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Software Workarounds for Hardware Errors:
Instruction Patch Synthesis
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Abstract—Due to the ever-increasing complexity of system
design, it becomes not uncommon for some design error escaping
all verification efforts and settling in final silicon realization. As
hardware-based fixing is much more expensive than software-
based fixing, this paper proposes a methodology as a first
step towards generating software workarounds for erroneous
processor designs. A generic formulation is introduced based
on Skolem and Herbrand function extraction from quantified
Boolean formula (QBF) solving; reduction techniques are devised
to further enhance practicality. Thereby a program can be
recompiled at the assembly code level for correct execution on a
buggy processor. Experimental results show the feasibility of the
proposed method.

Index Terms—Herbrand/Skolem function, processor design,
quantified Boolean formula, software workaround.

I. INTRODUCTION

BECAUSE of the ever-increasing complexity of system
design, ensuring the correctness of an integrated circuit

becomes more and more challenging. Design errors may occur
in various design stages, and their corrections may require
different degrees of efforts heavily depending on how late in
the design phase that they are found. The later a bug is caught,
the more it costs to fix. It is not uncommon that errors may
unfortunately escape all verification efforts and be caught after
tape-out. Fixing such late-found bugs may typically require
engineering change orders (ECOs) for late design changes and
design re-spins for recreating silicon chips; the buggy chips
are useless and need to be discarded. It is often too expensive
for most integrated circuit (IC) design companies to afford
such fixing as the prices of photomasks, which are used in
photolithography for IC fabrication, soar. A more affordable
solution is by software-based rectification. Two well-known
recent examples include the AMD first-generation Phenom
processor in 2007 [1] and the Intel Core 2 Duo processor in
2008 [12]. For the former, customers were advised to turn off
the translation look-aside buffer to avoid bugs. For the latter,
there are 50-page errata and 75 known bugs, among which
19 required basic input/output system (BIOS) changes, 34
required software changes, and 33 had no known workarounds.
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To make post-silicon ECOs more affordable, prior efforts
[22], [26] proposed to embed programmable circuitry in
processor design to allow hardware patches. Prior work [25]
proposed to insert to a processor design some additional
control logic, called the semantic guardian, which monitors
a subset of the design’s internal nodes and switches the
system into a safe mode (in which only verified operations
are allowed) when an invalidated configuration is encountered.
In these methods, the additional logic incurs not only area
but also performance overheads. Moreover, not all errors can
be fixed by these methods. On the other hand, recent work
[10] developed a automatic approach to characterizing error
activation conditions, which provide useful information for
software developers to modify their programs for correct
execution on buggy designs. One application domain of this
approach is in embedded systems, where software programs
are specially crafted by system developers rather than general
users. However, for generic processor designs, it is impractical
giving users the error activation information for them to revise
their own programs.

In contrast to prior work, this paper exploits a software-
based solution and partially automates the workaround pro-
cess. A method is proposed to generate fixing solutions
by recompiling a program such that the resultant assembly
code can be correctly executed on an erroneous processor.
Thereby, software developers need not revise any part of their
source codes for execution on a buggy processor. Because the
workarounds can be directly applied for fixing problems in
an assembly code, no modification to a high-level language
compiler is needed. Moreover, our method helps identify non-
trivial workarounds. As an example, consider the replacement
of a problematic instruction abs, which produces incorrect
absolute values for integer arithmetic represented in two’s
complement. A trivial workaround of the erroneous instruction
can be the following assembly code.

# problematic instruction: abs r1 r2
01 slt r1 r2 r0 # r0 always holds value 0
02 beq r1 r0 Label1
03 sub r1 r0 r2
04 j Label2
05 Label1:
06 add r1 r0 r2
07 Label2:

(The instructions are described in detail in Table I.) The
program first checks in lines 1 and 2 whether the value of
register r2 is less than zero. If yes, the program goes to line
3 to subtract the value of r2 from zero and store the result in
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register r1. The program then in line 4 jumps to line 7 and
continues the subsequent program execution. Else, the program
in line 2 jumps to line 5, stores the value of r2 in r1 in line
6, and then continues the subsequent program execution. In
either case, the program executes four instructions to fix the
problematic instruction. In contrast, our workaround provides
the following concise solution.

# problematic instruction: abs r1 r2
01 sra r1 r2 31 # assume word size of 32 bits
02 xor r2 r1 r2
03 sub r1 r2 r1

The program uses only three instructions to replace the prob-
lematic instruction. In line 1, the sign bit of r2 is copied to all
the bits of r1 by instruction sra. In line 2, instruction xor
bitwise inverts r2 if the sign bit of r2 is 1, i.e., the value of
r2 is a negative integer. Otherwise, r2 remains unchanged.
By line 3, if value of r2 is originally a positive integer, then
r1 equals r2; otherwise, r1 equals the absolute value of r2
by the representation of two’s complement.

We formulate the software workaround problem as a prob-
lem of solving quantified Boolean formulas (QBFs) so that
the solution, or patch, corresponds to the Skolem function
model or Herbrand function countermodel of the underlying
QBF. The Skolem/Herbrand functions are obtainable from
QBF solvers with certification capability [6], [7]. As QBF
solving is PSPACE-complete, reduction techniques and rec-
tification templates are proposed to alleviate the intractability.
Experiments on a MIPS-like processor show that workaround
solutions to design errors, including those on the DLX bug
list [9] and others, can be effectively generated.

The rest of this paper is organized as follows. After essential
backgrounds provided in Section II, Section III presents the
general solution to the software workaround problem. Re-
duction techniques and rectification templates are given in
Section IV. Experimental results are shown in Section V.
Section VI compares related work, and finally Section VII
concludes this paper and outlines future work.

II. PRELIMINARIES

A. Pipelined Processor

Processors, which perform some universal arithmetic, logic,
and I/O instructions, are the heart of contemporary computing
devices. Pipelining is a basic technique widely applied in
processor design to increase data throughput and the number
of instructions executed in a given time period. Nevertheless
pipelining along with other techniques sophisticate design
tasks and impose serious verification challenges.

The characteristics of a processor is mainly determined
by its instruction set architecture (ISA) [19], which can be
classified into two categories, those for a reduced instruction
set computer (RISC), such as MIPS and ARM processors, and
those for a complex instruction set computer (CISC), such as
Intel and AMD processors. This paper focuses on the RISC
architecture (particularly a MIPS-like ISA) while the proposed
methodology is extendable to CISC designs as well. In contrast
to CISC, the RISC architecture achieves complex computation

R-type opcode rs rt rd 

I-type opcode rs rt immediate 

J-type opcode address 

 

Fig. 1. Three types of instruction format.

through the combination of several fundamental instructions.
It makes the design simple and popular in embedded systems.

The instructions of a RISC can be divided into three types:
the register type (R-type), immediate type (I-type), and jump
type (J-type). For a MIPS processor, all of its instructions
are of the same length. In this work, we follow the MIPS
format and define a simplified in-house instruction format as
shown in Figure 1. Compared to the instruction format in [19],
the opcode in our format contains both the opcode and
funct of [19]. In addition, the instructions performing shift
are classified into I-type, rather than R-type as done in [19],
such that the shift amount shamt of [19] will be specified
by immediate in our case. These modifications make our
instruction format more concise and easier to perform para-
metric abstraction, to be discussed in Section IV, than the
conventional format.

