbolic
implementation, the complexity depends heavily on the internal symbolic repre-
sentations. If Step 3 in Figure 1 computes and merges all immediately equivalent
states at once in a breadth-first-search manner, then the algorithm converges in
a minimum number of iterations.
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VerifyEquivalenceUnderRetiming&Resynthesis
input: two state transition graphs G1 and G2

output: Yes, if G1 and G2 are equivalent under retiming and resynthesis
No, otherwise

begin
01 G1/ := ConstructQuotientGraph(G1)
02 G2/ := ConstructQuotientGraph(G2)
03 if G1/ and G2/ are isomorphic
04 then return Yes
05 else return No
end

Fig. 2. Algorithm: Verify equivalence under retiming and resynthesis

An algorithm outlined in Figure 2 can check if two STGs are transformable
to each other under retiming and resynthesis.

Theorem 3. Given two state transition graphs, Algorithm VerifyEquivalence-
UnderRetiming&Resynthesis verifies if they are equivalent under retiming and
resynthesis.

The complexity of the algorithm in Figure 2 is the same as that in Figure 1 since
the graph isomorphism check for STGs is O(kn), which is not the dominating
factor. With the presented algorithm, checking the equivalence under retiming
and resynthesis is not easier than general equivalence checking. In the following
section, we investigate its intrinsic complexity.

4 Verification Complexity

We show some complexity results of verifying if two FSMs are equivalent under
retiming and resynthesis.

4.1 Verification with Unknown Transformation History

We investigate the complexity of verifying the equivalence of two FSMs with
unknown history of (iterative) retiming and resynthesis operations.

Theorem 4. Determining if two FSMs are equivalent under iterative retiming
and resynthesis with unknown transformation history is PSPACE-complete.

Proof. Certainly Algorithm VerifyEquivalenceUnderRetiming&Resynthesis can
be performed in polynomial space (even with inputs in FSM representations).

On the other hand, we need to reduce a PSPACE-complete problem to our
problem at hand. The following problem is chosen.

Given a total function f : {1, . . . , n} → {1, . . . , n}, is there a composition
of f such that, by composing f k times, fk(1) = n?
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In other words, the problem asks if n is “reachable” from 1 through f . It was
shown [5] to be deterministic2 LOGSPACE-complete in the unary representa-
tion and, thus, PSPACE-complete in the binary representation [12]. We show
that the problem in the unary (resp. binary) representation is log-space (resp.
polynomial-time) reducible to our problem with inputs in STG (resp. FSM)
representations. We further establish that the answer to the PSPACE-complete
problem is positive if and only if the answer to the corresponding equivalence
verification problem (to be constructed) is negative. Since the complexity class of
nondeterministic space is closed under complementation [4], the theorem follows.

To complete the proof, we elaborate the reduction. Given a function f as
stated earlier, we construct two total functions f1, f2 : {0, 1, . . . , n} → {0, 1, . . . , n}
as follows. Let f1 have the same mapping as f over {1, . . . , n − 1} and have
f1(0) = 1 and f1(n) = 1. Also let f2 have the same mapping as f with f2(0) = 1
but f2(n) = 0. Clearly the constructions of f1 and f2 can be done in log-space.
Treating {0, 1, . . . , n} as the state set, f1 and f2 specify the transitions of two
STGs, say G1 and G2, (which have empty input and output alphabets). Observe
that any state of G1 (similarly G2) has exactly one next-state. Thus, every state
is either in a single cycle or on a single path leading to a cycle. Observe also
that two states of G1 (similarly G2) are immediately equivalent if and only if
they have the same next-state. An important consequence of these observations
is that all states not in cycles can be merged through iterative retiming and
resynthesis due to immediate equivalence.

To see the relationship between reachability and equivalence under retiming
and resynthesis, consider the case where n is reachable from 1 through f . States 1
and n of G1 must be in a cycle excluding state 0; states 1 and n of G2 must be in
a cycle including state 0. Hence the state-minimized (with respect to immediate
equivalence) graphs of G1 and G2 are not isomorphic. That is, G1 and G2 are not
equivalent under retiming and resynthesis. On the other hand, consider the case
where n is unreachable from 1 through f . Then state n of G1 and state n of G2
are dangling. From the mentioned observations, merging dangling states in G1
and G2 yields two isomorphic graphs. That is, G1 and G2 are equivalent under
retiming and resynthesis. Therefore, n is reachable from 1 through f if, and only
if, G1 and G2 are not equivalent under retiming and resynthesis. (Notice that,
unlike the discussion of optimization capability, here we should not ignore the
effects of retiming and resynthesis over the unreachable state space.)

4.2 Verification with Known Transformation History

By Theorem 4, verifying if two FSMs are equivalent under retiming and resyn-
thesis without knowing the transformation history is as hard as the general
equivalence checking problem. Thus, we advocate a conservative design method-
ology optimizing synchronous hardware systems to ameliorate verifiability.