Our considered instruction format is shown in Figure 1. R-
type is the most complex among the three types of instructions.
An R-type instruction involves an operation code opcode,
two source registers rs and rt, and one destination register
rd. An I-type instruction performs its operation opcode on
a constant immediate and a source register rs, and stores
the result in the destination register rt. Finally, a J-type
instruction contains only two fields, operation opcode and the
next target address of the program counter. The supported
instructions of our processor are listed in Table I, where the
register content at address i of the register file is denoted as
$i.

Our in-house processor is a 5-stage pipelined RISC design
containing a 32 × 32 register file and a 20-bit program
counter. It is a simplified version of the MIPS architecture
and supports fewer instructions. As the block diagram shown
in Figure 2, separated by pipeline registers ST0, . . . , ST3,
the pipeline stages include instruction fetch (IF), instruction
decode (ID), execute (EX), memory (MEM), and write back
(WB). In the figure, “PC” denotes the program counter, which
stores the memory address of currently fetched instruction;
“PCC” denotes the program counter controller; “REG” denotes
the register file. Assuming correct memory implementation,
we take the memory I/O including signal MEMDin as the
primary input, and signals MEMAout, MEMDout, MEMW,
and MEMR as the primary outputs of the design. Moreover, Iin
and PC are treated as parts of the primary inputs and primary
outputs, respectively.

B. State Transition Relation and Time-Frame Expansion

A pipelined processor can be modeled as a 6-ary tran-
sition relation T (x⃗, r⃗, t⃗, y⃗, r⃗ ′, t⃗ ′), which constrains the set
of consistent valuations to the variables, including primary
inputs x⃗, current-state variables r⃗ and t⃗, primary outputs y⃗,
and next-state variables r⃗ ′ and t⃗ ′. In terms of the circuit of



3

TABLE I
INSTRUCTION LIST

Category Name Instruction syntax Meaning Type

Arithmetic

Add add rd rs rt $rd = $rs + $rt R
Add immediate addi rt rs C $rt = $rs + C I
Subtract sub rd rs rt $rd = $rs − $rt R
Subtract immediate subi rt rs C $rt = $rs − C I
Multiply mult rd rs rt $rd = $rs ∗ $rt R
Multiply immediate multi rt rs C $rd = $rs ∗ C I
Absolute value abs rd rs $rd = |$rs| R

Logic

And and rd rs rt $rd = $rs & $rt R
And immediate andi rt rs C $rt = $rs & C I
Or or rd rs rt $rd = $rs | $rt R
Or immediate ori rt rs C $rt = $rs | C I
Exclusive or xor rd rs rt $rd = $rs ⊕ $rt R
Exclusive or immediate xori rt rs C $rt = $rs ⊕ C I
Set on less than slt rd rs rt $rd = ($rs < $rt) R

Bitwise shift
Shift right logical srl rt rs C $rt = $rs >> C I
Shift left logical sll rt rs C $rt = $rs << C I
Shift right arithmetic sra rt rs C $rt = $rs >>> C I

Data transfer Load word lw rt rs C $rt = Memory[$rs + C] I
Store word sw rt rs C Memory[$rs + C] = $rt I

Branch
Branch on equal beq rt rs Label if ($rs == $rt) go to Label I
Jump j Label go to address Label J

$i: the register content at address i of the register file; C: an immediate value; Label: a label in a program,
effectively an address after compilation.

Fig. 2. Block diagram of 5-stage pipelined processor.

Figure 2, variables x⃗ include {Iin, MemDin}, y⃗ include {PC,
MEMAout, MEMDout, MEMW, MEMR}, r⃗ and r⃗ ′ include
the outputs and inputs of REG, respectively, and t⃗ and t⃗ ′

include the outputs and inputs of other registers (including STi

and PC), respectively. In the sequel, we shall not distinguish
a transition relation T and its underlying circuit. Moreover,
we shall denote the transition relation of the specification
processor as TS and that of the erroneous processor as TB .
These subscripts of the transition relations should apply to
their corresponding variables as well.

Time-frame expansion (TFE) is a well-known technique,
e.g., commonly applied in bounded model checking [3]. A
k-time-frame expansion unrolls a sequential circuit into a
series of k repeated copies of its combinational block. In

essence, the expanded circuit characterizes the entire state
transition behavior of the sequential circuit in k clock cycles.
Note that, for an n-stage pipelined processor, an n-time-frame
expansion may be needed to simulate the entire execution of
an instruction. In the sequel, we denote a transition relation
T and its variables v⃗ expanded at time-frame i as T i and v⃗ i,
respectively.

C. Quantified Boolean Formula

QBFs generalize propositional formulas in incorporating
existential and universal quantifiers. Many decision problems
can be naturally formulated and succinctly encoded in QBFs.
While we introduce only the key backgrounds, the reader is
referred to [6], [7] for detailed exposition.
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A quantified Boolean formula (QBF) Φ over variables v⃗ =
{v1, . . . , vk} in the prenex conjunctive normal form (PCNF)
is of the form

Q1v1 · · ·Qkvk.ϕ,

where Q1v1 · · ·Qkvk, with Qi ∈ {∃, ∀} and variables vi ̸= vj
for i ̸= j, is called the prefix and ϕ, a quantifier-free CNF
formula in terms of variables v⃗, is called the matrix. We shall
assume that a QBF is in PCNF and is totally quantified, i.e.,
with no free variables.

Given a QBF, the quantification level ℓ : {v1, . . . , vk} →
N of variable vi is defined to be the number of quantifier
alternations between ∃ and ∀ from left (i.e., outer) to right (i.e.,
inner) plus 1. For example, the formula ∃v1, ∃v2, ∀v3, ∃v4.ϕ
has ℓ(v1) = ℓ(v2) = 1, ℓ(v3) = 2, and ℓ(v4) = 3.

A QBF is true (respectively false) if and only if there
exist Skolem (respectively Herbrand) functions for the exis-
tentially (universally) quantified variables. In particular, the
Skolem/Herbrand function of a variable vi refers to a variable
vj only if ℓ(vj) < ℓ(vi) and vj is of the quantification type
different from that of vi. In essence, Skolem functions serve
as a model to the truth of a QBF; Herbrand functions, on the
other hand, serve as a countermodel to the falsity of a QBF.
From a game theoretic viewpoint, QBF solving can be seen
as a two-player game played by the existential player, who
intends to enforce the formula to be true, and the universal
player, who intends to enforce the formula to be false. Skolem
functions form a winning strategy of the existential player, and
Herbrand functions form a winning strategy for the universal
player [6], [7]. As a matter of fact, Skolem and Herbrand
functions are obtainable from QBF solvers, such as SKIZZO
[5], SQUOLEM [13], and QUBE-CERT [18], with certification
capability through RESQU conversion [6], [7]. In addition to
certification purposes, Skolem and Herbrand functions can be
useful in verification and synthesis applications, e.g., [6], [7],
[21].