2 It is a well-known result by Savitch [16] that deterministic and nondeterministic
space complexities coincide.
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An easy approach to circumvent the PSPACE-completeness is to record the
history of retiming and resynthesis operations as verification checkpoints, or
alternatively to perform equivalence checking after every retiming or resynthesis
operation. The reduction in complexity results from the following well-known
facts.

Proposition 4. Given two synchronous hardware systems, verifying if they are
transformable to each other with retiming is of the same complexity as checking
graph isomorphism; verifying if they are transformable to each other with resyn-
thesis is of the same complexity as combinational equivalence checking, which is
NP-complete.

Therefore, if transformation history is completely known, the verification com-
plexity reduces to NP-complete.

5 Initialization Sequences

To discuss initialization sequences, we rely on the following proposition of
Pixley [13].

Proposition 5. ([13]) An FSM is initializable only if its initial states are non-
dangling. (In fact, any non-dangling state can be used as an initial state by
suitably modifying initialization sequences.)

By Lemma 3, Corollary 1 and Proposition 5, it is immediate that

Corollary 2. The initializability of an FSM is an invariant under retiming and
resynthesis.

Hence we shall assume that the given FSM M is initializable. Furthermore, we
assume that its initialization sequence is given as a black box. That is, we have
no knowledge on how M is initialized. Under these assumptions, we study how
the initialization sequence is affected when M is retimed (and resynthesized).
As shown earlier, the creation and annihilation of dangling states are immaterial
to the optimization capability of retiming and resynthesis. However, they play a
decisive role in affecting initialization sequences. In essence, the longest transition
path among dangling states determines how long the initialization sequences
should be increased.

5.1 Initialization Affected by Retiming

Lag-dependent bounds. Effects of retiming on initialization sequences were
studied by Leiserson and Saxe in [7], where their Retiming Lemma can be
rephrased as follows.

Lemma 4. ([7]) Given a communication graph G = (V, E) and a normalized
retime function ρ, let � = maxv∈V −ρ(v) and let G† be the corresponding retimed
communication graph of G. Suppose M and M† are the FSMs specified by G and
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G†, respectively. Then after M† is initialized with an arbitrary input sequence
of length �, any state of M† has an equivalent3 state in M.

That is, � (nonnegative for normalized ρ) gives an upper bound of the increase
of initialization sequences under retiming. This bound was further tightened in
[2, 18] by letting � be the maximum of −ρ(v) for all v of functional elements
whose functions define non-surjective mappings. Unfortunately, this strengthen-
ing still does not produce an exact bound. Moreover, by Proposition 1, a nor-
malized retime function among its equivalent retime functions may not be the
one that gives the tightest bound. A derivation of exact bounds will be discussed
in Section 5.2.

Lag-independent Bounds. Given a synchronous hardware system, a natural
question is if there exists some bound which is universally true for all possible
retiming operations. Even though the bound may be looser than lag-dependent
bounds, it discharges the construction of new initialization sequences from know-
ing what retime functions have been applied. Indeed, such a bound does exist
as exemplified below.

Proposition 6. Given a communication graph G = (V, E) and a normalized
retime function ρ, let r(v) denote the minimum number of registers along any
path from the host to vertex v. Then r(v) sets an upper bound of the number of
registers that can be moved forward across v, i.e., −r(v) ≤ ρ(v). (Similarly, r(v)
on G with reversed edges sets an upper bound of ρ(v).)

Thus, maxv r(v), which is intrinsic to a communication graph and is independent
of retiming operations, yields a lag-independent bound.

When initialization delay is not a concern for a synchronous system, one can
even relax the above lag-independent bound by saying that the total number
of registers of the system is another lag-independent bound. As an example,
suppose a system has one million registers and its retimed version runs at one
gigahertz clock frequency. Then the initialization delay increased due to retiming
is less than a thousandth of a second.

5.2 Initialization Affected by Retiming and Resynthesis

So far we have focused on initialization issues arising when a system is retimed
only. Here we extend our study to issues arising when a system is iteratively
retimed and resynthesized.

A difficulty emerges from directly applying Lemma 4 to bound the increase
of initialization sequences under iterative retiming and resynthesis. Interleaving
retiming with resynthesis makes the union bound

∑
i ui the only available bound

from Lemma 4, where ui denotes the lag-dependent bound for the ith retiming
operation. Essentially, inaccuracies accumulate along with the summation of

3 A state q of FSM M is equivalent to a state q† of FSM M† if M starting from q,
and M† starting from q† have the same input-output behavior.
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the union bound. Thus, the bound derived this way can be far beyond what is
necessary. In the light of lag-independent bounds discussed earlier, one might
hope that there may exist some constant which upper bounds the increase of
initialization sequences due to any iterative retiming and resynthesis operations.
(Notice that, when no resynthesis operation is performed, the transformation of a
series of retiming operations can be achieved by a single retiming operation. Thus
a lag-independent bound exists for iterative retiming operations.) Unfortunately,
such a transformation-independent bound does not exist as shown in Theorem 5.