D. Problem Statement

Given a specification processor TS and its erroneous imple-
mentation TB (assuming they have the same I/O interface and
register file), a workaround for a program P is a new program
P ′ such that, under the same initial content of the register file,
executing P ′ on TB and executing P on TS yield the same
final content of the register file. 1

In reality a computer program is a list of instructions. As-
suming instruction stall (or null operation nop) is existent
and correct, then a workaround can be generated by fixing
problematic instructions2 in a program one at a time because
they can always be interleaved properly with stall insertion
to resolve data dependency issues. Effectively, stall can
flush the data of preceding instructions into REG and push
the result of current instruction execution to the next stage. A

1Note that the patch synthesis problem differs from the conventional
program synthesis problem in that the new program should be in terms of
the (correct as well as erroneous) instructions of an implemented processor
rather than a correct processor.

2An instruction in the specification ISA is said problematic if its corre-
sponding executions on TS and TB yield unequal results.
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Fig. 3. Computation flow of compiler patch synthesis.

well known example of data dependency issues in computer
architecture is data hazards, which arise due to incomplete
data processing in the pipeline. Stall insertion is one of
common techniques to resolve the hazards. Note that the
existence and correctness assumption about stall operation
should be reasonable as it is the most elementary operation.
However stall insertion is not indisputable due to its side effect
of slowing down the consequent program execution.

Hence, for each problematic instruction I in the spec-
ification ISA, its fixing instruction sequence I ′1, . . . , I

′
k in

the implementation ISA is to be derived as the replacement
of I in P in order to obtain the workaround program P ′.
The collection of such mappings from I to I ′1, . . . , I

′
k forms

a mapping function (or patch). We define the p-instruction
mapping problem as finding the mapping function, called
the p-instruction mapping solution, with fixing instruction
sequences of length at most p. Consequently under the stall
availability assumption, the workaround problem becomes
merely instruction dependent rather than program (instruction-
sequence) dependent. That is, stall-insertion avoids potential
errors triggered by consecutive execution of instructions. It
much simplifies the computation.

III. GENERIC PATCH SYNTHESIS

This section first presents the workaround synthesis flow,
and then details the general QBF formulation and its variants.

A. Overview of Patch Synthesis

Figure 3 sketches the computation flow of compiler patch
synthesis. Starting from p = 1, the computation checks
whether a p-instruction mapping solution exists. If yes, the
underlining QBF Φ is true and its Skolem function model
(alternatively, the negated QBF ¬Φ is false and its Herbrand
function countermodel) corresponds to the desired patch. Oth-
erwise, p is incremented by 1 and the process repeats until
a mapping solution is found or the computation resource is
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exhausted. Indeed the larger the value of p is, the harder the
corresponding QBF can be evaluated (because by Tseitin’s
circuit-to-CNF conversion [24] the number of increased vari-
ables in the matrix of the QBF due to the increment of p by
one is proportional to the circuit size of TB).

Notice that the flow performs “bounded” synthesis in the
sense that the instruction correction is with respect to a length
bound. That is, given a length bound p, we test whether it is
possible to fix all the considered erroneous instructions using
instruction sequences of length up to p. Since the computation
does not automatically infer the non-existence of fixes, the
loop can continue forever, and often p cannot go too large due
to the limiting factor of computing resources in QBF solving.
Nevertheless, the computation flow can be guided towards
partial fixing of a restricted subset of erroneous instructions
when a total fix is not possible. When a single erroneous
instruction is considered, the flow of Figure 3 guarantees the
search for a patch with a minimum length p.

B. Basic QBF Formulation

Given an n-stage pipelined specification processor and an
m-stage pipelined buggy processor, the p-instruction mapping
problem, defined in Section II-D, can be formally expressed
with the following QBF.

∀x⃗ 0
S , ∃x⃗ ∗

B , ∀r⃗ 0
S ,∃r⃗ ∗, ∃t⃗ ∗, ∃x⃗ ∗

S , ∃x⃗ ∗,∃y⃗ ∗.

ϕT ∧ ϕ⊥ ∧ ϕE

(1)

where

ϕT =
n−1∧
i=−n

T i
S ∧

m+p−2∧
j=−m

T j
B (2)

ϕ⊥ =
n−1∧

k=−n,k ̸=0

(x⃗ k
S = nop) ∧

m+p−2∧
l=−m,l ̸=0,...,p−1

(x⃗ l
B = nop) (3)

ϕE = (r⃗ 0
S = r⃗ 0

B) ∧ (r⃗ n
S = r⃗m+p−1

B ) (4)

for

x⃗ ∗
B = (x⃗ 0

B , . . . , x⃗
p−1
B )

r⃗ ∗ = (r⃗−n
S , . . . , r⃗−1

S , r⃗ 1
S , . . . , r⃗

n
S , r⃗

−m
B , . . . , r⃗m+p−1

B )

t⃗ ∗ = (⃗t−n
S , . . . , t⃗nS , t⃗

−m
B , . . . , t⃗m+p−1

B )

x⃗ ∗
S = (x⃗−n

S , . . . , x⃗−1
S , x⃗ 1

S , . . . , x⃗
n−1
S )

x⃗ ∗ = (x⃗−m
B , . . . , x⃗−1

B , x⃗ p
B , . . . , x⃗

m+p−2
B )

y⃗ ∗ = (y⃗−n
S , . . . , y⃗ n−1

S , y⃗−m
B , . . . , y⃗m+p−2

B )

Note that n and m need not be the same. For example,
the specification can be a non-pipelined processor and the
implementation can be a pipelined version. Also notice that
variables y⃗ ∗ essentially play no role in Formula (1), and can
be removed by cone-of-influence reduction. Moreover as to be
explained, the Skolem functions of variables x⃗ ∗

B correspond
to the desired patches.

To understand the QBF, the formula ϕT ∧ ϕ⊥ ∧ ϕE can
be intuitively depicted with the circuit shown in Figure 4,

where some of the pins are omitted. To search a p-instruction
mapping solution, the specification and buggy processors are
forwardly unrolled n and p+m−1 time-frames, respectively,
starting from the reference time index 0. By pipeline flushing
[4], the execution result of the instruction at x⃗ 0

S in the
specification processor settles at time n after nop insertion for
x⃗ 1
S , . . . , x⃗

n−1
S ; similarly, the result of the instruction sequence

at x⃗ 0
B , . . . , x⃗

p
B in the buggy processor settles at time m+p−1

after nop insertion for x⃗ p
B, . . . , x⃗

m+p−2
B . On the other hand, to

ensure proper initial values imposed on t⃗ 0S for the specification
processor and on t⃗ 0B for the buggy processor, the time-frames
of these two processors are backwardly unrolled n and m time-
frames, respectively, with all instruction inputs filled with nop.
Such time-frame expansion and nop insertion are expressed
by ϕT and ϕ⊥, respectively. Finally, under the equivalence
r⃗ 0
S = r⃗ 0

B of initial register files, the two results are then
compared for equivalence by asserting ϕE .

Notice that the above backward unrolling is unnecessary
when the nop instruction is implemented in such a way that
the values of t⃗ 0S and t⃗ 0B can be uniquely determined regardless
of the values of r⃗−n

S and t⃗−n
S and the values of r⃗−m

B and
t⃗−m
B , respectively. In this case, the values of t⃗ 0S and t⃗ 0B can be

directly substituted with their respective logic values induced
by the backward unrolling. In our implementation, we take
advantage of this simplification for QBF solving.

The quantification structure of the prefix of Formula (1)
is due to the requirement that, for every instruction x⃗ 0

S of
the specification processor, there exists a fixing instruction
sequence x⃗ ∗

B of the buggy processor regardless of the initial
content of the register file r⃗ 0

B . If Formula (1) is true, Skolem
functions for variables x⃗ ∗

B exist and refer only to variables x⃗ 0
S .

They correspond to the desired mapping solution. Otherwise,
no p-instruction mapping solution exists provided that Skolem
functions should not depend on r⃗ 0

B .

Notice that, as long as Formula (1) is true, the corresponding
Skolem functions of the existential variables x⃗ ∗

B provide valid
mappings for all instructions in the ISA at once, no matter
whether an instruction is problematic or not. (The identity
mapping is obtained for correct instructions.) In fact, if the
scope of problematic instructions can be narrowed down to a
few instructions, then instruction-specific cofactoring (to be
detailed in Section III-C1) can be applied to enhance the
solving efficiency. Furthermore, the QBF formulation not only
can use both correct and incorrect instructions in the ISA for
error correction, but also can exploit instructions not in the
original ISA. In the latter case, the error fixing should be
performed in the machine code level rather than the assembly
code level, since the instructions not in ISA are not expressible
with assembly codes.

As shown in [7], for a given true QBF whose matrix is
readily in a circuit form, deriving the Herbrand functions
from its negation is sometimes easier than directly deriving
its Skolem functions. (Note that Herbrand functions to the
negated QBF are Skolem functions to the original QBF.) As
was suggested in [6], [7] about QBF application on Boolean
relation determination, Formula (1) can be negated by Tseitin’s
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Fig. 4. Circuit for patch synthesis, where some pins are omitted.

circuit-to-CNF conversion [24] as

∃x⃗ 0
S ,∀x⃗ ∗

B , ∃r⃗ 0
S , ∃r⃗ ∗, ∃t⃗ ∗, ∃x⃗ ∗

S ,∃x⃗ ∗, ∃y⃗ ∗.

ϕT ∧ ϕ⊥ ∧ (r⃗ 0
S = r⃗ 0

B) ∧ (r⃗ n
S ̸= r⃗m+p−1

B )
(5)

which has only 3 quantification levels, in contrast to the 4
levels of Formula (1). Since the complexity of QBF solving is
influenced by the number of quantification levels, this negated
formula is more favorable. To be justified in Section V,
Formula (5) is usually easier to solve than Formula (1).

C. Modified QBF Formulation

The previous basic formulation is generic in searching data-
independent workarounds for arbitrary design errors. Due to its
generality, QBF solving lacks effective strategies in reducing
search space and is hardly scalable to designs with normal data
widths and register file sizes. Nevertheless, by exploiting error
information, the QBF may be adjusted to consider different
situations and to ease the burden of QBF solving. On the other
hand, some design errors may have no data-independent, but
only data-dependent, workarounds. In these cases, the previous
QBF formulation needs further modification.

1) Instruction-Specific Cofactoring: Since every problem-
atic instruction in the ISA can be handled separately, we may
restrict QBF solving with respect to a subset of problematic
instructions by cofactoring, which substitutes logic values
for variables in a formula. Thereby the search space can be
substantially reduced for each divided QBF solving. For a
design with a few errors, the approach can be particularly
effective. Moreover, the binary codes unused in the ISA can
be blocked to avoid wasteful search.

A useful trick is to cofactor on opcode only such that
the searched workaround can be desirably independent of rs,
rt, and rd. Precisely, the QBF formula can be modified as
follows.

∃x⃗ ∗
B ,∀r⃗ 0

S , ∃r⃗ ∗, ∃t⃗ ∗,∃x⃗ ∗
S , ∃x⃗ ∗, ∃y⃗ ∗.

(ϕT ∧ ϕ⊥ ∧ ϕE)x⃗ 0
S=opcode

(6)

where the subscript denotes the cofactor of x⃗ 0
S with respect to

some opcode.
Note that, even if complete workarounds for all erroneous

instructions do not exist, partial workarounds can still be used
to fix programs whose instructions are rectifiable.

2) Mapping Function Simplification: When Formula (1) is
easily satisfiable, that is, with many Skolem function models,
it is sometimes possible to seek for simple mapping functions
depending only on a subset of variables x⃗ 0

S . Recall that the
Skolem function of an existentially quantified variable may
refer to the universally quantified variables with quantification
levels smaller than that of the existentially quantified variable.
We may exploit the fact that moving an existential quantifier in
the prefix of a QBF outward strengthens the formula. That is, a
model to the resultant QBF is also a model to the original QBF.
Moreover, the Skolem functions of the strengthened QBF, if
it is true, refer to fewer variables than those of the original
QBF. Therefore the corresponding new mapping functions can
potentially be simpler.

Specifically, Formula (1) can be strengthened to

∀x⃗1
0
S , ∃x⃗ ∗

B ,∀x⃗2
0
S∀r⃗ 0

S , ∃r⃗ ∗, ∃t⃗ ∗, ∃x⃗ ∗
S , ∃x⃗ ∗, ∃y⃗ ∗.

ϕT ∧ ϕ⊥ ∧ ϕE

(7)

where variables x⃗ 0
S are split into two subsets x⃗1

0
S and x⃗2

0
S . As

a result, the Skolem functions for variables x⃗ ∗
B , if they exist,

will refer to variables x⃗1
0
S only. Notice however that moving

existentially quantified variables outward as in Formula (7)
might turn a true QBF into a false one. In our current
implementation, we did not exploit such optimization, but it
could be helpful.

3) Data-Dependent Rectification: Formula (1) only exploits
mapping functions that are data independent, that is, the
Skolem functions of x⃗ ∗

B are independent of r⃗ 0
S . However there

are design errors whose workarounds must be data dependent.
In such cases, Formula (1) should be modified in a way that
the data bits essential to workarounds need to be moved to a
quantification level less than that of x⃗ ∗

B . Specifically, we have
the new formula

∀x⃗ 0
S ,∀r⃗1

0
S , ∃x⃗ ∗

B , ∀r⃗2
0
S , ∃r⃗ ∗, ∃t⃗ ∗, ∃x⃗ ∗

S ,∃x⃗ ∗, ∃y⃗ ∗.

ϕT ∧ ϕ⊥ ∧ ϕE

(8)

where variables r⃗S are split into two parts, r⃗1
0
S , which

workaround should depend on, and r⃗2
0
S , which workaround

should be independent of. By this modification, Skolem func-
tions may depend on r⃗1

0
S .

When converting the Skolem functions of Formula (8)
back to rectification instructions, an if-then-else (ITE) style
instruction sequence may be needed. Essentially, the data
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dependence (if-condition) controls the branching to either the
then-branch or the else-branch.

4) Equality Constraint Relaxation: The equality constraint
ϕE of Formula (1) asserts that the final equivalence must hold
for the entire register file. In certain circumstances we may
relax such a strong condition and maintain the equivalence
for part of the register file. Specifically, Formula (1) can be
relaxed to

∀x⃗ 0
S , ∃x⃗ ∗

B , ∀r⃗ 0
S ,∃r⃗ ∗, ∃t⃗ ∗, ∃x⃗ ∗

S , ∃x⃗ ∗,∃y⃗ ∗.