Lemma 5. Any dangling state of an FSM (with implicit reset) is removable
through iterative retiming and resynthesis operations.

Theorem 5. Given a synchronous hardware system and an arbitrary constant
c, there always exist retiming and resynthesis operations on the system such that
the length increase of the initialization sequence exceeds c.

Since the mentioned union bound is inaccurate and requires knowing the ap-
plied retime functions, it motivates us to investigate the computation of exact4

length increase of initialization sequences without knowing the history of retim-
ing and resynthesis operations. The length increase can be derived by computing
the length, say n, of the longest transition paths among the dangling states be-
cause applying an arbitrary5 input sequence of length greater than n drives the
system to a non-dangling state. The length n can be obtained using a symbolic
computation. By breadth-first search, one can iteratively remove states without
predecessor states until a greatest fixed point is reached. The number of the
performed iterations is exactly n.

6 Related Work

Optimization Capability. The closest to our work on the optimization power
of retiming and resynthesis is [15], where the optimization power was unfortu-
nately over-stated contrary to the claimed exactness. The mistake resulted from
the claim that any 2-way switch operation is achievable using 2-way merge and
2-way split operations (see [15] for their definitions). (Essentially, a restriction
needs to be imposed — under any input assignment, the next state of a current
state to be split should be unique.) In fact, only 2-way merge and split operations
are essential. Aside from this minor error, no constructive algorithm was known
to determine if two given FSMs are equivalent under retiming and resynthesis.
In addition, not discussed were the creation and annihilation of dangling states,
which we show to be crucial in initializing synchronous hardware systems.

4 The exactness is true under the assumption that the initialization sequence of the
original FSM is given as a block box. If the initialization mechanism is explored,
more accurate analysis may be achieved.

5 Although exploiting some particular input sequence may shorten the length increase,
it complicates the computation.
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Verification Complexity. Ranjan in [14] examined a few verification complex-
ities for cases under one retiming operation and up to two resynthesis operations
with unknown transformation history. The complexity for the case under an ar-
bitrary number of iterative retiming and resynthesis operations was left open,
and was conjectured in [20] to be easier than the general equivalence checking
problem. We disprove the conjecture.

Initialization Sequences. For systems with explicit reset, the effect of retim-
ing on initial states was studied in [19, 3, 17]. In the explicit reset case, incorpo-
rating resynthesis with retiming does not contribute additional difficulty. Note
that, for systems with explicit-reset registers, forward moves of retiming are
preferable to backward moves in maintaining equivalent initial states, contrary
to the case for systems with implicit-reset registers. To prevent backward moves,
Even et al. in [3] proposed an algorithm to find a retime function such that the
maximum lag among all vertices is minimized. Interestingly enough, their algo-
rithm can be easily modified to obtain minimum lag-dependent bounds on the
increase of initialization sequences. As mentioned earlier, explicit reset can be
seen as a special case of implicit reset when reset circuitry is explicitly repre-
sented in the communication graph. Hence, the study of the implicit reset case is
more general, and is subtler when considering resynthesis in addition to retiming.

Pixley in [13] studied the initialization of synchronous hardware systems with
implicit reset in a general context. Leiserson and Saxe studied the effect of retim-
ing on initialization sequences in [7], where a lag-dependent bound was obtained
and was later improved by [2, 18]. We show a lag-independent bound instead.
In recent work [11], a different approach was taken to tackle the initialization
issue raised by retiming. Rather than increasing initialization sequence lengths,
a retimed system was further modified to preserve its original initialization se-
quence. This modification might need to pay area/performance penalties and
could nullify the gains of retiming operations. In addition, the modification re-
quires expensive computation involving existential quantification, which limits
the scalability of the approach to large systems. In comparison, prefixing an ar-
bitrary input sequence of a certain length to the original initialization sequence
provides a much simpler solution (without modifying the system) to the initial-
ization problem.

7 Conclusions and Future Work

This paper demonstrated some transformation invariants under retiming and
resynthesis. Three main results about retiming and resynthesis were established.
First, an algorithm was presented to construct a canonical representative of an
equivalence class of FSMs transformed under retiming and resynthesis. It was
extended to determine if two FSMs are transformable to each other under re-
timing and resynthesis. Second, a PSPACE-complete complexity was proved for
the above problem when the transformation history of retiming and resynthesis
is unknown. Third, the effects of retiming and resynthesis on initialization se-
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quences were studied. A lag-independent bound was shown on the length increase
of initialization sequences of FSMs under retiming; in contrast, unboundability
was shown for the case of iterative retiming and resynthesis. In addition, an
exact analysis on the length increase was presented.

For future work, it is important to investigate more efficient computation,
with reasonable accuracy, of the length increase of initialization sequences for
FSMs transformed under retiming and resynthesis. Moreover, as the result of
[3] can be modified to obtain a retime function targeting area optimization with
minimum increase of initialization sequences, it would be useful to study retiming
under other objectives while avoiding increasing initialization sequences.
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