ϕT ∧ ϕ⊥ ∧ (r⃗ 0
S = r⃗ 0

B) ∧ (r⃗ n
S [0 : i] = r⃗m+p−1

B [0 : i])
(9)

where r⃗ n
S [0 : i] represents the part of the register file whose

address range over 0 to i.
The relaxation is feasible, for example, when a system

designer intends to preserve part of the register file for special
use only, but not accessible to normal programs. In fact,
preserving some register file space for workaround synthesis
may be useful and sometimes even necessary. It not only
strengthens the rectification power, but also simplifies QBF
because of the cone of influence reduction.

IV. PRACTICAL WORKAROUNDS

Due to the intrinsic complexity of QBF solving, modern
QBF solvers remain hardly scalable to solving instances of
industrial sizes although impressive progress has been made
recently. In contrast to the generic methods of Section III-C,
we present reduction techniques specific to design styles or
circuit structures to enhance practicality.

A. Parametric Abstraction

In high-level design using hardware description languages,
data widths and register file sizes can be parameterized for
effective design space exploration to search an optimal solu-
tion satisfying various design constraints. In a parameterized
design, its data width and register file size can be specified in
terms of variable parameters rather than fixed constants. This
parameterization can be exploited for datapath abstraction. For
a parameterized design, its intended actual data width and
register file size can be too large and verifying its correctness
can be formidable. Intuitively the same design with a reduced
data width and register file size (referred to as an abstract
design) could much resemble the design of original size
(referred to as a concrete design). Errors and their corrections
found in the abstract design may well reflect errors and their
corrections in the concrete design; after all, both designs share
the very same code. The similarity between the abstract and
concrete designs may be exploited for verification reduction.
We call such a reduction method as parametric abstraction.

It should be noted that parametric abstraction guarantees
neither soundness nor completeness in catching and fixing
errors. For example, if a concrete design is subject to some
erroneous manual circuit tuning, then its abstract design cannot
faithfully reflect errors. However, when design errors are
irrelevant to data widths and register file sizes, parametric
abstraction can be effective.

Buggy
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Fig. 5. Hardware template for patch synthesis.

B. Error Localization

When design errors locate only at or before the kth stage of
an m-stage pipelined processor (k ≤ m), a sufficient condition
for error correction is to ensure the specification and buggy
circuits always compute the same result at the output of the
kth stage. As a result, only k time-frame expansion is needed
since the equivalence constraint ϕE of Formula (4) can be
simplified to check the equivalence of the outputs at the kth

stage. That is, we modify

ϕE = (r⃗ 0
S = r⃗ 0

B) ∧ (r⃗ k
S = r⃗ k

B) ∧ (⃗t kS = t⃗ kB), (10)

where we assume the specification and buggy circuits have
the same set of pipeline stages and search for a 1-instruction
mapping solution such that the outputs at the kth stages are
equivalent. The shortened time-frame expansion may simplify
the QBFs to be solved.

C. Template-Based Solving

The knowledge about design errors can be transformed into
templates to instruct QBF solvers searching for structured
solutions and effectively reducing search space. The transfor-
mation relies heavily on a manual process however. In theory,
templates are not necessary for workaround synthesis; in
practice, they are essential in penetrating computation barriers.

We define parametrically independent templates as those
that are not specific to particular design parameters, such
as register file size and data width. Therefore with para-
metrically independent templates, the mapping solutions to
parametrically abstracted design can potentially be applied to
the original design. Note that the derivation of templates much
relies on manual intervention. Knowledge about the errors of
a design is crucial to derive effective templates.

A template can be expressed in a circuit form and integrated
with the buggy design to guide instruction rectification by
providing choices and restricting search space. As shown in
Figure 5, the template constrains the instruction inputs x⃗ ∗

B

of the buggy design with some specific options, which are
selected through multiplexers fed by some functions in terms
of the instruction inputs x⃗ 0

S of the specification circuit. Such
functions map from the valuations of x⃗ 0

S to the valuations of
x⃗ ∗
B . The choices of candidate mapping solutions can then be

made through the decision on the values of the control inputs
c⃗ of the multiplexers. The template-based patch synthesis
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corresponds to solving the following QBF

∀x⃗ 0
S , ∃c⃗,∀r⃗ 0

S , ∃x⃗ ∗
B, ∃r⃗ ∗, ∃t⃗ ∗, ∃x⃗ ∗

S ,∃x⃗ ∗, ∃y⃗ ∗.

ϕT ∧ ϕ⊥ ∧ ϕE ∧ ϕS

(11)

where ϕS are the constraints imposed by the template circuitry.
Although template design is mainly a manual process of trial

by error, it can be assisted by the QBF solving formulation.
Suppose a template cannot provide workarounds for all design
errors. So the resultant QBF (Formula (1) with template
modification) should be false and the Herbrand functions for
variables x⃗ 0

S are simply constants, which correspond to an
instruction that has not been fixed by the current template.
The information can then be used to modify the template.

To illustrate, consider the example that rd and rs are mis-
takenly switched in the IF pipeline stage of a processor design.
Suppose that under some improper template assumption the
resulting QBF Formula (11) is false. So the Herbrand functions
of x⃗ 0

S are derivable. As variables x⃗ 0
S are quantified outermost,

their Herbrand functions do not refer to any existentially quan-
tified variables and are essentially constants. Suppose these
constants together correspond to the infeasible instruction add
r0 r1 r2 (recall that register r0 always holds value 0). It
reveals that rd is somehow problematic. One might guess that
rd is incorrect in the instructions and provide a template, say,
permuting the variables x⃗ 0

S . In this case, a correct solution can
be found in the next QBF solving.

D. Guidelines for Patch Synthesis

We summarize the aforementioned reduction techniques by
the following guidelines in patch synthesis. Error localization
is first performed by combinational equivalence checking on
the original design without parametric abstraction. Erroneous
instructions are then identified. Depending on how many in-
structions are erroneous, we may decide if instruction-specific
cofactoring should be applied. If only a few instructions are
erroneous, instruction-specific cofactoring can be effective.
By solving the underlying QBF under parametric abstraction,
we refine, if necessary, solving strategies, including build-
ing/modifying templates, applying data-dependent rectifica-
tion, relaxing equality constraints, and other methods. The flow
of Figure 3 is applied.

V. EXPERIMENTAL RESULTS

The main computation flow of instruction patch synthesis
was implemented in the C language within the Berkeley
ABC system [8], whereas QBFs were evaluated with solver
DepQBF [15] and Skolem/Herbrand functions were extracted
with QBFcert [17], which embeds the ResQu conversion of
[6], [7]. The experiments were conducted on a Linux machine
with Xeon 3.3 GHz CPU and 64 GB RAM.

An in-house 5-stage pipelined MIPS design was created for
case study. Its data width and register-file size were parameter-
ized ranging from 2 to 32 bits and from 4 to 32, respectively,
for the parametric abstraction purpose. As described in Ta-
ble II, design errors were introduced based on the processor
bug suite [9] of the University of Michigan. Its correct and
erroneous versions with respect to a given parameter were then

TABLE II
ERROR DESCRIPTION.

BUG Description

BUG1 rd exchanged with rs in IF stage.
BUG2 write address increased by 1 in WB stage.
BUG3 MEMAout increased by 1 in MEM stage.†

BUG4 ALU control input bitwise inverted in EX stage.
BUG5 sub ignores 1st operand.
BUG6 opcode decode error in ID stage.‡

BUG7 2’s complement implemented as 1’s complement.
BUG8 add resultant increases 1 when the sign bit of $rt is 1.
BUG9 add performs sub when the sign bit of $rt is 1.
BUG10 $rt is 0 when rt is even.
BUG11 srl same as sra.
BUG12 abs is problematic.
BUG13 Mix of BUG3 and BUG5.
BUG14 Mix of BUG1, BUG6, and BUG7.
BUG15 Mix of BUG2 and BUG4
BUG16 Mix of BUG1, BUG4, and BUG9.

†MEMAout is the write address of external data memory.
‡Right-rotating shift 3 bits in opocde.

synthesized with Synopsys Design Compiler for experiment.
In the following experiments, unless otherwise noted, the error
correction computation was conducted on a parametrically
abstracted design with 2-bit data width and a register file of
size 4. (The benchmark instances are available at [23].) A
workaround solution to the erroneous abstract design was then
mapped back to the erroneous original design with 32-bit data
width and a register file of size 32.

Table III shows the results of two sets of experiments:
one without practical reduction (denoted “base QBF”) and the
other with practical reduction (denoted “practicality-enhanced
QBF”). The former experiment considered basic QBFs of
Formula (1) without any modification and reduction; the latter
considered QBFs that were reduced with the aforementioned
techniques in Section IV. Both experiments were conducted
on parametrically abstracted designs. For each buggy design,
its error is shown in Column 1, the numbers of expanded time-
frames (denoted “#fram”) and the maximum p values for p-
instruction mapping (denoted “#inst”) are shown in Columns 2
and 7, the numbers of QBF variables in Columns 3 and 8 (the
numbers in the parentheses show the numbers of variables
for the first three quantification levels in order), the numbers
of QBF clauses in Columns 4 and 9, the runtimes of QBF
solving in Columns 5 and 10, the certificate extraction times
in Columns 6 and 11. Note that, for base QBFs, #inst =
(#fram − the number of pipeline stages (i.e., 5) + 1); for
practicality-enhanced QBFs, #fram can be less than 5 due to
error localization.

The effectiveness of the proposed reduction techniques can
be seen by comparing the CPU times in Columns 5 and 10.
The reduction techniques were selectively applied according
to error characteristics. (The acquirement of error knowledge
remains a manual process in our experiment.) For errors that
locate at some particular pipeline stages, such as BUG1, BUG3,
BUG4, and BUG6, the error localization technique was applied
to reduce the number of expanded time-frames. For errors
that affect a few instructions, such as BUG8, BUG9, BUG11,
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TABLE III
RESULTS ON WORKAROUND COMPUTATION

Base QBF Practicality-Enhanced QBF
BUG #fram/#inst #var #cls solve (sec) extract (sec) #fram/#inst #var #cls solve (sec) extract (sec)
BUG1 5/1 181(11/11/8) 582 66.52 351.45 1/1 44(5/11/14) 96 0.02 0.01
BUG2 5/1 193(11/11/8) 589 67.48 251.68 5/1 68(5/11/6) 162 2.49 5.22
BUG3 5/1 181(11/11/8) 582 56.43 276.11 4/1 104(5/11/14) 320 2.14 4.21
BUG4 5/1 190(11/11/8) 580 72.63 280.83 3/1 182(5/11/14) 632 2.55 7.31
BUG5 7/3 363(11/33/8) 1281 379.85 170.32 7/3 407(5/33/14) 1544 121.74 198.22
BUG6 5/1 177(11/11/8) 582 59.94 272.72 2/1 50(5/11/6) 120 2.01 3.51
BUG7 6/2 280(11/22/8) 960 119.88 355.41 6/2 305(5/22/14) 1094 0.74 2.87
BUG8 6/2 274(11/22/8) 962 77.58(false) NA 6/2 301(15/22/4) 1070 53.40 92.01
BUG9 6/2 279(11/22/8) 971 128.32 299.67 6/2 301(9/22/10) 1070 69.49 72.45
BUG10 6/2 262(11/22/8) 904 7.55(false) NA 6/2 239(5/22/14) 842 145.56 82.63
BUG11 8/4 494(11/44/8) 1811 > 100000 NA 8/4 439(0/44/14) 1596 3.01 2.26
BUG12 7/3 365(11/33/8) 1285 359.78 174.19 7/3 409(5/33/14) 1561 143.54 210.04
BUG13 7/3 363(11/33/8) 1310 408.92 183.35 7/3 407(5/33/14) 1575 182.86 274.15
BUG14 6/2 271(11/22/8) 967 131.49 510.46 6/2 294(5/22/14) 1069 82.66 84.67
BUG15 5/1 190(11/11/8) 655 82.24 274.54 5/1 215(5/11/14) 692 3.52 0.53
BUG16 6/2 271(11/22/8) 955 128.89 348.57 6/2 297(5/22/14) 1061 85.79 108.41

and BUG12, the instruction-specific cofactoring technique is
particularly effective. Comparing Columns 3 and 4 to Columns
8 and 9, most formula sizes are reduced as a result of prac-
ticality enhancement. There are cases, such as BUG4, BUG5,
BUG7, BUG9, and BUG12, where formula sizes increase due to
the usage of templates. Nevertheless, as templates effectively
reduce search space, QBF evaluation was made effective. On
the other hand, the base QBFs of BUG8 and BUG10 are
false under their specified time-frame expansions, and re-
quire enlargement of rectification power using data-dependent
rectification and equality constraint relaxation, respectively,
for workaround synthesis. For the mixed errors BUG13 to
BUG16, their runtimes are close to their worst runtimes among
their respective ingredient bugs. One exception is BUG14,
which took 82.66 seconds for solving, whereas its most time-
consuming ingredient bug BUG6 took only 2.01 seconds. The
arisen inefficiency is due to the inapplicability of reduction
techniques under the error combination. All of the derived
Skolem functions for parametrically abstracted designs are
extendable for error fixing for the original 32-bit design.

When QBF certificates are of concern, they vary in size
case by case to some extent. Nevertheless our empirical results
suggested that the certificate size of a practicality-enhanced
QBF is typically about 1/4 the certificate size of its baseline
counterpart. It should be noted, however, that QBF certificate
sizes do not correlate directly to the cost of patches.

TABLE IV
RESULTS OF USING NEGATED QBF

Base QBF Practicality-Enhanced QBF
BUG solve (sec) extract (sec) solve (sec) extract (sec)
BUG1 4.29 6.31 0.01 0.01
BUG2 3.73 5.44 0.51 1.42
BUG3 3.19 5.02 0.01 0.01
BUG4 5.01 8.73 0.62 1.47
BUG6 6.26 7.24 0.02 0.58
BUG15 5.34 8.15 0.94 2.71

Table IV shows the runtimes in solving negated QBFs of
Formula (5) for bugs with 1-instruction mapping. Compared to
their non-negated counterparts in Table III, negated QBFs for
1-instruction mapping instances are easier to solve due to the
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Fig. 6. Runtime vs. design size.

reduction of quantification levels from four to three. However,
for multi-instruction mapping instances, the increase of vari-
ables at the second quantification level makes negated QBFs
less effective to solve than their non-negated counterparts.

Parametric abstraction is indispensable to overcome expen-
sive QBF evaluation as suggested by Figure 6, where the
runtimes of solving Formulas (1) and (5) with practicality
enhancement for BUG15 under different combinations of
register file sizes and data widths. The exponential growth of
runtime with respect to design size shows the infeasibility of
QBF solving for the problem of original size. Nevertheless, the
following experiments suggested that, when error localization
is possible, QBF solving is applicable to instances of practical
sizes even without parametric abstraction and other reduction
techniques.

We studied the scalability of QBF solving for errors local-
ized within different pipeline stages. The results are shown in
Figures 7 and 8, where the x-axis corresponds to the design
size (in bits) in terms of the product of register file size
and data width, and the y-axis corresponds to CPU time (in
seconds). In particular, BUG1, BUG2, BUG3, BUG4, and BUG6
were experimented with, whose errors are located at the first,
fifth, fourth, third, and second pipeline stages, respectively.
In the experiment, only the error localization technique is
applied without other simplification methods. Note that, since
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only error localization was applied, the QBF solving searches
mapping solutions for all instructions in the ISA. The studied
bugs are representative in that, by empirical experience, when
the size of a design is specified, the runtime is mainly affected
by the number of considered instructions.

As can be seen from Figure 7, for errors localizable within
the first two pipeline stages, QBF solving is scalable to
practical design sizes (with register file size up to 128 and
word length up to 64 bits) despite the fact that the runtime
increases exponentially with respect to the design size. On
the other hand, as shown in Figure 8, for errors locating
at the third, fourth, and fifth pipeline stages, QBF solving
becomes inefficient as the circuits involve arithmetic logic
units. (In fact, arithmetic logic units are not only problematic
for QBF solvers, but also challenging even for SAT solvers.) In
these cases, reduction techniques are crucial for feasible patch
synthesis. Orthogonally, future advances of QBF solvers may
push the solvability limit forward.

The results of program patching are shown in Tables V and
VI, where in Column 2 #EI denotes the number of erroneous

instructions among the 21 instructions shown in Table I,
Columns 3, 7, 11 show the number of program execution
cycles, Columns 5, 9, 13 show the number of lines of code
after program patching, and Columns 4, 6, 8, 10, 12, 14 show
the ratio of the corresponding number of a patched program to
that of the original program. Three benchmark programs were
considered, including a program for bubble sorting, a program
for Fibonacci number generation, and a program composed of
random instructions. Specifically, the bubble sort program was
executed on sorting ten numbers under their worst case initial
order; the Fibonacci program was executed on generating the
47th Fibonacci number; and the random program consisted of
128 randomly generated instructions without branching ones.
In these tables, clock cycle counts are compared between
the original program running on the correct design and a
patched program running on a buggy design; the numbers
of lines of code (LOC) are compared between the original
program and a patched program. As a matter of fact, the
number of erroneous instructions used in a program mainly
determines the increases of program execution cycles and lines
of codes. (This fact cannot be directly seen from the tables
because the number of erroneous instructions activated by a
program cannot be statically determined.) The execution cycle
and program size are increased due to multi-instruction fixing
as well as stall insertion. Table V shows the results without
stall insertion (assuming no errors resulting from pipelined
execution), whereas Table VI shows the results with stall
insertion between every pair of instructions (conservatively
assuming errors may happen due to pipelined execution with-
out attempting any stall minimization). Because the underlying
processor has five pipeline stages, four nop instructions are
needed to interleave a pair of instructions. Therefore, by
ignoring the issue of multi-instruction fixing, the program size
can increase four times in the worst case due to nop insertion.
Also notice that, since the first two programs, namely bubble
sorting and Fibonacci number generation, involve loops, which
result in the increase of execution cycles in comparison with
the lines of code. So an erroneous instruction that appears in a
loop may result in more execution cycles than one that appears
out of loops.

As mentioned in Section III-B, the QBF formulation may
allow patch solutions not included in ISA. Indeed among
the 21 single-instruction patch solutions to the 21 erroneous
instructions of BUG1, six of them are not present in ISA
(although solutions using instructions in ISA do exist, which
can be found by the same QBF formulation but with variables
x⃗ ∗
B being constrained to solutions in ISA). This result suggests

that our proposed formulation can potentially find highly non-
trivial patch solutions.

VI. RELATED WORK

Among related prior work on correcting processor errors,
the efforts closest to ours include [26], [22], where pro-
grammable hardware is integrated into processor designs for
error rectification. The error patching mechanisms of prior
and our methods are fundamentally different. Prior methods
trade hardware resources for error rectifiability in the pro-
cessor design stage; we generate software patches after chip
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TABLE V
STATISTICS OF PATCHED PROGRAMS (WITHOUT STALL INSERTION)

Design #EI Bubble Sort Fibonacci Number Random
#cycle ratio #LOC ratio #cycle ratio #LOC ratio #cycle ratio #LOC ratio

Original 0 913 1.00 37 1.00 335 1.00 13 1.00 128 1.00 128 1.00
BUG1 21 913 1.00 37 1.00 335 1.00 13 1.00 128 1.00 128 1.00
BUG2 18 913 1.00 37 1.00 335 1.00 13 1.00 128 1.00 128 1.00
BUG3 1 913 1.00 37 1.00 335 1.00 13 1.00 128 1.00 128 1.00
BUG4 19 913 1.00 37 1.00 335 1.00 13 1.00 128 1.00 128 1.00
BUG5 1 935 1.02 41 1.11 523 1.56 17 1.31 144 1.13 144 1.13
BUG6 21 913 1.00 37 1.00 335 1.00 13 1.00 128 1.00 128 1.00
BUG7 2 924 1.01 39 1.05 429 1.28 15 1.15 144 1.13 144 1.13
BUG8 1 1229 1.35 49 1.32 479 1.43 19 1.46 136 1.06 136 1.06
BUG9 1 1229 1.35 49 1.32 479 1.43 19 1.46 136 1.06 136 1.06

BUG10 9 1611 1.76 60 1.62 621 1.85 23 1.77 176 1.38 176 1.38
BUG11 1 913 1.00 37 1.00 335 1.00 13 1.00 152 1.19 152 1.19
BUG12 1 913 1.00 37 1.00 335 1.00 13 1.00 130 1.02 130 1.02
BUG13 2 1207 1.32 45 1.22 525 1.57 19 1.46 144 1.13 144 1.13
BUG14 21 1826 2.00 74 2.00 670 2.00 26 2.00 256 2.00 256 2.00
BUG15 19 913 1.00 37 1.00 335 1.00 13 1.00 128 1.00 128 1.00
BUG16 21 1826 2.00 74 2.00 670 2.00 26 2.00 256 2.00 256 2.00

TABLE VI
STATISTICS OF PATCHED PROGRAMS (WITH STALL INSERTION)

Design #EI Bubble Sort Fibonacci Number Random
#cycle ratio #LOC ratio #cycle ratio #LOC ratio #cycle ratio #LOC ratio

Original 0 913 1.00 37 1.00 335 1.00 13 1.00 128 1.00 128 1.00
BUG1 21 4565 5.00 185 5.00 1675 5.00 65 5.00 640 5.00 640 5.00
BUG2 18 4565 5.00 185 5.00 1675 5.00 65 5.00 640 5.00 640 5.00
BUG3 1 4565 5.00 185 5.00 1675 5.00 65 5.00 640 5.00 640 5.00
BUG4 19 4565 5.00 185 5.00 1675 5.00 65 5.00 640 5.00 640 5.00
BUG5 1 4587 5.02 189 5.11 1863 5.56 69 5.31 656 5.13 656 5.13
BUG6 21 4565 5.00 185 5.00 1675 5.00 65 5.00 640 5.00 640 5.00
BUG7 2 4576 5.01 187 5.05 1769 5.28 67 5.15 656 5.13 656 5.13
BUG8 1 4881 5.35 197 5.32 1819 5.43 71 5.46 648 5.06 648 5.06
BUG9 1 4881 5.35 197 5.32 1819 5.43 71 5.46 648 5.16 648 5.16

BUG10 9 5263 5.76 208 5.62 1961 5.85 75 5.77 688 5.38 688 5.38
BUG11 1 4565 5.00 185 5.00 1675 5.00 65 5.00 664 5.19 664 5.19
BUG12 1 4565 5.00 185 5.00 1675 5.00 65 5.00 642 5.02 642 5.02
BUG13 2 4859 5.32 193 5.22 1865 5.57 71 5.46 656 5.13 656 5.13
BUG14 21 5478 6.00 222 6.00 2010 6.00 78 6.00 768 6.00 768 6.00
BUG15 19 4565 5.00 185 5.00 1675 5.00 65 5.00 640 5.00 640 5.00
BUG16 21 5478 6.00 222 6.00 2010 6.00 78 6.00 768 6.00 768 6.00

fabrication without hardware, but performance, overhead. In
terms of QBF formulation for design repairing, prior work [21]
aims at correcting errors directly within logic circuits whereas
we focus on avoiding processor errors in terms of software
workarounds.

Our patch synthesis is related to program optimization, e.g.,
[16], [2], in that in both problems a new program is to be
derived from a reference program. In program optimization,
the optimized and reference programs must be equivalent
under execution upon the same underlying processor. In patch
thesis, the transformed and reference programs are equivalent
under executions upon their respective buggy and ideal ma-
chines. Prior program optimization techniques can potentially
be adopted for patch optimization. On the other hand, there are
recent attentions on program synthesis, e.g., [11], [14], [20].
In program synthesis, missing code fragments conforming to
some specification are to be derived. In [11], [20], the problem
reduces to solving quantified formulas (possibly beyond a
purely propositional domain), which have quantification struc-
tures similar to Formula (5).

Our patch synthesis differs from program optimization and

synthesis in that processor circuitry often has to be taken into
account. Because erroneous, in addition to correct, instructions
can be used for workarounds, circuit constraints (i.e., ϕT ,
ϕ⊥, and ϕE of Formula (1)) have to be modeled at the bit
level. This difference makes our formulas not easily lifted to
the word level for potentially more effective solving, such
as using satisfiability-modulo-theories (SMT) solvers. (Note
that if only correct instructions are to be used for patching,
then the circuit constraints are unnecessary, and the instruction
patch synthesis problem can be treated as a standard program
synthesis problem.)

VII. CONCLUSION

This paper has proposed a software approach to circumvent
processor errors. A generic QBF formulation and its vari-
ants enhanced for practical applications have been presented.
Modern QBF solvers capable of generating certificates can
be exploited for workaround synthesis. The synthesized patch
can then be used for automatic program recompilation. Case
studies on an in-house five-stage pipelined MIPS design have
shown the feasibility of the proposed method. The proposed
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framework showed a first step towards achieving the goal of
software workaround for hardware errors.

Even though current computation is limited by QBF solving
and thus requires human intervention to reduce computational
complexity, the proposed method can still be valuable in
assisting engineers to spot nontrivial fixes (especially for
embedded system applications, where programs are written
by system developers). Future advances of QBF solvers may
further automate the error correction process.

While the present work focused on instruction patch gen-
eration, how to optimize patched programs with minimal stall
insertions remains future work. Existing techniques in auto-
matic code synthesis and optimization could be useful in patch
synthesis. Moreover since not all design errors (such as the
single stack-at fault) can be fixed with parametric abstraction,
other effective abstraction techniques await development. It
is also important to characterize what kinds of errors are
fixable/unfixable under our framework.

ACKNOWLEDGMENTS

The authors are grateful to Roderick Bloem, Chia-Wei
Chang, Georg Hofferek, and Robert Könighofer for helpful
discussions.

REFERENCES

[1] AMD. Revision Guide for AMD Family 10h Processors, Rev. 3.90,
Advanced Micro Devices, Inc., 2012.

[2] S. Bansal and A. Aiken. Automatic Generation of Peephole Superopti-
mizers. In Proc. Int’l Conf. on Architectual Support for Programming
Languages and Operating Systems (ASPLOS), pp. 394-403, 2006.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y.-S. Zhu. Symbolic Model
Checking without BDDs. In Proc. Int’l Conf. on Tools and Algorithms
for Construction and Analysis of Systems (TACAS), pp. 193-207, 1999.

[4] J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Micro-
processor Control. In Proc. Int’l Conf. on Computer Aided Verification
(CAV), pp. 68-80, 1994.

[5] M. Benedetti. Evaluating QBFs via Symbolic Skolemization. In Proc.
Int’l Conf. on Logic for Programming, Artificial Intelligence and Rea-
soning (LPAR), pp. 285-300, 2004.

[6] V. Balabanov and J.-H. R. Jiang. Resolution Proofs and Skolem Functions
in QBF Evaluation and Applications. In Proc. Int’l Conf. on Computer
Aided Verification (CAV), pp. 149-164, 2011.

[7] V. Balabanov and J.-H. R. Jiang. Unified QBF Certification and its
Applications. Formal Methods in System Design, 41(1):45-65, 2012.

[8] Berkeley Logic Synthesis and Verification Group. ABC:
A system for sequential synthesis and verification. Online:
http://www.eecs.berkeley.edu/∼alanmi/abc/

[9] Bug UnderGround: University of Michigan microprocessor bug suite.
Oneline: http://bug.eecs.umich.edu/

[10] C.-W. Chang, H.-Z. Chou, K.-H. Chang, J.-H. R. Jiang, C.-N. J. Liu, C.-
H. Hsiao, and S.-Y. Kuo. Constraint Generation for Software-based Post-
silicon Bug Masking with Scalable Resynthesis Technique for Constraint
Optimization. In Proc. Int’l Symp. on Quality Electronic Design (ISQED),
pp. 1-8, 2011.

[11] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of Loop-
Free Programs. In Proc. ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), pp. 62-73, 2011.

[12] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Document Number: 252046-035, Intel Corporation, 2012.

[13] T. Jussila, A. Biere, C. Sinz, D. Kröning, and C. M. Wintersteiger. A
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